Problem 1 (30 points) Doping a Semiconductor

When diffusing impurities into a particular semiconductor the probability density \(p(x) \) for finding the impurity a distance \(x \) below the surface is given by

\[
p(x) = \begin{cases}
 (0.8/l) \exp[-x/l] + 0.2 \delta(x - d) & x \geq 0 \\
 0 & x < 0
\end{cases}
\]

where \(l \) and \(d \) are parameters with the units of distance. The delta function arises because a fraction of the impurities become trapped on an accidental grain boundary a distance \(d \) below the surface.

a) Make a carefully labeled sketch of the cumulative function \(P(x) \) which displays all of its important features. [You do not need to give an analytic expression for \(P(x) \).]

b) Find \(<x> \).

c) Find the variance of \(x \), \(\text{Var}(x) \equiv <(x - <x>)^2> \).

The contribution to the microwave surface impedance due to an impurity decreases exponentially with its distance below the surface as \(e^{-x/s} \). The parameter \(s \), the “skin depth”, has the units of distance.

d) Find \(<e^{-x/s}> \).
Problem 2 (40 points) Collision Products

A certain collision process in high energy physics produces a number of biproducts. When the biproducts include a pair of elementary particles \(A \) and \(B \) the energies of those particles, \(E_A \) and \(E_B \), are distributed according to the joint probability density

\[
p(E_A, E_B) = \frac{4E_B(E_A - E_B)}{\Delta^4} \exp\left[-\frac{(E_A + E_B)}{\Delta}\right] \quad \text{for} \quad E_A > 0 \quad \text{and} \quad E_A > E_B > 0
\]

\[
= 0 \quad \text{elsewhere}
\]

\(\Delta \) is a parameter with the units of energy. A contour plot of \(p(E_A, E_B) \) is shown above. Note that the energy \(E_A \) is always positive and greater than the energy \(E_B \).

a) Find \(p(E_B) \). Sketch the result.

b) Find the conditional probability density \(p(E_A \mid E_B) \). Sketch the result.

c) Are \(E_A \) and \(E_B \) statistically independent? Explain your reasoning.

The collisions are statistically independent random events that occur at some uniform rate in time. The pair \(A \) and \(B \) only occurs in a fraction \(f \) of the collisions. When the pair is produced, it is detected with 100\% efficiency. When the pair is not produced, there are no competing background events.

d) If the overall collision rate is \(10^6 \) per hour, how long must one run the experiment in order that the uncertainty in the determination of \(f \) is of the order of one part in \(10^4 \) of the value of \(f \) measured in that run? Note: one does not need the answers to a), b), or c) to answer this question.
Problem 3 (30 points) Equipment Failure

A graduate student begins an experiment which depends on two critical pieces of apparatus: a dilution refrigerator and a sophisticated laser system. Each is prone to failure, the failures are statistically independent, and a failure of either one ends the experimental run. The probability of failure after a time t for the refrigerator is given by

$$p(t_r) = \frac{1}{\alpha} \exp\left[-\frac{t_r}{\alpha}\right] \quad t_r \geq 0$$

$$= 0 \quad t_r < 0$$

and for the laser by

$$p(t_l) = \frac{1}{\beta} \exp\left[-\frac{t_l}{\beta}\right] \quad t_l \geq 0$$

$$= 0 \quad t_l < 0$$

We want to find the probability density for the duration of an experimental run T; that is, we want to find the probability density for $T \equiv \text{Min}(t_r, t_l)$.

a) Find an analytic expression for the cumulative function $P(T)$. No short cuts here; do the integrals. [Hint: a bit of thought beforehand can decrease the work considerably.]

b) Find the probability density $p(T)$ and sketch the result.
Integrals

$$\int e^{ax} \, dx = \frac{e^{ax}}{a}$$

$$\int x e^{ax} \, dx = \frac{e^{ax}}{a^2} (ax - 1)$$

$$\int x^2 e^{ax} \, dx = \frac{e^{ax}}{a^3} (a^2 x^2 - 2ax + 2)$$

$$\int \frac{dx}{1 + e^x} = \ln \left[\frac{e^x}{1 + e^x} \right]$$

Definite Integrals

For integer n and m

$$\int_0^\infty x^n e^{-x} \, dx = n!$$

$$\int_0^\infty \frac{e^{-x}}{\sqrt{x}} \, dx = \sqrt{\pi}$$

$$(2\pi \sigma^2)^{-1/2} \int_{-\infty}^\infty x^{2n} e^{-x^2/2\sigma^2} \, dx = 1 \cdot 3 \cdot 5 \cdots (2n - 1) \sigma^n$$

$$\int_0^\infty x e^{-x^2} \, dx = \frac{1}{2}$$

$$\int_0^1 x^m (1 - x)^n \, dx = \frac{n! m!}{(m + n + 1)!}$$