Problem Set 5

1. **Gaussians and uncertainty product saturation** [5 points]

Consider the gaussian wavefunction

\[\psi(x) = N \exp\left(-\frac{1}{2} \frac{x^2}{a^2}\right), \] (1)

where \(N \in \mathbb{R} \) and \(a \) is a real positive constant with units of length. The integrals

\[\int_{-\infty}^{\infty} dx e^{-\alpha x^2 + \beta x} = \sqrt{\frac{\pi}{\alpha}} \exp\left(\frac{\beta^2}{4\alpha}\right), \quad \text{Re}(\alpha) > 0, \]

\[\int_{-\infty}^{\infty} dx x^2 e^{-\alpha x^2} = \frac{1}{2\alpha} \int_{-\infty}^{\infty} dx e^{-\alpha x^2} \]

(a) Use the position space wavefunction (1) to calculate the uncertainties \(\Delta x \) and \(\Delta p \). Confirm that your answer saturates the Heisenberg uncertainty product

\[\Delta x \Delta p \geq \frac{\hbar}{2}. \]

(Hints: These calculations are actually quite brief if done the right way! Using the second of the above integrals you don’t even have to determine \(N \). For the evaluation of \(\langle \hat{p}^2 \rangle \) in position space fold one factor of \(\hat{p} \) into \(\psi^* \).)

(b) Calculate the Fourier transform \(\phi(p) \) of \(\psi(x) \). Use Parseval to confirm your answer and then recalculate \(\Delta p \) using momentum space.

2. **Complex Gaussians and the uncertainty product** [10 points]

Consider the gaussian wavefunction

\[\psi(x) = N \exp\left(-\frac{1}{2} \frac{x^2}{\Delta^2}\right), \quad \Delta \in \mathbb{C}, \quad \text{Re}(\Delta^2) > 0, \] (1)

where \(N \) is a real normalization constant and \(\Delta \) is now a complex number: \(\Delta^* \neq \Delta \). The integrals in Problem 1 are also useful here and so is the following relation, valid for any nonzero complex number \(z \),

\[\text{Re}\left(\frac{1}{z}\right) = \frac{\text{Re}(z)}{|z|^2} \] (prove it!)
(a) Use the position space representation (1) of the wavefunction to calculate the uncertainties Δx and Δp. Leave your answer in terms of $|\Delta|$ and $\text{Re}(\Delta^2)$. (Δx will depend on both $|\Delta|$, while Δp will depend only on $\text{Re}(\Delta^2)$).

(b) Calculate the Fourier transform $\phi(p)$ of $\psi(x)$. Use Parseval to confirm your answer and then recalculate Δp using momentum space.

(c) We parameterize Δ using a phase $\phi_\Delta \in \mathbb{R}$ as follows

$$\Delta = |\Delta| e^{i\phi_\Delta}.$$

Calculate the product $\Delta x \Delta p$ and confirm that the answer can be put in terms of a trigonometric function of ϕ_Δ and that $|\Delta|$ drops out. Is your answer reasonable for $\phi_\Delta = 0$ and for $\phi_\Delta = \frac{\pi}{2}$?

(d) Consider the free evolution of a gaussian wave packet in Problem 3 of Homework 4. What is Δp at time equal zero? Examine the time evolution of the gaussian (from the solution!) and read the value of the time-dependent (complex) constant Δ^2. Confirm that Δp, found in (a), gives a time-independent result.

3. **Exercises with a particle in a box** [15 points]

Consider a 1D problem for a particle of mass m that is free to move in the interval $x \in [0, a]$. The potential $V(x)$ is zero in this interval and infinite elsewhere. For that system consider a solution of the Schrödinger equation of the form

$$\Psi_n(x, t) = N \sin \left(\frac{n \pi}{a} x \right) e^{-i\phi_n(t)}, \quad x \in [0, a],$$

and $\Psi_n(x, t) = 0$ for $x < 0$ and $x > a$. Here $n \geq 1$ is an integer.

(a) Find the expression for the (real) phase $\phi_n(t)$ so that the above wavefunction solves the Schrödinger equation. Find the normalization constant N.

(b) Use $\Psi_n(x, 0)$ to calculate $\langle x \rangle$, $\langle x^2 \rangle$, and Δx.

(c) Use $\Psi_n(x, 0)$ to calculate $\langle p \rangle$, $\langle p^2 \rangle$, and Δp.

(d) Is the uncertainty inequality satisfied? Is it saturated?

(e) What answers in (b) and (c) change for $\Psi_n(x, t)$? Explain.

4. **A Hard Wall** [5 points]

A particle of mass m is moving in one dimension, subject to the potential $V(x)$:

$$V(x) = \begin{cases}
0, & \text{for } x > 0, \\
\infty, & \text{for } x \leq 0.
\end{cases}$$

Find the stationary states and their energies. These states cannot be normalized.

1Actually Δx can be written in terms of $\text{Re}(1/\Delta^2)$ alone.
5. **A Step Up on the Infinite Line** [10 points]

A particle of mass m is moving in one dimension, subject to the potential $V(x)$:

$$V(x) = \begin{cases}
V_0, & \text{for } x > 0, \\
0, & \text{for } x \leq 0.
\end{cases}$$

Find the stationary states that exist for energies $0 < E < V_0$.

6. **A Wall and Half of a Finite Well** [10 points]

A particle of mass m is moving in one dimension, subject to the potential $V(x)$:

$$V(x) = \begin{cases}
\infty, & \text{for } x < 0, \\
-V_0, & \text{for } 0 < x < a, \quad (V_0 > 0) \\
0, & \text{for } x > a.
\end{cases}$$

Find the stationary states that correspond to bound states ($E < 0$, in this case). Is there always a bound state? Find the minimum value of z_0

$$z_0^2 = \frac{2ma^2V_0}{\hbar^2},$$

for which there are three bound states. Explain the precise relation of this problem to the problem of the finite square well of width $2a$.

7. **Mimicking hydrogen with a one-dimensional square well.** [5 points]

The hydrogen atom, the Bohr radius a_0 and ground state energy E_0 are given by

$$a_0 = \frac{\hbar^2}{me^2} \approx 0.529 \times 10^{-10} \text{ m}, \quad E_0 = -\frac{e^2}{2a_0} = -13.6 \text{ eV}.$$

The ground state is a bound state and the potential goes to zero at infinity. We want to design a one-dimensional finite square well

$$V(x) = \begin{cases}
-V_0, & \text{for } |x| < a_0, \quad V_0 > 0, \\
0, & \text{for } |x| > a_0,
\end{cases}$$

that simulates the hydrogen atom. Calculate the value of V_0 in eV so that the ground state of the box is at the correct depth.

8. **No states with $E < V(x)$** [5 points]

Consider a real stationary state $\psi(x)$ with energy E:

$$-\frac{\hbar^2}{2m} \psi''(x) + [V(x) - E] \psi(x) = 0.$$

(a) Prove that E must exceed the minimum value of $V(x)$ by noting that $E = \langle H \rangle$.

(b) Explain the claim by trying (and failing) to sketch a wavefunction consistent with being on the classically inaccessible region for all values of x.