8.03 Lecture 22

We learned the interference of two EM waves to N EM waves.

![Diagram of EM wave interference](image1)

We call the interference of infinite number of EM waves “diffraction”.

![Diagram of diffraction](image2)

We have ∞ point like spherical EM wave sources. This situation: we will see the “interference” between all the spherical wave sources. We call it “diffraction”.

Feynman: No one has ever been able to define the difference between interference and diffraction satisfactorily. It is just a question of usage.
What is the resulting intensity pattern?

(Method I)

Reminder: N-slit interference:

\[
\langle I \rangle \propto \left[\frac{\sin \left(\frac{N\delta}{2} \right)}{\sin \left(\frac{\delta}{2} \right)} \right]^2
\]

Where \(\delta \) is the phase difference between near-by slits: \(\delta = \frac{d\sin \theta}{\lambda}2\pi \)

Consider the limit:

\[
d \to 0 \quad N \to \infty \quad Nd = D
\]

\[
\Rightarrow \delta \to 0 \quad N\delta = \frac{D\sin \theta}{\lambda}2\pi
\]

\[
\langle I \rangle \propto \left[\frac{\sin \left(\frac{N\delta}{2} \right)}{\sin \left(\frac{\delta}{2} \right)} \right]^2
\]

We can define:

\[
\beta = \frac{N\delta}{2} = \frac{\pi D\sin \theta}{\lambda}
\]

\[
\Rightarrow \langle I \rangle \propto \left[\frac{\sin \beta}{\beta} \right]^2
\]

Here we also assume that the intensity of individual point source is proportional to \(N^{-2} \).
Another method described in Georgi’s book: Do an integration over all point-like sources to calculate the total electric field

\[C(k_x, k_y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy f(x, y) e^{-ik \cdot \vec{r}(x, y)} \]

Where \(C \) is proportional to the total electric field. The integrals are over the unite area of the point source and \(f \) is the shape of the sources. This is the Fourier transform of \(f(x, y) \)

Let’s consider a single slit experiment

\[f(x, y) = \begin{cases}
1 & \text{if } -\frac{D}{2} \leq x \leq \frac{D}{2} \\
0 & \text{if } |x| > \frac{D}{2}
\end{cases} \]

\[C(k_x, k_y) = \frac{1}{4\pi^2} \int_{-D/2}^{D/2} e^{-ik_x x} dx \int_{-\infty}^{\infty} e^{-ik_y y} dy \]

\[= \delta(k_y) \frac{1}{2\pi} e^{-ik_x x} \left[e^{-ik_x D/2} - e^{+ik_x D/2} \right] \]

\[= \delta(k_y) \frac{1}{2\pi} 2 \sin k_x D/2 \]

Therefore

\[|\vec{E}| \propto C \propto \frac{\sin k_x D/2}{k_x} \]

\[I \propto |C|^2 \propto \frac{\sin^2 k_x D/2}{k_x} \]

since \(\frac{x}{r} = \frac{k_x}{k} = \frac{k_x \lambda}{2\pi} = \sin \theta \)

\[\Rightarrow k_x = \frac{2\pi \sin \theta}{\lambda} \]

\[\Rightarrow I \propto \frac{\sin^2 \left(\frac{\pi D}{\lambda} \sin \theta \right)}{\left(\frac{\pi D}{\lambda} \sin \theta \right)^2} \]

Define \(\beta \equiv \frac{\pi D \sin \theta}{\lambda} \)

\[\langle I \rangle \propto \left(\frac{\sin \beta}{\beta} \right)^2 \]

Same result as method I!
Observation:
(1) If we increase the size of the slit D:
⇒ the width decreases!
(2) Distance between peaks $\propto \lambda$
Principle Maximum \Rightarrow The width is larger for red light (longer wave length) than blue light (shorter wave length).

(3) Intensity decreases quickly $\propto \frac{1}{\beta^2}$ as a function of β (or $\sin \theta$) if D is large. On the other hand: if D is smaller, intensity decreases slower.

Coming back to the double-slit experiment: make it even more realistic: include the effect from finite slit width:
\[I = I_0 \left(\frac{\sin \beta}{\beta} \right)^2 \left(\frac{\sin \frac{N\delta}{2}}{\sin \frac{\delta}{2}} \right)^2 \]

\[\beta = \frac{\pi D}{\lambda} \sin \theta \quad \delta = kd \sin \theta = \frac{2\pi d \sin \theta}{\lambda} \]

Let’s consider a pin hole or aperture:

One can do the integration and we found that the intensity is:

\[I(\theta) = I_0 \left(\frac{J_1(\beta)}{\beta} \right)^2 \]

Where \(J_1 \) is a Bessel function of the first kind:

Solve:

\[J_1(x) = 0 \implies x \approx 3.83 \]

\[\implies \beta = 3.83 = \frac{\pi D}{\lambda} \sin \theta \]

\[\implies \sin \theta \approx 1.22 \frac{\lambda}{D} \]

And so the resolution of a pin hole:

\[\sin \Delta \theta \approx \Delta \theta = 1.22 \frac{\lambda}{D} \]

Such that we can separate the two peaks! Human pupil is 2-4 mm when narrow and 3-8 mm when wide. Take visible light which is around 500 nm. \(D \sim 5 \) mm. Resolution:

\[\sim 1.22 \frac{\lambda}{D} \sim 1.22 \frac{5 \cdot 10^{-7}}{5 \cdot 10^{-3}} \sim 1.22 \cdot 10^{-4} \]
iPhone 7: 401 ppi

\[
\Delta x \sim \frac{2.54 \text{cm}}{401} \sim 6.3 \times 10^{-3} \text{ cm} \\
\Delta \theta \sim \frac{\Delta x}{10 \text{ cm}} \sim 3 \times 10^{-4}
\]

The human eye can resolve it! Will you buy the iPhone x with 40,000 ppi? If Apple put 2,000 pixels in 6 cm ~ the limit.

We have learned single slit diffraction.

\[
I = I_0 \left(\frac{\sin \beta}{\beta} \right)^2 \quad \beta = \frac{\pi D \sin \theta}{\lambda}
\]

This means that a laser pointer is not merely producing a pencil beam.

Suppose \(\lambda = 500 \text{ nm} = 5 \times 10^{-7} \text{ m} \) and \(D = 1 \text{ mm} = 1 \times 10^{-3} \text{ m} \).

Opening angle:

\[
\theta \approx 1.22 \frac{\lambda}{D} = 6 \times 10^{-4}
\]

If we shoot a laser to moon: \(L = 4 \times 10^8 \text{ m} \) the radius of the principle maxima is 240 km!!