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Figure 1: The decadal average sea surface height (SSH) of the North Atlantic. Colorbar at right is in
meters. The principal features are a high over the subtropics and a low over the subpolar region. The
inferred geostrophic current is sketched at a few locations. Geostrophic currents are almost parallel to
lines of SSH, with higher SSH to the right of the current in the northern hemisphere. The upper-ocean
circulation of the subtropical basin is thus a clockwise turning, horizontal gyre. The first goal of this
essay is to understand how Earth’s rotation leads to the Coriolis force, and the second goal is to begin
to consider some of the consequences of rotation, including a very simple analog of the geostrophic
relationship between SSH and upper-ocean currents.
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Abstract: This essay is the first of a five part introduction to the Coriolis force and its consequences

for the atmosphere and ocean. It is intended for students who are near the beginning of a quantitative

study of geophysical fluid dynamics and who have some background in classical mechanics and applied

mathematics.

The equation of motion appropriate to a steadily rotating reference frame includes two terms that

account for accelerations that arise from the rotation of the reference frame, a centrifugal force and a

Coriolis force. In the special case of an Earth-attached reference frame, the centrifugal force is

subsumed into the gravity field. The Coriolis force has a very simple mathematical form, −2ΩΩΩ×V′M,

where ΩΩΩ is Earth’s rotation vector, V′ is the velocity observed from the rotating frame and M is the

parcel mass. The Coriolis force is perpendicular to the velocity and so tends to change velocity

direction, but not velocity amplitude. Hence the Coriolis force does no work. Nevertheless the Coriolis

force has a profound importance for the circulation of the atmosphere and oceans.

Two direct consequences of the Coriolis force are considered here. If the Coriolis force is the only

force acting on a moving parcel, then the velocity vector of the parcel will be turned anti-cyclonically

(clockwise in the northern hemisphere) at the rate − f , where f = 2Ωsin(latitude) is the Coriolis

parameter. These free motions, often termed inertial oscillations, are a first approximation of the upper

ocean currents generated by a transient wind event. If the Coriolis force is balanced by a steady force,

say a horizontal component of gravity as in Fig.1, then the associated geostrophic wind or current will

be in a direction that is perpendicular to the gradient of the SSH and thus parallel to isolines of SSH. In

the northern hemisphere, higher SSH is to the right of the current. This is said to be a geostrophic

balance, and is the defining characteristic of the large scale, low frequency, extra-tropical circulation of

the atmosphere and the oceans.

More on Figure 1: The mean of sea surface height (SSH) over almost two decades as observed by

satellite altimetry and compiled by the Aviso project, http://www.aviso.oceanobs.com/duacs/ SSH is a

constant pressure surface that is displaced slightly but significantly from level and hence there is a

horizontal component of gravity along this surface that is proportional to the gradient of SSH. What

keeps the SSH displaced away from level? We can be confident that the horizontal gravitational force

associated with this tilted SSH is balanced locally (at a given point) by the Coriolis force acting upon

currents that flow nearly parallel to isolines of SSH. This geostrophic relationship is a central topic of

this essay. Notice that by far the largest gradients of SSH and so the largest geostrophic currents are

found on the western boundary of the gyres. This east-west asymmetry is a consequence of Earth’s

rotation and nearly spherical shape, taken up in Part 4 of this series.
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1 Large-scale, low frequency flows of the atmosphere and ocean

The large-scale, low frequency flows of Earth’s atmosphere and ocean take the form of circulations

around centers of high or low gravitational potential (the height of a constant pressure surface relative to

a known level, the sea surface height, SSH, of Fig. (1), or the 500 hPa height of Fig. (2). Ocean

circulation features of this sort include gyres that extend across ocean basins, and in the atmosphere, a

broad belt of westerly wind that encircles the mid-latitudes in both hemispheres. Smaller scale

circulations often dominate the weather. Hurricanes and mid-latitude storms have a more or less

circular flow around a low, and many regions of the ocean are filled with slowly revolving eddies having

a diameter of several hundred kilometers. The height anomaly that is associated with these circulation

features is the direct result of a mass excess or deficit (high or low height anomaly).

What is at first surprising and deserving of an explanation is that large scale mass anomalies

implicit in the SSH and height fields of Figs. (1) and (2) persist for many days or weeks, even in the

absence of an external momentum or energy source. The winds and currents that would be expected to

accelerate down the height gradient (in effect, downhill) and disperse the associated mass anomaly do

not occur. Instead, large-scale, low frequency winds and currents outside of the near-equatorial region

are observed to flow in a direction almost parallel to lines of constant height; the sense of the flow is

clockwise around highs (northern hemisphere) and anti-clockwise around lows. The flow direction is

reversed in the southern hemisphere, anti-clockwise around highs and clockwise around lows. From
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Figure 2: A weather chart at 500 hPa, a middle level of the atmosphere, on 10 March, 2022 pro-
duced by the NAVy Global Environmental Model, NAVGEM (thanks to the Naval Research Laboratory,
Monterey CA, and Fleet Numerical Oceanography Center, https://www.nrlmry.navy.mil/metoc/nogaps/).

