1. Minimum uncertainty states (adapted from Sakurai 1.18)

(a) The simplest way to derive the Schwarz inequality goes as follows. First observe

\[(\langle \alpha \mid + \lambda^* \langle \beta \mid \cdot (\mid \alpha \rangle + \lambda \mid \beta \rangle) \geq 0 \] \hspace{1cm} (1)

for any complex number \(\lambda\); then choose \(\lambda\) in such a way that the preceding inequality reduces to the Schwarz inequality.

(b) Show that the equality sign in the generalized uncertainty relation holds if the state in question satisfies

\[\Delta A \mid \alpha \rangle = \lambda \Delta B \mid \alpha \rangle \] \hspace{1cm} (2)

with \(\lambda\) purely imaginary.

(c) Hence show that the Gaussian wave packet

\[\langle x'\mid \alpha \rangle = (2\pi d^2)^{-1/4} \exp \left(\frac{i\langle p \rangle x' - (x' - \langle x \rangle)^2}{\hbar} \right) \] \hspace{1cm} (3)

satisfies the minimum uncertainty relation for \(x\) and \(p\).

2. The uncertainty relation for spin (Sakurai 1.19)

3. Sakurai 1.22
4. (a) For a particle in a state described by a real wave function show that the average momentum \(\langle p \rangle = 0 \).

(b) Suppose the particle is in a general state with wave function \(\psi(x) \) with average momentum \(p_0 \). Show that the modified wave function \(e^{i\frac{Px}{\hbar}}\psi(x) \) has average momentum \(p_0 + P \).

(c) A different perspective on the result above is obtained by considering the operator \(\tilde{T}(P) = e^{\frac{iPx}{\hbar}} \) where \(x \) is the position operator and \(P \) is real. Find \(\tilde{T}(P)p\tilde{T}^\dagger(P) \) and \(\tilde{T}(P)|p'\rangle \). Argue how the result of (b) follows from this calculation.

(d) Consider \(\tilde{T}(P) \) together with the translation operator \(T(a) = e^{-\frac{ia}{\hbar}} \) defined in class. Is the product \(\tilde{T}(P)T(a) \) equal to \(e^{\frac{i(Px-pa)}{\hbar}} \)?

5. Consider a spin-1/2 particle in the presence of a time independent magnetic field along the z-direction with the Hamiltonian

\[
H = -\gamma BS_z
\]

(\(\gamma \) is a constant). At time \(t = 0 \) the spin state is an eigenstate of \(\vec{S} \cdot \hat{n}_0 \) where \(\hat{n}_0 \) lies in the \(xz \) plane and makes an angle \(\theta \) with the \(z \) axis. Here you will consider the time evolution of this state.

(a) In the Schrodinger picture find the state at time \(t \) in the \(S_z \) basis. Hence find the probability that a measurement of \(S_x \) at time \(t \) will yield the value \(+\frac{\hbar}{2} \).

(b) Recall that any state of a spin-1/2 system can be represented as a point \(\hat{n} \) in the Bloch sphere. The evolution of the spin state in this problem can be described as a trajectory \(\hat{n}(t) \) on the Bloch sphere with \(\hat{n}(t = 0) = \hat{n}_0 \). Show explicitly using the result above that \(\hat{n}(t) \) precesses about the \(z \)-axis at the Larmor frequency \(\gamma B \).

(c) Now using the Heisenberg picture derive the equation of motion for \(\langle \vec{S} \rangle \). Re-derive the same equation within the Schrodinger picture using the calculation above.