8.08 Problem Set # 8

March 30, 2005
Due April 6, 2005

Problems:

1. Consider a gas of bosonic sodium atoms confined in a quadratic potential well \(U(r) = \frac{1}{2}m\omega_0^2 r^2 \) where \(m \) is the mass of the sodium atom. The characteristic length of the oscillator potential is \(r_0 = \sqrt{\hbar/m\omega_0} = 5 \times 10^{-3} \text{cm} \).

 (a) Ignore the interaction between the sodium atoms, find the size of the condensed sodium atoms at \(T = 0 \). How does the size of the condensation depends on the number of particles?

 (b) For interacting bosons, the shape of condensation at \(T = 0 \) is determined by

 \[
 \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + (U(r) - \mu) + g|\psi(r)|^2 \right] \psi(r) = 0
 \]

 In Thomas-Fermi approximation, we assume the wave function \(\psi \) is smooth and drop the \(\partial^2_r \) term. In this case the shape of condensation is determined by

 \[
 [(U(r) - \mu) + g|\psi(r)|^2] \psi(r) = 0
 \]

 Now, how does the size of the condensation depends on the number of particles?

 (c) Fig. 15.2 of Huang’s book shows measured shapes of condensation. The maximum density is \(10^{11} \text{cm}^{-3} \) for the shape near \(T = 0 \). Using the data provided by the curve, find the scattering length \(a \) of the sodium atom. (Note \(a \) and \(g \) is related through Eq. (15.3) in Huang’s book.)

2. Problem 15.9 in K. Huang’s book.