Problem 1: \(A \rightarrow B + B \)

- Is \(A \rightarrow B + B \) a possible process in the ABC theory?

- Suppose a diagram has \(n_A \) external \(A \) lines, \(n_B \) external \(B \) lines, and \(n_C \) external \(C \) lines. Develop a simple criterion for determining whether it is an allowed reaction.

- Assuming \(A \) is sufficiently heavy, what is the most likely decay mode, after \(A \rightarrow B + C \)? Draw a Feynman diagram for each decay.

1) No. The process is not possible.

2) Allowed if (and only if) \(n_A, n_B, \) and \(n_C \) are either all even or all odd.

Take the allowed diagram and snip every internal line. We now have \(n'_A = n'_B = n'_C = N \) 'external' lines, where \(N \) is the number of vertices. When we now reconnect the internal lines, each join removes two 'external' lines of one species. Thus when they are all back together, we have \(n_A = N - 2I_A, n_B = N - 2I_B, \) and \(n_C = N - 2I_C, \) where \(I_A \) is the number of internal \(A \) lines, and so on. Clearly, they’re all even, or all odd, depending on the number of vertices.
Given n_A, n_B, and n_C, pick the largest of them (say, n_A) and draw that number of vertices, with A, B, C as 'external' lines on each one. Now just connect up B lines in pairs (converting two 'external' lines into one internal line, each time you do so), until you're down to n_B – as long as n_A and n_B are either both even or both odd, you will obviously be able to do so. Now do the same for n_C. We have constructed a diagram, then, with n_A external A lines, n_B external B lines, and n_C external C lines.

![Figure 1: Answer.](image_url)