Problem 1: Dust Grains in Space

a) \mathcal{H} is separable: the 6 variables are statistically independent.

\[
p(\theta_1, \theta_2, \theta_3, L_1, L_2, L_3) = \frac{1}{(2\pi)^3} \frac{1}{\sqrt{2\pi I_1 kT}} \exp\left(-\frac{L_1^2}{2I_1 kT}\right) \frac{1}{\sqrt{2\pi I_2 kT}} \exp\left(-\frac{L_2^2}{2I_2 kT}\right) \frac{1}{\sqrt{2\pi I_3 kT}} \exp\left(-\frac{L_3^2}{2I_3 kT}\right)
\]

b) \[< L_1^2 > = < L_2^2 > = I_1 kT \quad \Rightarrow \quad < L_3^2 > = I_3 kT\]

$\Rightarrow \vec{L}$ is almost \perp to axis 3, the long axis.

c) \[Z_R = (Z_{1,R})^N = \left[(2\pi)^{9/2} \sqrt{I_1 I_2 I_3 (kT)^3/2}\right]^N\]

\[F_R = -NkT \ln Z_{1,R}\]

\[S_R = -\left(\frac{\partial F_R}{\partial T}\right)_N = Nk \ln Z_{1,R} + NkT \frac{1}{Z_{1,R}} \frac{3}{2} \frac{1}{T} Z_{1,R}\]

\[= Nk \ln Z_{1,R} + \frac{3}{2} Nk\]

d) 3rd law is violated: \[\lim_{T \to 0} S_R = Nk \ln(0) = -\infty.\] At very low temperatures one must switch to a quantum treatment of the rotational motion. Such a treatment will lead to a result consistent with the 3rd law.

e) There is no energy gap behavior because there is no gap in the classically allowed rotational energies. The quantum result, however, will show an energy gap.
Problem 2: Adsorption On a Stepped Surface

a) $Z_1 = \sum_{\text{states}} \exp(-\epsilon_{\text{state}}/kT) = 0.01M + 0.14M \exp(-\Delta/kT) + 0.85M \exp(-1.5\Delta/kT)$

b)
\[
\frac{n_{\text{face}}}{n_{\text{corner}}} = \frac{p_{\text{face}}}{p_{\text{corner}}} = \frac{0.85M \exp(-1.5\Delta/kT)}{0.01M} = 85 \exp(-1.5\Delta/kT)
\]

c) Consider only the 2 lowest energy levels
\[
E = N <\epsilon_{\text{one}}>
\]
\[
= N \left[\frac{0.01M}{0.01M + 0.14M \exp(-\Delta/kT)} + \frac{0.14M \exp(-\Delta/kT)}{0.01M + 0.14M \exp(-\Delta/kT)} \right]
\approx 14N\Delta \exp(-\Delta/kT)
\]

\[
C_A = \left(\frac{\partial E}{\partial T} \right)_A = 14N\Delta \left(\frac{\Delta}{kT^2} \right) \exp(-\Delta/kT) = 14Nk \left(\frac{\Delta}{kT} \right)^2 \exp(-\Delta/kT)
\]

d) All states are equally likely $\Rightarrow p_{\text{face}} = 0.85$.

e) M possible states for each atom $\Rightarrow \lim_{T \to \infty} S = Nk \ln M$.

f) One expects energy gap behavior because there is an energy gap for the excitation of a single atom.
Problem 3: Neutral Atom Trap

a) First write down the Hamiltonian for one atom.

\[H_1 = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m} + ar \]

Then compute the partition function

\[
Z_1 = \frac{1}{\hbar^3} \int_{-\infty}^{\infty} e^{-\frac{p_x^2}{2mkT}} dp_x \int_{-\infty}^{\infty} e^{-\frac{p_y^2}{2mkT}} dp_y \int_{-\infty}^{\infty} e^{-\frac{p_z^2}{2mkT}} dp_z \int_0^{2\pi} r^2 \sin \theta dr d\theta d\phi \\
= (\frac{2\pi mkT}{\hbar^2})^{3/2} 4\pi \left(\frac{kT}{a} \right)^3 \int_0^\infty y^2 e^{-y} dy \\
= 8\pi k^3 (\frac{2\pi mk}{\hbar^2})^{3/2} T^{9/2} a^{-3}
\]

