2. Symmetries

2.5 CP (violation)
Charge Conjugation and Parity (CP)

We have seen that the weak interaction is not invariant under P and C transformation, but how about CP?

Example:
The Kaon System

Gell-Mann and Pais noted:

\[CP|K^0\rangle = -|\bar{K}^0\rangle, \quad CP|\bar{K}^0\rangle = -|K^0\rangle \]

\[|K_1\rangle = \left(\frac{1}{\sqrt{2}}\right)(|K^0\rangle - |\bar{K}^0\rangle) \quad \text{and} \quad |K_2\rangle = \left(\frac{1}{\sqrt{2}}\right)(|K^0\rangle + |\bar{K}^0\rangle) \]

\[CP|K_1\rangle = |K_1\rangle \quad \text{and} \quad CP|K_2\rangle = -|K_2\rangle \]
The Kaon System

Assuming CP is conserved one concludes for K_1 and K_2 decays

$$K_1 \rightarrow 2\pi, \quad K_2 \rightarrow 3\pi$$

$$t_1 = 0.895 \times 10^{-10} \text{ sec}$$
$$t_2 = 5.11 \times 10^{-8} \text{ sec}$$

$$m_2 - m_1 = 3.48 \times 10^{-6} \text{ eV/c}^2$$

Perfect test of CP invariance!
Testing CP invariance

As K_1 decay much faster than K_2, a pure beam of K_2 can be produced from K_0 by letting all K_1 decay.

Finding 2π decays in the beam of K_2 is a clear indication of CP violation.

Croning and Fitch conducted this experiment in 1964. They counted 45 2π events in 22700 decays.

$$|K_L\rangle = \frac{1}{\sqrt{1+|\epsilon|^2}}(|K_2\rangle + \epsilon|K_1\rangle)$$
Cronin and Fitch Experiment

EVIDENCE FOR THE \(2\pi \) DECAY OF THE \(K^0_L \) MESON

J. H. Christenson, J. W. Cronin,‡ V. L. Fitch,‡ and R. Turlay§
Princeton University, Princeton, New Jersey
(Received 10 July 1964)

© American Physical Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.
Testing CP invariance

Semileptonic K_L decays also show evidence for CP violation in

\[
\begin{align*}
(a) \quad \pi^+ + e^- + \bar{\nu}_e & \quad \text{or} \quad (b) \quad \pi^- + e^+ + \nu_e
\end{align*}
\]

More K_L decay to positrons than into an electron by a fractional amount of 3.3×10^{-3}

CP violation has also been shown in B meson systems and tests in the neutrino sector are under way.
Matter - Antimatter Asymmetry

One of the biggest mysteries in physics!

1967, Sakharov proposed three necessary conditions that baryon generating interactions must satisfy to produce matter and antimatter at different rates

1) Baryon number violation
2) C and CP violation
3) Interaction out of equilibrium
<table>
<thead>
<tr>
<th></th>
<th>Bilinear</th>
<th>P</th>
<th>C</th>
<th>T</th>
<th>CP</th>
<th>CPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar</td>
<td>$\psi_1 \psi_2$</td>
<td>$\psi_1 \psi_2$</td>
<td>$\psi_2 \psi_1$</td>
<td>$\psi_1 \psi_2$</td>
<td>$\psi_2 \psi_1$</td>
<td>$\psi_2 \psi_1$</td>
</tr>
<tr>
<td>pseudo scalar</td>
<td>$\psi_1 \gamma_5 \psi_2$</td>
<td>$-\psi_1 \gamma_5 \psi_2$</td>
<td>$\psi_2 \gamma_5 \psi_1$</td>
<td>$-\psi_1 \gamma_5 \psi_2$</td>
<td>$-\psi_2 \gamma_5 \psi_1$</td>
<td>$\psi_2 \gamma_5 \psi_1$</td>
</tr>
<tr>
<td>vector</td>
<td>$\psi_1 \gamma_\mu \psi_2$</td>
<td>$\psi_1 \gamma_\mu \psi_2$</td>
<td>$-\psi_2 \gamma_\mu \psi_1$</td>
<td>$\psi_1 \gamma_\mu \psi_2$</td>
<td>$-\psi_2 \gamma_\mu \psi_1$</td>
<td>$-\psi_2 \gamma_\mu \psi_1$</td>
</tr>
<tr>
<td>axial vector</td>
<td>$\psi_1 \gamma_\mu \gamma_5 \psi_2$</td>
<td>$-\psi_1 \gamma_\mu \gamma_5 \psi_2$</td>
<td>$\psi_2 \gamma_\mu \gamma_5 \psi_1$</td>
<td>$\psi_1 \gamma_\mu \gamma_5 \psi_2$</td>
<td>$-\psi_2 \gamma_\mu \gamma_5 \psi_1$</td>
<td>$-\psi_2 \gamma_\mu \gamma_5 \psi_1$</td>
</tr>
<tr>
<td>tensor</td>
<td>$\psi_1 \sigma_{\mu\nu} \psi_2$</td>
<td>$\psi_1 \sigma_{\mu\nu} \psi_2$</td>
<td>$-\psi_2 \sigma_{\mu\nu} \psi_1$</td>
<td>$-\psi_1 \sigma_{\mu\nu} \psi_2$</td>
<td>$-\psi_2 \sigma_{\mu\nu} \psi_1$</td>
<td>$\psi_2 \sigma_{\mu\nu} \psi_1$</td>
</tr>
</tbody>
</table>