1. Consider a tight-binding model on a lattice with hopping matrix element \(t \). Add an on-site disorder potential \(V_i \), where \(V_i \) is a random variable distributed uniformly between \(\pm \frac{W}{2} \). Consider the one-dimensional case with \(N \) sites.

(a) For a given realization of \(V_i \), consider the eigenvalues for periodic boundary conditions, i.e., \(V_N = V_1 \) and \(\psi_N = \psi_1 \) where \(\psi_1 \) is the wavefunction on site \(i \). The eigenvalues are solved by diagonalizing an \((N-1) \times (N-1) \) matrix. Set up the form of the matrix.

(b) Now consider a twisted boundary condition, i.e., \(V_N = V_1 \) and \(\psi_N = \psi_1 e^{i\phi} \). How is the matrix modified from (a).

(c) Show that the eigenvalues \(E_\alpha \) in (b) are equivalent to a problem with complex hopping, i.e., \(t \) is replaced by \(t e^{i(\phi/(N-1))} \) and with periodic boundary conditions. This is the problem of a ring with \(N - 1 \) sites with a magnetic flux through the ring. What is the value of the flux in units of the flux quantum \(\hbar c/e \).

(d) Diagonalize the matrix numerically for a given realization of disorder. Choose \(W/t = 2.0 \) and \(N = 20 \). Plot the energies of the 10 levels near \(E = 0 \) as a function of \(\phi \). Now increase \(N \) and observe how the picture changes.

(e) For the values of \(W/t \) chosen in part (d) calculate the dimensionless conductance of the sample using the Thouless formula

\[
G = \frac{E_T}{\Delta}
\]

where

\[
E_T = \frac{d^2 E_\alpha}{d\phi^2}
\]

and \(\Delta \) is the average energy level spacing. Calculate \(E_T \) and \(\Delta \) by averaging over the 10 levels near \(E = 0 \) and by averaging over a number of realizations of the random potential. Check the dependence of \(G \) as a function of sample size \(N \).
(f) Optional. If you are interested, you may repeat the problem for a two-dimensional square lattice and contrast the behavior. Compare $W/t = 4$ and 9.