Reminder: EXAM Review section
This is what we have done:

From \(\frac{a}{\cdots} \) to \(\frac{a}{\cdots} \)
\(N \)-coupled oscillator \(\infty \) coupled oscillator

\(\Rightarrow \) \(N \) coupled equations of motion \(\Rightarrow \infty \) coupled equation of motion

\(\Box \) Idea we got: make use of the property:

"Space Translation Invariance"

This symmetry can be translated into mathematics

\[A' = SA \text{ such that } A_j' = A_{j+i} \]

If \(A \) is an eigenvector of \(S \)

\(\Rightarrow SA = \beta A \)

\(\Rightarrow A_j' = \beta A_j = A_{j+i} \)

\(\Rightarrow A_j = \beta^j A_0 \propto \beta^j \)

Consider \(\beta = e^{ikx} \) (don't want \(A_j \rightarrow \infty \) when \(j \rightarrow \infty \)).

\(\Rightarrow A_j \propto e^{ijkx} \)

Need \(|\beta| = 1 \)

\(\beta = e^{i\theta} \)

factorize the length scale \(a \) out
\((a: \text{ space between masses}) \)
Let's consider this example:

A lot of point-like massive particles connected by massless strings.

These particles can only move up and down. We have constant tension T and small vibration. Distance between particles: A

Question: what will be the resulting motion of the system?

Force diagram:

Assume $Y_j \ll A \Rightarrow \theta_1, \theta_2 \ll 1$

Horizontal Direction:

$$M \ddot{x}_j = -T \cos \theta_1 + T \cos \theta_2$$ \hspace{1cm} \text{(1)}

Vertical Direction:

$$M \ddot{y}_j = -T \sin \theta_1 - T \sin \theta_2$$ \hspace{1cm} \text{(2)}

Since θ_1 and θ_2 are very small $\Rightarrow \cos \theta \approx 1$, $\sin \theta \approx \theta$

1. $\Rightarrow \ M \ddot{x}_j = -T + T = 0$ No motion in the horizontal direction.

2. $\Rightarrow \ M \ddot{y}_j = -T (\sin \theta_1 + \sin \theta_2)$

$$\dot{\ddot{y}_j} \approx -T \left(\frac{Y_j - Y_{j-1}}{a} + \frac{Y_j - Y_{j+1}}{a} \right)$$

$$M \ddot{y}_j = \frac{T}{a} \left(Y_{j-1} - 2Y_j + Y_{j+1} \right)$$
Normal modes: \(y_j = \text{Re} \left(A_j e^{i(\omega t + \phi)} \right) \)

From \(S \) matrix, the eigenvectors are \(A = \begin{pmatrix} A_j \\ A_{j-1} \\ A_{j+1} \end{pmatrix} \)

\(A_j \propto \beta_j = e^{ijk a} \)

* reminder: \(a \) distance between particles in the \(x \) direction

To get \(M^T K \) matrix:

\[
M = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \quad K = \begin{pmatrix} -\frac{1}{a} & \frac{2}{a} & -\frac{1}{a} & \ldots & 0 \\ 0 & -\frac{1}{a} & \frac{2}{a} & -\frac{1}{a} & \ldots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & \ldots & 0 & -\frac{1}{a} \end{pmatrix}
\]

\(M^{-1} K = \begin{pmatrix} \cdots & \frac{-1}{ma} & \frac{2}{ma} & \frac{-1}{ma} & \cdots \\ \cdots & 0 & \frac{-1}{ma} & \frac{2}{ma} & \frac{-1}{ma} \end{pmatrix} \)

To get \(\omega \), since \(M^T K \) and \(S \) share the same eigenvectors

Calculate \(M^{-1} K A = \omega^2 A \)

