Problem 1 (25 points) Bose Gas

In a weakly interacting gas of Bose particles at low temperature the expansion coefficient α and the isothermal compressibility K_T are given by

$$\alpha \equiv \frac{1}{V} \frac{\partial V}{\partial T} \bigg|_p = \frac{5}{4} a \frac{T^{3/2}}{c} V^2 + \frac{3}{2} b \frac{T^2}{c} V^2$$

$$K_T \equiv -\frac{1}{V} \frac{\partial V}{\partial P} \bigg|_T = \frac{1}{2c} V^2$$

where a, b and c are constants. It is known that the pressure goes to zero in the limit of large volume and low temperature. Find the equation of state $P(T, V)$.

Problem 2 (35 points) Hydrostatic System

The internal energy U of a certain hydrostatic system is given by

$$U = AP^2V$$

where the constant A has the units of (pressure)$^{-1}$.

a) Find the slope, dP/dV, of an adiabatic path ($dQ = 0$) in the P-V plane in terms of A, P and V.

Assume that one also knows the thermal expansion coefficient α and the isothermal compressibility K_T.

$$\alpha \equiv \frac{1}{V} \frac{\partial V}{\partial T} \bigg|_p \quad \text{and} \quad K_T \equiv -\frac{1}{V} \frac{\partial V}{\partial P} \bigg|_T$$

b) Find the slope, dP/dV, of an isothermal path in the P-V plane.

c) Find the constant volume heat capacity, C_V, in terms of the known quantities.
Problem 3 (40 points) Molecular Solid

In a particular molecular solid the individual molecules are localized at specific lattice sites and possess no center of mass motion. However, each of the N molecules is free to rotate about a fixed direction in space which we will designate as the z direction. As far as the rotational motion is concerned the molecules can be considered to be non-interacting. The classical microscopic state of each molecule is specified by a rotation angle $0 \leq \theta < 2\pi$ and a canonically conjugate angular momentum $-\infty < l < \infty$ about the z axis. The energy of a single molecule is independent of θ and depends quadratically on l. Thus the Hamiltonian for the system is given by

$$H = \sum_{i=1}^{N} \frac{l_i^2}{2I}$$

where I is the moment of inertia of a molecule about the z axis.

a) Represent the system by a microcanonical ensemble where the energy lies between E and $E + \Delta$. Find an expression for the phase space volume Ω. Use Sterling’s approximation to simplify your result. [It may be helpful to consult the attached information sheet.]

b) Based on your calculations in a) find the probability density $p(\theta)$ for the orientation angle of a single molecule and explain your method.

c) The probability density $p(l)$ for the angular momentum of a single molecule can be written in the form $p(l) = \Omega' / \Omega$ where $\Omega = \Omega(E, N)$ is the quantity you found in a). Find Ω'. Do not try to simplify your answer. Do explain how to eliminate E from your expression for $p(l)$.

d) Find the energy of the system as a function of temperature, $E(T, N)$.

2
PARTIAL DERIVATIVE RELATIONSHIPS

Let \(x, y, z \) be quantities satisfying a functional relation \(f(x, y, z) = 0 \). Let \(w \) be a function of any two of \(x, y, z \). Then

\[
\left(\frac{\partial x}{\partial y} \right)_w \left(\frac{\partial y}{\partial z} \right)_w = \left(\frac{\partial x}{\partial z} \right)_w
\]

\[
\left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x = -1
\]

COMBINATORIAL FACTS

There are \(K! \) different orderings of \(K \) objects. The number of ways of choosing \(L \) objects from a set of \(K \) objects is

\[
\frac{K!}{(K-L)!}
\]

if the order in which they are chosen matters, and

\[
\frac{K!}{L!(K-L)!}
\]

if order does not matter.

STERLING’S APPROXIMATION

When \(K \gg 1 \)

\[
\ln K! \approx K \ln K - K \quad \text{or} \quad K! \approx (K/e)^K
\]

DERIVATIVE OF A LOG

\[
\frac{d}{dx} \ln u(x) = \frac{1}{u(x)} \frac{du(x)}{dx}
\]

VOLUME OF AN \(\alpha \) DIMENSIONAL SPHERE OF RADIUS \(R \)

\[
\frac{\pi^{\alpha/2}}{\Gamma(\alpha/2)} R^\alpha
\]

LIMITS

\[
\lim_{{n \to \infty}} \frac{\ln n}{n} = 0
\]

\[
\lim_{{n \to \infty}} \sqrt{n} = 1
\]

\[
\lim_{{n \to \infty}} x^{1/n} = 1 \quad (x > 0)
\]

\[
\lim_{{n \to \infty}} x^n = 0 \quad (|x| < 1)
\]

\[
\lim_{{n \to \infty}} \left(1 + \frac{x}{n} \right)^n = e^x \quad \text{(any } x \text{)}
\]

\[
\lim_{{n \to \infty}} \frac{x^n}{n!} = 0 \quad \text{(any } x \text{)}
\]

WORK IN SIMPLE SYSTEMS

<table>
<thead>
<tr>
<th>System</th>
<th>Intensive quantity</th>
<th>Extensive quantity</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrostatic system</td>
<td>(P)</td>
<td>(V)</td>
<td>(-PdV)</td>
</tr>
<tr>
<td>Wire</td>
<td>(F)</td>
<td>(F)</td>
<td>(FdL)</td>
</tr>
<tr>
<td>Surface</td>
<td>(S)</td>
<td>(A)</td>
<td>(SdA)</td>
</tr>
<tr>
<td>Reversible cell</td>
<td>(E)</td>
<td>(Z)</td>
<td>(EdZ)</td>
</tr>
<tr>
<td>Dielectric material</td>
<td>(E)</td>
<td>(P)</td>
<td>(EdP)</td>
</tr>
<tr>
<td>Magnetic material</td>
<td>(H)</td>
<td>(M)</td>
<td>(HdM)</td>
</tr>
</tbody>
</table>