Some terms that must be understood

Microscopic Variable

Macroscopic Variable
<table>
<thead>
<tr>
<th>Extensive ($\propto N$)</th>
<th>Intensive ($\neq f(N)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V volume</td>
<td>P pressure</td>
</tr>
<tr>
<td>A area</td>
<td>S surface tension</td>
</tr>
<tr>
<td>L length</td>
<td>F tension</td>
</tr>
<tr>
<td>P polarization</td>
<td>E electric field</td>
</tr>
<tr>
<td>M magnetization</td>
<td>H magnetic field</td>
</tr>
<tr>
<td>U internal energy</td>
<td>T temperature</td>
</tr>
</tbody>
</table>
Adiabatic Walls

Equilibrium

Steady State

Diathermic Walls

Complete Specification:

Independent and Dependent Variables
Equation of State

\[PV = NkT \]

\[V = V_0(1 + \alpha T - \kappa_T P) \]

\[M = cH/(T - T_0) \quad T > T_0 \]

In Equilibrium with Each Other
OBSERVATIONAL FACTS

"0th Law"

if A \rightleftharpoons C and B \rightleftharpoons C

then A \rightleftharpoons B
"Law 0.5?" Many macroscopic states of B can be in equilibrium with a given state of A

\[
Y_B = f(X_B)
\]

Also, \(X_A, Y_A\)
THEOREM A "predictor" of equilibrium $h(X, Y, \ldots)$ exists

- only in equilibrium
- state variable
- many states, same h
- different systems,
 different functional forms
- value the same if systems in equilibrium

![Diagram showing the locus of constant h]
\[X_A, Y_A, X_C, Y_C \text{ all free} \]

\[\text{equilibrium} \]

\[X_C = f_1(Y_C, X_A, Y_A) \]

\[F_1(X_C, Y_C, X_A, Y_A) = 0 \]

\[[P_C = P_A V_A/V_C] \]

\[[P_C V_C - P_A V_A = 0] \]
\[X_B = g(Y_B, X_C, Y_C) \]

\[F_2(X_C, Y_C, X_B, Y_B) = 0 \]

Solve for \(X_C \)

\[X_C = f_2(Y_C, X_B, Y_B) \]

Same value as before
\[f_1(Y_C, X_A, Y_A) = X_C = f_2(Y_C, X_B, Y_B) \]

\[[P_A V_A / V_C = P_B V_B / V_C] \]

equilibrium due to 0th law

\[\Rightarrow F_3(X_A, Y_A, X_B, Y_B) = 0 \]

\[1 + 2 \Rightarrow F_3 \text{ factors} \]

\[Y_C \text{ drops out} \]
For this equilibrium condition

\[h(X_A, Y_A) = \text{constant} = h(X_B, Y_B) \]

\[[P_A V_A = P_B V_B] \]
Empirical Temperature: t

- Low density gas
- $PV/N =$ constant'

Graphs showing Y versus X and P versus V with points 1 and 2 indicating changes in state.
we could possible alternative

- Define $t \equiv c_g (PV/N)$

- Use to find isotherms in other systems

- Then in a simple paramagnet

 $t = c_m (M/H)^{-1}$

\Rightarrow Many possible choices for t

$t' \equiv c_g' (PV/N)^\alpha$

$t' = c_m' (M/H)^{-\alpha}$
PV = Nkt → t = PV/Nk
\[t' = \left(\frac{PV}{Nk}\right)^2 \]
\[t'' = \sqrt{\frac{PV}{Nk}} \]
Work

\[\text{d}W \equiv \text{differential of work done on the system} \]

\[= - (\text{work done by the system}) \]

Hydrostatic system

\[\text{d}W = -P\text{d}V \]

\[\text{d}W = F\text{d}x = (PA)(-\text{d}V/A) = -P\text{d}V \]
Wire
\[\delta W = F dL \]

Surface
\[\delta W = S dA \]

