How proton and carbon spectra arise from the density matrix

I. Chuang
MIT Center for Bits and Atoms,
Media Laboratory
April 10, 2003

I. INTRODUCTION

The MIT Junior Lab QIP labguide claims that a two-spin density matrix

\[
\rho = \begin{bmatrix}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{bmatrix}
\]

produces a proton spectrum with peak areas \(a - c \) and \(b - d \) for the \(\omega_P - J/2 \) and \(\omega_P + J/2 \) peaks, respectively, after a \(R_z(\pi/2) \otimes I \) proton readout pulse is applied. The same density matrix also produces a carbon spectrum with peak areas \(a - b \) and \(c - d \) for the \(\omega_C - J/2 \) and \(\omega_C + J/2 \) peaks, respectively, after a \(I \otimes R_z(\pi/2) \) carbon readout pulse is applied.

Here, we prove this claim, based on the fact that the voltage in the pick-up coil for spin \(k \) is given by

\[
V(t) = -V_0 \text{tr} \left[e^{-iHt} \rho e^{iHt} (\sigma_x^k + \sigma_y^k) \right],
\]

where \(H \) is the Hamiltonian for the two-spin system, \(\sigma_x^k \) and \(\sigma_y^k \) operate only on the \(k \)th spin, and \(V_0 \) is a constant factor dependent on coil geometry, quality factor, and maximum magnetic flux from the sample volume.

II. THE READOUT OPERATOR

Let \(R_zP = R_z(\pi/2) \otimes I \) denote a \(\pi/2 \) readout pulse on the proton, and \(R_zC \) similarly for the carbon. Our goal is to compute

\[
V_P(t) = -V_0 \text{tr} \left[e^{-iHt} R_zP \rho e^{iHt} (\sigma_x^P + \sigma_y^P) \otimes I \right],
\]

and similarly for the carbon. It is helpful first to move into the rotating frame of the proton and carbon, in which case nothing changes except we utilize the Hamiltonian

\[
H = \frac{J}{4} \sigma_z \otimes \sigma_z,
\]

representing the spin-spin coupling. Utilizing the cyclic property of the trace, \(V_P(t) \) can be written as

\[
V_P(t) = -V_0 \text{tr} \left[\rho \hat{R}_z^\dagger P e^{iHt} (\sigma_x^P + \sigma_y^P) \otimes I \right] e^{-iHt} R_zP
\]

at which point it is useful to define

\[
\hat{M}_P = -\hat{R}_z^\dagger P e^{iHt} \left((\sigma_x^P + \sigma_y^P) \otimes I \right) e^{-iHt} R_zP
\]

as our proton magnetization “readout operator,” such that \(V_P(t) = V_0 \text{tr} (\rho \hat{M}_P) \). Explicitly working this out in terms of matrix products, we obtain:

\[
\hat{M}_P = -\hat{R}_z^\dagger P e^{iHt} \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2i & 0 & 0 & 0 \\
0 & 2i & 0 & 0
\end{bmatrix} e^{-iHt} R_zP
\]
\[R_{xp} = \left[\begin{array}{cccc} e^{\frac{i}{2}jt} & 0 & 0 & 0 \\ 0 & e^{\frac{i}{2}jt} & 0 & 0 \\ 0 & 0 & e^{\frac{i}{2}jt} & 0 \\ 0 & 0 & 0 & e^{\frac{i}{2}jt} \end{array} \right] \]

Similarly, we find that the analogous carbon magnetization “readout operator” \(M_C \) is

\[M_C = -R_{xp}^T e^{iHt} \left[I \otimes (i\sigma_x + \sigma_y) \right] e^{-iHt} R_{xc} \]

III. THE PROTON AND CARBON SPECTRA

\(\tilde{M}_P \) and \(\tilde{M}_C \) are very useful, because they now allow us to compute the free induction decay signal for the proton (centered in frequency around \(\omega_P \)) and carbon (centered about \(\omega_C \)) for any state \(\rho \). For the state in Eq.(1), we obtain the proton FID

\[V_P(t) = V_0 \text{tr} (\rho \tilde{M}_P) \]

\[= V_0 \text{tr} \left(\begin{array}{cccc} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{array} \right) \left[\begin{array}{cccc} e^{\frac{i}{2}jt} & 0 & 0 & 0 \\ 0 & e^{\frac{i}{2}jt} & 0 & 0 \\ 0 & 0 & e^{\frac{i}{2}jt} & 0 \\ 0 & 0 & 0 & e^{\frac{i}{2}jt} \end{array} \right] \]

\[= V_0 \left[(a-c)e^{-iJt/2} + (b-d)e^{iJt/2} \right] . \]

And for the carbon FID,

\[V_C(t) = V_0 \text{tr} (\rho \tilde{M}_C) = V_0 \left[(a-b)e^{-iJt/2} + (c-d)e^{iJt/2} \right] . \]