Problem 1 (25 points) Polar Molecules

In a particular situation polar molecules (molecules possessing a permanent electric dipole moment) can be adsorbed on a surface creating a dipole layer with a total electric dipole moment \mathcal{P} that remains finite even when the electric field perpendicular to the surface \mathcal{E} goes to zero. Expressions for two important response functions in this system are given below.

$$\chi_T \equiv \left. \frac{\partial \mathcal{P}}{\partial \mathcal{E}} \right|_T = \left(a + \frac{b}{T} \right) N + 3cN\mathcal{E}^2$$

$$\left. \frac{\partial T}{\partial \mathcal{E}} \right|_{\mathcal{P}} = \frac{aT^2 + bT + 3cT^2\mathcal{E}^2}{b\mathcal{E} - dT^2}$$

In these expressions a, b, c and d are constants and N is the number of molecules. One also knows that $\mathcal{P} = \mathcal{P}_0$ when $T = T_0$ and $\mathcal{E} = 0$. Find an analytic expression for the electric dipole moment \mathcal{P}.
Problem 2 (40 points) Elastic Rod

The internal energy U and the tension F in a certain elastic rod are given by the expressions

$$U(T, L) = \frac{cT^4}{4} + \frac{a}{2}(L - L_0)^2$$

$$F(T, L) = (a + bT)(L - L_0)$$

where a, b, c and L_0 are constants.

a) Find the work done on the rod, ΔW, as its length is doubled from L_0 to $2L_0$ along an isotherm at temperature T.

b) Find the heat added to the rod, ΔQ, along the same path as in a).

c) Find the differential equation $\frac{dL}{dT} = f(L, T)$ governing an adiabatic path in the $L - T$ plane. [Hint: you may want to check to see if your result is consistent with the sketch given above.]
Problem 3 (35 points) One-dimensional Ising Model

N spins are equally spaced around a circle in the x-y plane. Each spin can point either parallel or antiparallel to the z direction. There is no applied magnetic field so neither orientation is preferred. However, the spins interact with each other through a nearest neighbor interaction. If two neighboring spins point in the same direction, they contribute an amount $-J$ to the total energy; if they point in opposite directions, they contribute an amount J. Thus the total energy of the system depends on the number of reversals, R, that occur around the ring.

$$E = JR - J(N - R) = J(2R - N)$$

a) Assume that N is even. What are the smallest and largest values that R can have? What are the minimum and maximum values of E?

b) Find the total number of microscopic states of the system consistent with a given number of reversals, $\Omega(R)$. Note that this corresponds to the number of ways the R reversals can be distributed among the N inter-spin locations.

c) Assume that N is large. Find the entropy S of the spin chain as a function of N and R.

d) Find the energy of the spin chain as a function of temperature, $E(T)$. Make a sketch of the resulting function for the case $J > 0$ and indicate the low and high temperature asymptotes. Consider only positive T.

e) What is the mean value of R in the high temperature limit?
PARTIAL DERIVATIVE RELATIONSHIPS

Let \(x, y, z \) be quantities satisfying a functional relation \(f(x, y, z) = 0 \). Let \(w \) be a function of any two of \(x, y, z \). Then

\[
\left(\frac{\partial x}{\partial y} \right)_w \left(\frac{\partial y}{\partial z} \right)_w = \left(\frac{\partial x}{\partial z} \right)_w
\]

\[
\frac{\partial x}{\partial y} = \frac{1}{\left(\frac{\partial y}{\partial x} \right)_z}
\]

\[
\left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = -1
\]

COMBINATORIAL FACTS

There are \(K! \) different orderings of \(K \) objects. The number of ways of choosing \(L \) objects from a set of \(K \) objects is

\[
\frac{K!}{(K-L)!}
\]

if the order in which they are chosen matters, and

\[
\frac{K!}{L!(K-L)!}
\]

if order does not matter.

STERLING’S APPROXIMATION

\[
\ln K! \approx K \ln K - K \quad \text{when} \quad K \gg 1
\]

DERIVATIVE OF A LOG

\[
\frac{d}{dx} \ln u(x) = \frac{1}{u(x)} \frac{du(x)}{dx}
\]

LIMITS

\[
\lim_{n \to \infty} \frac{\ln n}{n} = 0
\]

\[
\lim_{n \to \infty} \sqrt[n]{n} = 1
\]

\[
\lim_{n \to \infty} x^{1/n} = 1 \quad (x > 0)
\]

\[
\lim_{n \to \infty} x^n = 0 \quad (|x| < 1)
\]

\[
\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \quad \text{(any } x)\]

\[
\lim_{n \to \infty} \frac{x^n}{n!} = 0 \quad \text{(any } x)\]

WORK IN SIMPLE SYSTEMS

<table>
<thead>
<tr>
<th>System</th>
<th>Intensive quantity</th>
<th>Extensive quantity</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrostatic system</td>
<td>(P)</td>
<td>(V)</td>
<td>(-PdV)</td>
</tr>
<tr>
<td>Wire</td>
<td>(\mathcal{F})</td>
<td>(L)</td>
<td>(\mathcal{F}dL)</td>
</tr>
<tr>
<td>Surface</td>
<td>(S)</td>
<td>(A)</td>
<td>(SdA)</td>
</tr>
<tr>
<td>Reversible cell</td>
<td>(E)</td>
<td>(Z)</td>
<td>(EdZ)</td>
</tr>
<tr>
<td>Dielectric material</td>
<td>(\varepsilon)</td>
<td>(\mathcal{P})</td>
<td>(\varepsilon d\mathcal{P})</td>
</tr>
<tr>
<td>Magnetic material</td>
<td>(H)</td>
<td>(M)</td>
<td>(HdM)</td>
</tr>
</tbody>
</table>