* Review damped driven oscillator

There are two examples on "Transient Behavior" (slide 3 and 4).

* Coupled Oscillators

In general, the motion of coupled systems can be extremely complicated.

DEMO: Double Pendulum

The first join: travels in a semicircular path
The second join: varied, unpredictable trajectories.

8:03: We focus on the small displacement.

Two examples of coupled oscillators:

* **DEMO:** Coupled Pendulum [Couple different objects]

Talk to each other by the spring.

* **DEMO:** Wilber-force Pendulum [Couple degrees of freedom]

Caused by a slight coupling between rotation and vertical motion due to the geometry of the spring.
When the mass moves up and down, it causes the spring to unwind and gives the mass a twist.
Today

Ideal
→
Coupled Ideal ODE

Damped
→
Force Driven

Already one oscillator ⇒ tedious to work out the math

If we want to study coupled oscillator ⇒ it really becomes complicated

We want to learn physics:

In order to make things simpler ⇒ consider ideal case.

[DEMO] Coupled pendulum. Wilberforce Pendulum

The motion seems to be very complicated!

We will see that this is an illusion!

If we look at it in the right way ⇒ we can see simple harmonic oscillator in the complicated system!
Let's consider an example:

There are many many kind of motion!
If you stare at this system long enough
⇒ you can identify a special kind of motion!
"Normal Mode"

Every part of the system is oscillating
at the same phase and the same frequency

We will later realize:
The most general motion is a superposition of the normal modes
→ We can understand the system systematically step-by-step.
In general, coupled oscillators are complicated. But there are easier cases that we can solve things by logic.

Can you guess the normal modes of this example?

Mode A:

\[F = -k \Delta x \]

\[\omega_A^2 = \frac{k}{m} \]

This one is "Oscillating" with 0 amplitude :)

Mode B:

\[F = -2k \Delta x = -4k \Delta x \]

\[\omega_B^2 = \frac{4k}{2m} = \frac{2k}{m} \]

Mode C?
Mode C:

\[F = 0 \]
\[\omega_c = 0 \]

Mode A:
\[
\begin{align*}
X_1 &= 0 \\
X_2 &= A \cos (\omega_A t + \phi_A) \\
X_3 &= -A \cos (\omega_A t + \phi_A)
\end{align*}
\]

Mode B:
\[
\begin{align*}
X_1 &= B \cos (\omega_B t + \phi_B) \\
X_2 &= -B \cos (\omega_B t + \phi_B) \\
X_3 &= -B \cos (\omega_B t + \phi_B)
\end{align*}
\]

Mode C:
\[X_1 = X_2 = X_3 = C + Vt \]

General Solution:
\[X_i = 0 + B \cos (\omega_B t + \phi_B) + C + Vt \]
\[X_2 = A \cos (\omega_A t + \phi_A) + (-B \cos (\omega_B t + \phi_B)) + C + Vt \]
\[X_3 = -A \cos (\omega_A t + \phi_A) + (-B \cos (\omega_B t + \phi_B)) + C + Vt \]

3 second order differential eqs, 6 unknowns: This is the Full Solution.
Force diagram analysis gives:

\[
\begin{align*}
2m \ddot{x}_1 &= K (x_2 - x_1) + K (x_3 - x_1) \\
m \ddot{x}_2 &= K (x_1 - x_2) \\
m \ddot{x}_3 &= K (x_1 - x_3)
\end{align*}
\]

We can reorganize it:

\[
\begin{align*}
2m \ddot{x}_1 &= -2Kx_1 + Kx_2 + Kx_3 \\
m \ddot{x}_2 &= Kx_1 - Kx_2 + 0x_3 \\
m \ddot{x}_3 &= Kx_1 + 0x_2 - Kx_3
\end{align*}
\]

Now our job is to solve the equations.

It is possible to solve it directly, but here we will use matrix as a tool to help us.

\[\Rightarrow \text{ Convert everything to matrices !!}\]
I can rewrite the coupled equation as:

\[M \ddot{X} = -KX \]

\[
M = \begin{pmatrix} 2m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m \end{pmatrix} \quad X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}
\]

\[
K = \begin{pmatrix} 2k & -k & k \\ -k & k & 0 \\ -k & 0 & k \end{pmatrix}
\]

Go to complex notation:

\[X_j = \text{Re} (Z_j) \]

\[Z = e^{i(\omega t + \phi)} \begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix} \]

\[M \dddot{Z} = -KZ \quad \dddot{Z} = -\omega^2 Z \]

\[\Rightarrow M\omega^2 Z = KZ \]

\[\text{cancel } e^{-i\omega t + \phi} \]

\[\Rightarrow MW^2 A = KA \]

\[\times M^{-1} \]

\[\Rightarrow W^2 A = M^{-1} K A \]

\[\Rightarrow (M^{-1} K - \omega^2 I) A = 0 \]

To have solution: \(\det [MK^{-1} - \omega^2 I] = 0 \)
\[M^{-1} = \begin{pmatrix} \frac{1}{2m} & 0 & 0 \\ 0 & \frac{1}{m} & 0 \\ 0 & 0 & \frac{1}{m} \end{pmatrix} \]

\[
(M^\top K - W^2 I) = \begin{pmatrix}
\left(\frac{-k}{m} - W^2 \right) & \frac{-k}{2m} & \frac{-k}{2m} \\
-\frac{k}{m} & \frac{k}{m} - W^2 & 0 \\
-\frac{k}{m} & 0 & \frac{k}{m} - W^2
\end{pmatrix}
\]