P pushes, \(F \) pulls

\[\delta W = F dx = (F)(dL) = FdL \]

\[\delta W = F dx = (SL)(dA/L) = SdA \]
Chemical Cell (battery)
\[\delta W = E_{\text{EMF}} \delta Z_{\text{CHARGE}} \]

Electric charges
\[\delta W = E \delta P \]

Magnetic systems
\[\delta W = H \delta M \]

Field in absence of matter as set up by external sources. Does not include energy stored in the field itself in the absence of the matter.
• All differentials are extensive

• Only -PdV has a negative sign

• Good only for quasistatic processes

\[\Delta W = \int_{a}^{b} dW \] depends on the path

\[\Rightarrow W \] is not a state function
\[dW = YdX \]

depends on \(Y(X) \)
(a) $W_{1\rightarrow 2} = -P_1(V_2 - V_1) = P_1(V_1 - V_2)$

(b) $W_{1\rightarrow 2} = -P_2(V_2 - V_1) = P_2(V_1 - V_2)$

(c) $W_{1\rightarrow 2} = -\int_1^2 P(V) \, dV = -\int_1^2 \frac{NkT}{V} \, dV = -NkT \int_1^2 \frac{dV}{V}$

$$= -NkT \ln \frac{V_2}{V_1} = NkT \ln \frac{V_1}{V_2} = P_1 V_1 \ln \frac{V_1}{V_2}$$
I) 3 variables, only 2 are independent

\[F(x, y, z) = 0 \]

\[\Rightarrow x = x(y, z), \quad y = y(x, z), \quad z = z(x, y) \]

\[\Rightarrow \left(\frac{\partial x}{\partial y} \right)_z = \frac{1}{\left(\frac{\partial y}{\partial x} \right)_z}, \quad \left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x \left(\frac{\partial z}{\partial x} \right)_y = -1 \]
Given some $W = W(x, y, z)$ where only 2 of the 3 variables in the argument are independent,
then along a path where W is constrained to be constant

$$\left(\frac{\partial x}{\partial y}\right)_W \left(\frac{\partial y}{\partial z}\right)_W \left(\frac{\partial z}{\partial x}\right)_W = 1$$
then it follows that \(\left(\frac{\partial x}{\partial y} \right)_w = \frac{\left(\frac{\partial x}{\partial z} \right)_w}{\left(\frac{\partial y}{\partial z} \right)_w} \)

II) State function of 2 independent variables

\[S = S(x, y) \]

\[dS = \left(\frac{\partial S}{\partial x} \right)_y \, dx + \left(\frac{\partial S}{\partial y} \right)_x \, dy \]

An exact differential
\[
\left(\frac{\partial A}{\partial y} \right)_x = \frac{\partial^2 S}{\partial y \partial x} = \frac{\partial^2 S}{\partial x \partial y} = \left(\frac{\partial B}{\partial x} \right)_y
\]

⇒ necessary condition, but it is also sufficient

Exact differential if and only if
\[
\left(\frac{\partial A}{\partial y} \right)_x = \left(\frac{\partial B}{\partial x} \right)_y
\]

Then \(\int_1^2 dS = S(x_2, y_2) - S(x_1, y_1)\) is independent of the path.
III) Integrating an exact differential

\[dS = A(x, y) \, dx + B(x, y) \, dy \]

1. Integrate a coefficient with respect to one variable

\[\left(\frac{\partial S}{\partial x} \right)_y = A(x, y) \]

\[S(x, y) = \int A(x, y) \, dx + f(y) \]

\[y \text{ fixed} \]
2. Differentiate result with respect to other variable

\[
\left(\frac{\partial S}{\partial y} \right)_x = \frac{\partial}{\partial y} \left[\int A(x, y) \, dx \right] + \frac{d f(y)}{dy} = B(x, y)
\]

3. Integrate again to find \(f(y) \)

\[
\frac{d f(y)}{dy} = \left\{ B(x, y) - \frac{\partial}{\partial y} \int A(x, y) \, dx \right\}
\]

\[
f(y) = \int \{ \cdots \} \, dy
\]

done