\(j^{th} \) term: \(\omega^2 A_j = \frac{T}{ma} (-A_{j-1} + 2A_{j} - A_{j+1}) \)

\[
\omega^2 A_j = \frac{T}{ma} A_j (-e^{-ika} + 2 + e^{ika})
\]

\[
\omega^2 = \frac{T}{ma} \left(2 - 2 \cos \frac{ka}{a} \right)
\]

\[
\omega_0 = \frac{T}{ma} = 2 \omega_0 \left(1 - \cos \frac{ka}{a} \right)
\]

\[
\omega^2 = 4 \omega_0^2 \sin^2 \frac{ka}{2a}
\]
Almost the same as what we get in the last lecture!

\[W = W(k) \] is a function of \(k \)

"Dispersion Relation"

\(k \) is given \(\Rightarrow \) \(W \) is determined

\(\Rightarrow \) wave number \(\Rightarrow \) angular frequency

\[k = \frac{2\pi}{\lambda} \]

Normal modes: Standing waves!

Oscillating at frequency \(W \), determined by \(k \)

This system is infinitely long.

All possible \(k \) values (thus wavelength) are allowed. Each \(k \) value corresponds to a different normal mode with angular frequency \(W(k) \).
Now we will try to solve a finite system using this infinitely long system.

Consider the following boundary conditions:

1) Fixed end:

\[a \quad a \quad \ldots \quad a \]

\[y_0 \quad y_1 \quad y_2 \quad y_3 \quad y_N \quad y_{N+1} \]

Boundary conditions: \(y_0 = 0 \), \(y_{N+1} = 0 \)

What are the normal modes satisfying the boundary condition?

There are two \(k \) values which give the same \(W \)

\(W(k) = W(-k) \)

Therefore: linear combinations of \(e^{ik} \) and \(e^{-ik} \) are also normal modes.

Guess: \(y_j = \text{Re} \left[e^{i(Wt+\phi)} e^{ik} \right] \)

\(\alpha, \beta \) are constants.

Use boundary conditions:

\(y_0 = 0 \) \(\Rightarrow \alpha + \beta = 0 \) \(\Rightarrow \alpha = -\beta \)

\(y_{N+1} = 0 \) \(\Rightarrow \alpha \left(e^{i(N+1)ka} + e^{-i(N+1)ka} \right) = 0 \)

\(\Rightarrow \ k^2 a = \frac{\pi^2 n^2}{N+1} \) \(\Rightarrow \ k^2 a = \frac{n \pi^2}{N+1} \) \(n = 1, 2, 3, \ldots N \)
(More examples):

(2) Open End:

Boundary Conditions:
1. \(y_1 = y_0 \)
2. \(y_N = y_{N+1} \)

From first boundary condition:
\[
\begin{align*}
\alpha + \beta &= e^{ika} + e^{-ika} \\
&= \alpha (1 - e^{ika}) = \beta (e^{-ika} - 1)
\end{align*}
\]

Second boundary condition:
\[
\begin{align*}
\alpha e^{ika} + \beta e^{-ika} &= e^{ika} + e^{-ika} \\
\Rightarrow \alpha e^{ika} (1 - e^{-ika}) &= \beta e^{-ika} (1 - e^{ika}) \\
\Rightarrow e^{-ika} &= e^{ika} \\
\Rightarrow e^{2ika} &= 1 \\
\Rightarrow ka &= \frac{2n\pi}{\lambda N} = \frac{n\pi}{\lambda}
\end{align*}
\]

\(n = 1, 2, 3, 4, \ldots N \)

\[\Rightarrow \beta = \alpha e^{ika} \Rightarrow y_j = \alpha (e^{ika} + e^{-i(j-1)ka}) \]

\[= \alpha e^{-ika} (e^{i(j-1)ka} - e^{i(j-2)ka}) \]

\[\propto \cos(ka(j-\frac{1}{2})) \]

(3) \[y_0, y_N, \Delta \cos \omega t \]

Boundary Conditions:
1. \(y_0 = 0 \)
2. \(y_{N+1} = \Delta \cos \omega t \)

