1. (a) We can include the effects of Coulomb repulsion by the following effective potential:

\[V(\omega) = V_p(\omega) + V_c(\omega) \]

where \(V_p = -V_0 \) for \(|\omega| < \omega_D \) is the phonon mediated attraction and \(N(0)V_c = \mu > 0 \) for \(|\omega| < E_F \) represents the Coulomb repulsion. Write down the self-consistent gap equation at finite temperature. Show that \(\Delta(\xi) \) is frequency dependent even near \(T_c \) so that the \(T_c \) equation becomes

\[\Delta(\xi) = -N(0) \int d\xi' V(\xi - \xi') \Delta(\xi') \frac{1 - 2f(\xi')}{2\xi'} \]

(1)

This integral equation is difficult to solve analytically, but we may try the following approximate solution:

\[\Delta(\omega) = \begin{cases} \Delta_1, & |\omega| < \omega_D \\ \Delta_2, & |\omega| > \omega_D \end{cases} \]

Now rewrite Eq.(1) as

\[\Delta(\xi) = -N(0) \int d\xi' V_p(\xi' - \xi) \Delta(\xi') \frac{1 - 2f(\xi')}{2\xi'} + A \]

(2)

where

\[A(\xi) = -N(0) \int d\xi' V_c(\xi' - \xi) \Delta(\xi') \frac{1 - 2f(\xi')}{2\xi'} \]

(3)

Convince yourself that \(A(\xi) \) is a slowly varying function of \(\xi \) for \(\xi < E_F \), so that we may approximate \(A(\xi) \) by \(A(0) \) in Eq.(2). Produce an argument to show that in the region \(\xi > \omega_D \) the first term in the R.H.S. of Eq.(2) is small compared with \(A \) so that in fact \(\Delta_2 \approx A(0) \). In the same spirit show that

\[\Delta_1 \approx N(0)V_0\Delta_1 \ln \frac{\omega_D}{kT_c} + \Delta_2 \]
Combining this with an equation for Δ_2 using Eq.(3), show that the T_c equation becomes

\[1 = \ln \left(\frac{\omega_D}{kT_c} \right) (N(0)V_0 - \mu^*) \]

(4)

where $\mu^* = \frac{\mu}{1 + \mu \ln (E_F/\omega_D)}$. $\mu^* < \mu$ is called the renormalized Coulomb repulsion. It can be thought of as an effective repulsion with a cutoff at ω_D instead of E_F. Equation (4) shows that the condition for superconductivity is $N(0)V_0 > \mu^*$ and not $N(0)V_0 > \mu$. For screened Coulomb repulsion, estimate μ and μ^* for a typical metal.

(b) Upon isotope substituting $M \rightarrow M + \delta M$, how is the Debye frequency affected to leading order? Assuming that this is the only effect, how is $\delta T_c/T_c$ related to $\delta M/M$, (i) in the absence of Coulomb repulsion, and (ii) including Coulomb repulsion.

2. Show that within the Heitler-London approximation for two hydrogen-like atoms located at R_a and R_b, the singlet and triplet variational energies are given by

\[E_{s,t} = E_a + E_b + \frac{V \pm I}{1 \pm I^2} \]

where $l = \int dr \phi_a^*(r)\phi_b(r)$ is the overlap integral,

\[V = \int dr_1, dr_2 |\phi_a(r_1)\phi_b(r_2)|^2(\Delta H) \]

and I is the exchange integral

\[I = \int dr, dr_2, \phi_a^*(r_1)\phi_b^*(r_2)\phi_b(r_1)\phi_a(r_2)(\Delta H) \]

where

\[\Delta H = \frac{e^2}{R_{ab}} + \frac{e^2}{r_{12}} - \frac{e^2}{r_{1b}} - \frac{e^2}{r_{2a}}. \]