Define \(W_0^2 = \frac{k}{m} \)

\[
\Rightarrow \det \begin{pmatrix}
W_0^2 - W^2 & -\frac{1}{2} W_0^2 & -\frac{1}{2} W_0^2 \\
-\frac{1}{2} W_0^2 & W_0^2 - W^2 & 0 \\
-\frac{1}{2} W_0^2 & 0 & W_0^2 - W^2
\end{pmatrix} = 0
\]

\[
(W_0^2 - W^2)^3 - \frac{1}{2} W_0^2 (W_0^2 - W^2) - \frac{1}{2} W_0^4 (W_0^2 - W^2) = 0
\]

\[
(W_0^2 - W^2) (W_0^4 - 2W_0^2 W^2 + W^4 - W_0^4) = 0
\]

\[
(W_0^2 - W^2) W^2 (W^2 - 2W_0^2) = 0
\]

\[
\Rightarrow W = W_0, \sqrt{2} W_0, 0 \quad \text{(take the absolute value)}
\]

\[
= \sqrt{\frac{k}{m}}, \sqrt{\frac{2k}{m}}, 0
\]

Got the same result!!
To get the relative amplitude of a normal mode:

Plug in the normal mode frequency you get in the equation \([M^{-1}K - \omega^2 I] A = 0\)

For instance: take \(\omega = \omega_b = \sqrt{\frac{2K}{m}}\)

\[
\Rightarrow 0 = 2KA_1 + KA_2 + KA_3 \\
0 = KA_1 + KA_2 + 0A_3 \\
0 = KA_1 + 0A_2 + KA_3
\]

\[
\Rightarrow A_1 = -A_2 = -A_3
\]

\[
X = \text{Re}(Z) \Rightarrow X_1 = B \cos (\omega_b t + \phi_b) \\
X_2 = -B \cos (\omega_b t + \phi_b) \\
X_3 = -B \cos (\omega_b t + \phi_b)
\]

\[
X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = B \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \cos (\omega_b t + \phi_b)
\]

It turns out that this is a simple harmonic oscillation!!

Take \(\omega = \omega_A = \sqrt{\frac{K}{m}}\)

\[
X_1 = 0 \\
\Rightarrow A_1 = 0 , \quad A_2 = -A_3 \\
X_2 = A \cos (\omega_A t + \phi_A) \\
X_3 = -A \cos (\omega_A t + \phi_A)\]
(Alternative way) Date

Force diagram analysis gives:

\[2m \ddot{x}_1 = k(x_2 - x_1 - l_0) + k(x_3 - x_1 - l_0) \]
\[m \ddot{x}_2 = k(x_1 - x_2 + l_0) \]
\[m \ddot{x}_3 = k(x_1 - x_3 + l_0) \]

Define \(x'_2 = x_2 - l_0 \)
\(x'_3 = x_3 - l_0 \)

\[2m \ddot{x}_1 = k(x'_2 - x_1) + k(x'_3 - x_1) \]
\[m \ddot{x}_2' = k(x_1 - x_2') \]
\[m \ddot{x}_3' = k(x_1 - x_3') \]

Reorganize it:

\[
\begin{cases}
2m \ddot{x}_1 = -2kx_1 + kx_2' + kx_3' \\
m \ddot{x}_2' = kx_1 - kx_2' + 0x_3' \\
m \ddot{x}_3' = kx_1 + 0x_2' - kx_3'
\end{cases}
\]

Now use the definition of normal mode:

\[
\begin{align*}
x_1 &= k(A_1 e^{i(\omega t + \phi)}) \\
x_2' &= k(A_2 e^{i(\omega t + \phi)}) \\
x_3' &= k(A_3 e^{i(\omega t + \phi)})
\end{align*}
\]

Same \(\omega, \phi \)
\[-2mw^2 A_1 = -2kA_1 + kA_2 + kA_3\]
\[-mw^2 A_2 = kA_1 - kA_2 + 0A_3\]
\[-mw^2 A_3 = kA_1 + 0A_2 - kA_3\]

\[
\begin{align*}
0 &= (-2k + 2mw^2)A_1 + kA_2 + kA_3 \\
0 &= kA_1 + (mw^2 - k)A_2 + 0A_3 \\
0 &= kA_1 + 0A_2 + (mw^2 - k)A_3
\end{align*}
\]

We can rewrite it in the form of matrix

\[
\begin{pmatrix}
(2mw^2 - 2k) & k & k \\
k & (mw^2 - k) & 0 \\
k & 0 & (mw^2 - k)
\end{pmatrix}
\begin{pmatrix}
A_1 \\
A_2 \\
A_3
\end{pmatrix} = 0
\]

To have solution : \[\det\left(\begin{pmatrix}
(2mw^2 - 2k) & k & k \\
k & (mw^2 - k) & 0 \\
k & 0 & (mw^2 - k)
\end{pmatrix}\right) = 0\]

\[\det = (2mw^2 - 2k)(mw^2 - k)^2 - 2k^2(mw^2 - k) = 0\]

\[\begin{align*}
(mw^2 - k) \left[(2mw^2 - 2k)(mw^2 - k) - 2k^2 \right] &= 0 \\
&\downarrow \\
2m^2w^4 - 4mkw^2 &= 0 \\
(mw^2 - k)w^2(2m^2w^2 - 4km) &= 0
\end{align*}\]

\[w = \sqrt{\frac{2k}{m}}, \sqrt{\frac{k}{m}}, 0\]

Got the same result!