1.

<table>
<thead>
<tr>
<th>Bosonic Massless Fields:</th>
<th>(\phi)</th>
<th>(B^{(2)})</th>
<th>(C^{(0)})</th>
<th>(C^{(2)})</th>
<th>(C^{(4)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrically Charged BPS Branes:</td>
<td>-</td>
<td>(F_1)</td>
<td>(D(-1))</td>
<td>(D_1)</td>
<td>(D_3)</td>
</tr>
<tr>
<td>Magnetically Charged BPS Branes:</td>
<td>-</td>
<td>(NS5)</td>
<td>(D7)</td>
<td>(D5)</td>
<td>(D3)</td>
</tr>
</tbody>
</table>

The D7 is the magnetic dual of the D(-1).

2.

a) For type IIA, we can either start from 11d supergravity or use the algebra directly. We'll do both.

In 11d supergravity the algebra (schematically) looks like:

\[
\{ Q, Q \} = P_\mu^{\perp} + Z^{(2)} + Z^{(5)}
\]

where \(P_\mu \) is the momentum, \(Z^{(2)} \) and \(Z^{(5)} \) are two- and five-forms respectively, all space-time indices are appropriately contracted with gamma matrices.
and spinor indices are omitted.

Upon reduction on a circle, P_1 gives a vector (10d momentum) and a scalar (D0 charge), $Z(2)$ gives a two-form (D2 charge) and a vector (F1 charge) and $Z(5)$ gives a five form (NS5 charge) and a four-form (D4 charge). The charges for the D6 and D8 branes are missing.

If we look directly at the 10d theory there are two spinors of opposite chirality, 16 and 16'.

The possible central charges correspond to the antisymmetric forms that appear in the decomposition of the product of these spinors.

$$16 \times 16' = [0] + [2] + [4] \quad \text{(twice)}$$

$$\text{D0} \quad \text{D2} \quad \text{D4}$$

$$\begin{align*}
(16 \times 16)_s &= [1] + [5]_+ \quad (16' \times 16')_s &= [1] + [5]_-
\end{align*}$$

$$\text{F1} \quad \text{NS5} \quad \text{F1} \quad \text{NS5}$$

Again, D6 and D8 are missing. One can check that the total number of d.o.f. on the right hand side of these equations is $52.8 = \frac{32 \times 33}{2}$ as we expect for a theory with 32 supercharges.
b) For type IIB we have two spinors of the same chirality, \(16_+\) and \(16_-\). Working as above:

\[
16_+ \times 16_- = [1] + [3] + [5]_+ \quad \text{(twice)}
\]

\[
D1 \quad D3 \quad D5
\]

\[
(16_+ \times 16_-)_\ast = [\bar{2}] + [5]_+ \quad (16_- \times 16_+)_\ast = [\bar{1}] + [5]_+
\]

F1 \quad NS5 \quad F1 \quad NS5

The charges for D(-1), D7, D9 branes are missing. Again, the total number of components comes out right (528).

C) In Heterotic theories, we have one spinor, 16.

\[
(16 \times 16)_\ast = [1] + [5]_+ \quad \text{Total number of components:}
\]

\[
\frac{16 \times 17}{2} = 136
\]

\underline{BPS bound:} The operators \(\Omega, \Omega^\dagger\) are positive definite by construction. In the rest frame of a p-brane, the right hand side of the SUSY algebra can be written \(\int dV_p (T_p \pm Q_p)\) where \(dV_p\) is the p-dim volume form,

\(T_p\) is the p-brane energy per unit volume (tension) and \(Q_p\) the charge per unit volume. Thus,

\(T_p > |Q_p|\). This is the BPS bound. For a supersymmetric state, \(Q |\Omega\rangle = 0 \Rightarrow T_p = |Q_p|\). Supersymmetric branes are said to "saturate" the BPS bound.
3. Under S-duality of Type II B string theory:

\[g_s \xrightarrow{S} g'_s = \frac{1}{g_s} \] or \[g_s = \frac{1}{g'_s} \]

\[l_s \xrightarrow{S} l'_s = l_s g_s^{3/2} \] or \[l_s = l_s g'_s^{3/2} \]

(a) \[T_{D5} = \frac{1}{g_s l_s^5} = \frac{g'_s}{(l'_s g'_s^{3/2})^5} = \frac{1}{g'_s l'_s^5} = T'_{NS5} \]

