2. Symmetries

2.2 Flavor Symmetry
Protons and Neutrons

$m_p = 938.28 \text{ MeV/c}^2$ \hspace{0.5cm} $m_n = 939.57 \text{ MeV/c}^2$

Heisenberg proposed to regard them as two states of the same particle

$N = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ \hspace{1cm} with \hspace{1cm} $p = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ \hspace{1cm} and \hspace{1cm} $n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Introduce isospin

$p = |\frac{1}{2} \frac{1}{2}\rangle$, \hspace{0.5cm} $n = |\frac{1}{2} - \frac{1}{2}\rangle$

with proton carrying isospin “up” and neutron isospin “down”
Strong isospin

If the strong force is invariant under rotations in isospin space, it follows that isospin is conserved in all strong interactions.

Heisenberg’s assertion (1932): strong interactions are invariant under an internal symmetry group SU(2) and the nucleon belong to the two dimensional representation.

For pions: \(I = 1 \):

\[\pi^+ = |1 1\rangle, \quad \pi^0 = |1 0\rangle, \quad \pi^- = |1 -1\rangle \]

Multiplicity = \(2I + 1 \)
Gell-Mann-Nishijima formula

Third component of isospin, I_3, related to electric charge, Q, of the particle

Assign max value $I_3 = 1$ to the member of the multiplet of highest charge with A baryon number and S strangeness

$$Q = I_3 + \frac{1}{2}(A + S)$$

Empirical observation, but in context of the quark model it follows from isospin assignments of quarks
Isospin with u, d, and s is a good symmetry. Symmetry badly broken with c, b, or t.

<table>
<thead>
<tr>
<th>Quark/Flavor</th>
<th>Bare Mass (MeV/c²)</th>
<th>Effective Mass (MeV/c²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>2</td>
<td>336</td>
</tr>
<tr>
<td>d</td>
<td>5</td>
<td>340</td>
</tr>
<tr>
<td>s</td>
<td>95</td>
<td>486</td>
</tr>
<tr>
<td>c</td>
<td>1300</td>
<td>1550</td>
</tr>
<tr>
<td>b</td>
<td>4200</td>
<td>4730</td>
</tr>
<tr>
<td>t</td>
<td>174000</td>
<td>177000</td>
</tr>
</tbody>
</table>

Warning: These numbers are somewhat speculative and model dependent [12].
8.701 Introduction to Nuclear and Particle Physics
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.