In order to emphasize the dependence on the important variables, this can be written in the form

\[Z_1 = A T^\alpha a^{-\eta} \]

where

\[A = 8\pi k^3 (\frac{2\pi mk}{\hbar^2})^{3/2} \]

\[\alpha = 9/2 \quad \text{and} \quad \eta = 3. \]

b) Remember to include correct Boltzmann counting.

\[
Z = \frac{1}{N!} Z_1^N \\
F = -kT \ln Z = -kT(N \ln Z_1 - N \ln N + N) \\
= -NkT \ln(Z_1/N) - NkT \\
S = -\left(\frac{\partial F}{\partial T} \right)_N \\
= Nk \ln(Z_1/N) + Nk + NkT \frac{1}{Z_1/N} (9/2) \frac{Z_1/N}{T} \\
= Nk \ln(Z_1/N) + (11/2)Nk
\]
c) \(dQ = 0 \) no heat is exchanged with surroundings

\[dQ = \frac{dS}{T} \quad \text{process is said to be reversible} \]

\[\Rightarrow dS = 0, \quad S \text{ is constant} \]

\[\Rightarrow Z_1 \text{ is constant, using the result from b)} \]

\[\Rightarrow T_0^{9/2}/a^3 \text{ is constant and } = T_0^{9/2}/a_0^3 \]

\[\left(\frac{T}{T_0} \right)^{9/2} = \left(\frac{a}{a_0} \right)^3 \]

\[T = T_0 \left(\frac{a}{a_0} \right)^{2/3} \]

Problem 4 Two-Dimensional H\(_2\) Gas

a)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\epsilon)</th>
<th>DEGENERACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pm 3)</td>
<td>(9h^2/2I)</td>
<td>2</td>
</tr>
<tr>
<td>(\pm 2)</td>
<td>(4h^2/2I)</td>
<td>2</td>
</tr>
<tr>
<td>(\pm 1)</td>
<td>(h^2/2I)</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\epsilon_m = (h^2/2I) m^2 \]

\[Z_{\text{ROT,1}} = \sum_{\text{states}} \exp[-\epsilon(\text{state})/kT] = \sum_{m=-\infty}^{\infty} \exp[-(h^2/2IkT) m^2] \]

\[= 1 + 2 \sum_{j=1}^{\infty} \exp[-(h^2/2IkT) j^2] \]
b) \[p(m = 3) \over p(m = 2) = \frac{Z^{-1}\exp[-9\hbar^2/2IkT]}{Z^{-1}\exp[-4\hbar^2/2IkT]} = \exp[-(5/2)\hbar^2/IkT] \]

c) \[p(m = 3 \mid \epsilon = 9\hbar^2/2I) = \frac{Z^{-1}\exp[-9\hbar^2/2IkT]}{2(Z^{-1}\exp[-9\hbar^2/2IkT])} = 1/2 \]
\[p(m = 1 \mid \epsilon \leq \hbar^2/2I) = \frac{Z^{-1}\exp[-\hbar^2/2IkT]}{Z^{-1}+2(Z^{-1}\exp[-\hbar^2/2IkT])} = \frac{1}{2 + \exp[\hbar^2/2IkT]} \]

d) \[Z_{\text{ROT},1} = \sum_{m=-\infty}^{\infty} \exp[-(\hbar^2/2IkT)m^2] \rightarrow \int_{-\infty}^{\infty} \exp[-(\hbar^2/2IkT)m^2] \, dm \]
\[= \int_{-\infty}^{\infty} \exp[-\frac{m^2}{2(IkT/\hbar^2)}] \, dm = \sqrt{\frac{2\pi IkT}{\hbar^2}} \sim \beta^{-1/2} \quad \text{Gaussian normalization} \]
\[E_{\text{ROT}} = N <\epsilon> = N \left(-\frac{1}{Z_1} \frac{\partial Z_1}{\partial \beta} \right) \]
\[= N \left(-\frac{1}{Z_1} \right) \left(-\frac{Z_1}{2\beta} \right) = (1/2)N \frac{1}{\beta} = (1/2)NkT \]
Problem 5: Why Stars Shine

a) The electrostatic potential outside the charged sphere depends only on r, the magnitude of the distance from the center of the sphere.