Need to find the "particular solution"

\(y_j \) must be oscillating at a frequency \(\omega t \).
What is the corresponding R_d which gives W_d? Let $W(R)$

$$W_d^2 = 2W_0^2 \left(1 - \cos R_d a\right)$$

⇒ Solve to get $R_d a = \cos^{-1} \left(1 - \frac{W_d^2}{2W_0^2}\right)$

Guess $Y_j = \text{Re} \left[e^{iW_0 t} \left(\alpha e^{iR_d a} + \beta e^{-iR_d a} \right) \right]$

Boundary condition at $j=0$

$$Y_0 = 0 \Rightarrow \alpha + \beta = 0 \Rightarrow \beta = -\alpha$$

⇒ $Y_j = \text{Re} \left[2i e^{iW_0 t} A \sin jR_d a \right]$ (Oscillatory at W_d)

Boundary condition at $j=N+1$

$$Y_{N+1} = Z \cos W_0 t = \text{Re} \left[\Delta e^{iW_0 t} \right]$$

⇒ $2i A \sin (N+1) R_d a = \Delta$

$$A = \frac{\Delta}{2i \sin (N+1) R_d a}$$

⇒ $Y_j = \text{Re} \left[\frac{\Delta \sin jR_d a}{\sin (N+1) R_d a} e^{iW_0 t} \right]$

$$= \frac{\Delta \sin jR_d a}{\sin (N+1) R_d a} \cos W_0 t$$

⇒ Explode when $R_d a = \frac{n\pi}{N+1}!!$ (Match with normal mode frequency)
Summary:

1. Symmetry + doesn't explode at the edge of the universe
 \[\beta = \frac{iq}{a} \]

2. E.O.M can be derived from physical laws

3. Dispersion relation \(W(k) \) can be derived from (1) and (2)

4. The allowed \(k \) value is determined by boundary condition. Full solution = linear combination of normal modes

5. Use initial condition to determine the unknowns.
Now make it continuous!!

\[M^{-1}KA \Rightarrow \omega^2 A_j = \frac{I}{m\alpha} (-A_{j-1} + 2A_j - A_{j+1}) \]

\[M^{-1}KA \Rightarrow \omega^2 A(x) = -\frac{I}{m\alpha} (A(x-a) + 2A(x) - A(x+a)) \]

Taylor Series:

\[f(x+\alpha x) = f(x) + \alpha x f'(x) + \frac{1}{2} \alpha^2 x^2 f''(x) \]

\[A(x-a) = A(x) + a A'(x) + \frac{1}{2} a^2 A''(x) \]

\[A(x+a) = A(x) + a A'(x) + \frac{1}{2} a^2 A''(x) \]

\[\Rightarrow -A(x-a) + 2A(x) - A(x+a) = \frac{\partial^2 A(x)}{\partial x^2} a^2 + \ldots \]

\[M^{-1}KA(x) = \frac{I}{m\alpha} \frac{\partial^2 A(x)}{\partial x^2} a^2 + \ldots \]

In the limit \(a \ll \text{wave length} \)

\[\Rightarrow \text{we can ignore the higher order term} \]

\[p_L = \frac{m}{\alpha} \]

\[\Rightarrow M^{-1}K \rightarrow -\frac{T}{p_L} \frac{\partial^2}{\partial x^2} \]

\[\Rightarrow \frac{\partial^2 u(x,t)}{\partial t^2} = t \frac{\partial^2 u(x,t)}{\partial x^2} \]

\[\Rightarrow \text{Dispersion relation: } \omega = \sqrt{\frac{T}{p_L}} k^2 \]

\[\frac{\omega}{k} = \nu_p = \sqrt{\frac{T}{p_L}} \]

\[\nu_p: \text{phase velocity} \]

\[\omega: \text{angular frequency} \]

\[k: \text{wave number} \]