(b) \[T_{NS5} = \frac{1}{g_s^2 l_s^6} = \frac{g'_s^2}{(l'_s g'_s^{3/2})^6} = \frac{1}{g'_s l'_s^6} = T'_{D5} \]

(c) \[T_{03} = \frac{1}{g_s l_s^4} = \frac{g'_s}{(l'_s g'_s^{3/2})^4} = \frac{1}{g'_s l'_s^4} = T'_{03} \]

(d) \[T_{07} = \frac{1}{g_s l_s^8} = \frac{g'_s}{(l'_s g'_s^{3/2})^8} = \frac{1}{g'_s^3 l'_s^8} \] scales \(\sim \frac{1}{g_s^2} \)

This \(\frac{1}{g_s^2} \) scaling does not correspond to any known object in string theory. In fact, the problem arises because the tension of the D7 is ill-defined. The D7 is a codimension 2 object that creates a conical deficit angle in spacetime. See [hep-th/9812028, 9812209] for a detailed treatment of D7 branes.
4. [See solutions to pset #1]

a) F^1 ending on D_p.

The endpoint of F^1 is the source for a two-form field strength $F^{(2)} = dA^{(2)}$.

The gauge invariant combination is

$$F^{(2)} - B^{(2)}$$

where the gauge transformations are

$$\delta B^{(2)} = d\Lambda^{(1)}$$
$$\delta A^{(1)} = \Lambda^{(1)} \Rightarrow \delta F^{(2)} = d\Lambda^{(2)}$$

Note that this is different from the usual gauge invariance of a $U(1)$ gauge field $\delta A^{(1)} = d\Lambda^{(2)}$.

b) D_p ending on NS5

Type IIA $p=2$. The endpoint of the D2 couples electrically to $A^{(2)}$. The field strength is $F^{(3)} = dA^{(2)}$.

Gauge variation: $\delta A^{(2)} = \Lambda^{(2)} \Rightarrow \delta F^{(3)} = d\Lambda^{(2)}$

$$\delta C^{(3)} = d\Lambda^{(2)}$$

Invariant: $F^{(3)} - C^{(3)}$
p=4: The endpoint of the D4 is a vortex that couples magnetically to a zero-form \(A^{(0)} \). The corresponding field strength is \(F^{(4)} = dA^{(0)} \).

Gauge variation:
\[
\delta *_6 F^{(4)} = d \Lambda^{(5)}
\]
and
\[
\delta C^{(5)} = d \Lambda^{(5)}
\]

Invariant:
\[
*_6 F^{(4)} - C^{(5)}
\]

Type II B

p=1. The endpoint of a D1 couples magnetically to a vector potential. The field strength is \(F^{(2)} = dA^{(1)} \).

Gauge variation:
\[
\delta A^{(1)} = \Lambda^{(1)} \implies \delta F^{(2)} = d\Lambda^{(2)}
\]
\[
\delta C^{(2)} = d\Lambda^{(2)}
\]

Invariant:
\[
\Gamma^{(2)} - C^{(2)}
\]

p=3. The endpoint of the D3 couples magnetically to the same 1-form as above.

Gauge variation:
\[
\delta *_6 F^{(3)} = d\Lambda^{(3)} \quad , \quad \delta C^{(4)} = d\Lambda^{(3)}
\]

Invariant:
\[
*_6 F^{(3)} - C^{(4)}
\]
p=5. The endpoint of the D5 is a domain wall. It couples magnetically to a zero form \(F^{(0)} \).

Gauge variation:
\[
S \ast_6 F^{(0)} = d \Lambda^{(5)}
\]
\[
S C^{(6)} = d \Lambda^{(5)}
\]

Invariant:
\[
\ast_6 F^{(0)} - C^{(6)}
\]

c) M2 ending on M5

The endpoint of the M2 couples electrically to a two-form \(A^{(2)} \).

Gauge variation:
\[
S A^{(2)} = \Lambda^{(2)} \Rightarrow S F^{(3)} = d \Lambda^{(3)}
\]
\[
S C^{(3)} = d \Lambda^{(3)}
\]

Invariant:
\[
F^{(3)} - C^{(3)}
\]

d) Dp ending on D(p+2).

The endpoint of the Dp couples magnetically to the same 1-form that an F1 ending on D(p+2) couples to electrically.

Gauge variation:
\[
S \ast_{p+3} F^{(2)} = d \Lambda^{(p)} \quad S C^{(p+1)} = d \Lambda^{(p)}
\]

Invariant:
\[
\ast_{p+3} F^{(2)} - C^{(p+1)}
\]