$$\phi(r) = \frac{|e|}{r} \quad r \geq R$$

The potential energy of another proton, considered to be a point particle, in this field is

$$V(r) = q\phi(r) = \frac{e^2}{r}$$

Then the minimum energy that the second proton must have to get within a radial distance R of the first is

$$E_{\text{min}} = V(R) = \frac{e^2}{R} = \frac{(4.8 \times 10^{-10})^2}{1.2 \times 10^{-13}} = 1.92 \times 10^{-6} \text{ ergs}$$

b) In problem 4 of problem set 2 we found the following expression for the kinetic energy of a particle in a three dimensional classical gas.

$$p(E) = \frac{2}{\sqrt{\pi} kT} \sqrt{\frac{E}{kT}} \exp[-E/kT]$$

Now find the probability p_+ that a given proton in the stellar plasma has an energy greater than E_{min}.

$$p_+ \equiv \text{prob}(E > E_{\text{min}}) = \int_{E_{\text{min}}}^{\infty} p(E) \, dE$$

$$= \frac{2}{\sqrt{\pi} kT} \int_{E_{\text{min}}}^{\infty} \sqrt{\frac{E}{kT}} \exp[-E/kT] \, dE = \frac{2}{\sqrt{\pi}} \int_{y_{\text{min}} = E_{\text{min}}/kT}^{\infty} \sqrt{y} \exp[-y] \, dy$$

$$\approx \frac{2}{\sqrt{\pi}} \sqrt{y_{\text{min}}} \exp[-y_{\text{min}}]$$

This is going to turn out to be a very small number, probably too small to be represented on a hand calculator. Therefore, let’s work toward getting its logarithm.

$$\log_{10}(p_+) = \log_{10} \left[\frac{2}{\sqrt{\pi}} \sqrt{\frac{E_{\text{min}}}{kT}} \right] + \log_{10} \left[\exp[-E_{\text{min}}/kT] \right]$$

$$\log_{10} \left[\exp[-E_{\text{min}}/kT] \right] = \frac{E_{\text{min}}}{kT} \log_{10}(e) = -0.4343 \frac{E_{\text{min}}}{kT}$$

$$\frac{E_{\text{min}}}{kT} = \frac{1.920 \times 10^{-6}}{1.381 \times 10^{-16} \times 4 \times 10^7} = 3.476 \times 10^2$$

$$\log_{10}(p_+) = 1.323 - 1.510 \times 10^2 = -149.6$$

$$p_+ = 0.2 \times 10^{-149}$$
c)
\[
<v> = \sqrt{\frac{8kT}{\pi m}}
\]
\[
= \left(\frac{8 \times 1.381 \times 10^{-16} \times 4 \times 10^7}{\pi \times 1.67 \times 10^{-24}} \right)^{1/2}
= 9.18 \times 10^7 \text{ cm/sec}
\]
\[
\sigma = \pi(2R)^2 = \pi(2.4 \times 10^{-13})^2 = 1.81 \times 10^{-25} \text{ cm}^2
\]
\[
n = \frac{\rho}{M_{\text{proton}}} = \frac{100}{1.67 \times 10^{-24}} = 5.99 \times 10^{25} \text{ protons/cm}^3
\]
\[
L = (n\sigma)^{-1} = 9.22 \times 10^{-2} \text{ cm}
\]
\[
\tau_{\text{collision}} = L/ <v> = 1.01 \times 10^{-9} \text{ sec}
\]

d) The fusion rate per proton is \(p_+ \) times the collision rate per proton. But in general a rate equals the reciprocal of the characteristic time between events, so
\[
\tau_{\text{fusion}} = \tau_{\text{collision}}/p_+ = \frac{1.01 \times 10^{-9}}{0.2 \times 10^{-149}} = 5 \times 10^{140} \text{ sec}
\]
The universe is about 15 billion years old, corresponding to a time
\[
T_{\text{universe}} = 15 \times 10^9 \times 365 \times 24 \times 60 \times 60 = 4.7 \times 10^{17} \text{ sec}
\]
If the mass of the sun is \(2 \times 10^{33} \) grams then the number of protons it contains is given by
\[
N_{\text{protons}} = \frac{2 \times 10^{33}}{1.67 \times 10^{-24}} = 1.2 \times 10^{57}
\]
Then for the entire sun, the total number of fusions per second is found as follows.
\[
\text{number of fusions per second} = N_{\text{protons}} \times \text{fusion rate per proton}
\]
\[
= N_{\text{protons}}/\tau_{\text{fusion}}
\]
\[
= 1.2 \times 10^{57} / 5 \times 10^{140} = 2 \times 10^{-84} \text{ sec}^{-1}
\]