The solid contours are the height (meters) of the 500 hPa pressure surface above sea level contoured at
120 m intervals. The horizontal wind is shown as barbs (one thin barb = 10 knots ≈ 5 m s−1, one heavy
barb = 50 knots). The color is temperature, deg C, with a scale at right. Several important phenomena
are evident on this map: (1) The largest scale of variation is a high at low latitudes, roughly 5800 m near
the equator, and a low at either pole, roughly 5050 m. (2) The zonal winds at mid-latitudes are mainly
westerly in both hemispheres, i.e., from west to east, though with considerable variability in the north-
south component, e.g., a prominent ridge over central Europe on this day. The broad band of westerly
winds includes the jet stream(s), where wind speed is typically ≈ 30 m s−1. (3) Within the westerly wind
band, the 500 hPa surface generally slopes upward toward lower latitude, roughly 200 m per 1000 km.
There is thus a small, but significant component of gravity along the 500 hPa surface directed from south
to north in the northern hemisphere, and reversed in the southern hemisphere. (4) The wind and height
fields outside of near-equatorial regions (roughly ± 10 degrees of latitude) thus exhibit a geostrophic
relationship: wind vectors are nearly parallel to the contours of constant height, greater height is to the
right of the wind vector in the northern hemisphere and to the left in the southern hemisphere, and faster
winds are found in conjunction with larger height gradients.

This image is in the public domain.
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this we can infer that the horizontal gravitational force along a pressure surface must be balanced

approximately by a second force that acts to deflect horizontal winds and currents to the right of the

velocity vector in the northern hemisphere and to the left of the velocity vector in the southern

hemisphere (you should make a sketch of this1). This deflecting force is called the Coriolis force,2 and

is the theme of this essay. A quasi-steady balance between the horizontal gravitational force (or

equivalently, the horizontal component of the pressure gradient) and the Coriolis force is called a

geostrophic balance. An approximate or quasi- geostrophic balance is the defining characteristic of

large scale, low frequency atmospheric and oceanic flows.3

We attribute profound physical consequences to the Coriolis force, and yet cannot point to a

physical interaction as the cause of the Coriolis force in the straightforward way that height anomalies

are related to the mass field. Rather, the Coriolis force arises from motion itself, combined with the

necessity that we observe the atmosphere and ocean from an Earth-attached and thus rotating,

noninertial reference frame. In this respect the Coriolis force is very different from other important

forces acting on geophysical fluids, e.g., friction and gravity, that arise from an interaction of physical

objects. The goals of this essay (elaborated below) are, first, to explain the origin and basic properties of

the Coriolis force, and then to examine some of its direct consequences for the atmosphere and ocean,

including a very simple analogue of geostrophic motion.

1.1 Models and reference frames

These essays proceed inductively, developing and adding new concepts one by one rather than deriving

them from a comprehensive starting point. In that spirit, the first physical model considered here in Part

1 will be a single, isolated fluid particle, or ’parcel’. This is a very drastic and for most purposes

untenable idealization of a fluid. Winds and currents, like all macroscopic fluid flows, are effectively a

continuum of parcels that interact in three-dimensions; the motion of any one parcel is connected by

pressure gradients and by friction to the motion of essentially all of the other parcels that make up the

flow. This global dependence is at the very heart of fluid mechanics, but can be set aside here because

the Coriolis force on a given parcel depends only upon the velocity of that parcel. What will have to go

missing in this single parcel model is that the external forces on a parcel (the F below) must be

1And then you will surely be wondering, What’s it do right on the equator?, taken up in Sec. 6, Homework Problem 12.
2After the French physicist and engineer, Gaspard-Gustave de Coriolis, 1792-1843, whose seminal contributions include

the systematic derivation of the rotating frame equation of motion and the development of the gyroscope. An informative

history of the Coriolis force is by A. Persson, ’How do we understand the Coriolis force?’, Bull. Am. Met. Soc., 79(7),

1373-1385 (1998).
3To be sure, it’s not quite this simple. This ’large scale, low frequency’ is a shorthand for (1) large spatial scale, (2) low

frequency, (3) extra-tropical, and (4) outside of frictional boundary layers. It is important to have a quantitative sense what is

meant by each of these (which turn out to be linked in interesting ways) and we will come to this in Parts 2 and 3. For now,

suffice it to say that this present use of ’large scale’ encompasses everything that you can readily see in Figs. 1 and 2, except

for the equatorial region, roughly ±10 deg of latitude.
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prescribed in a way that can take no account of, e.g., the mass and pressure fields that evolve as part of a

real fluid flow. The phenomena that may be treated with a single parcel model are thus severely limited,

but are nevertheless a recognizable subset of the phenomena that arise in more realistic fluid models

(coming in Part 2) and in the real ocean and atmosphere (Figs. 1 and 2, and in Sec. 5).

1.1.1 Classical mechanics observed from an inertial reference frame

If a parcel is observed from an inertial reference frame4 then the classical (Newtonian) equation of

motion is just
d(MV)

dt
= F+g∗M,

where d/dt is an ordinary time derivative, V is the velocity in a three-dimensional space, and M is the

parcel’s mass. The parcel mass will be presumed constant in all that follows, and the equation of motion

rewritten as
dV

dt
= F/M +g∗, (1)

where F is the sum of the forces that we can specify a priori given the complete knowledge of the

environment, e.g., frictional drag with the sea floor, and g∗ is gravitational mass attraction.5 These are

said to be central forces insofar as they act in a radial direction between parcels, or in the case of

gravitational mass attraction, between parcels and the center of mass of the Earth.

In this essay we are especially concerned with identifying the acceleration that would be observed

in a given reference frame. Unless it is noted otherwise, this acceleration will be written on the

left-hand side of an equation of motion, as in Eqn. (1), even if the acceleration is considered to be the

known quantity. The forces, i.e., everything else, will then be written be on the right-hand side of the

equation as

observed acceleration = sum o f the f orces/M. (2)

4’Inertia’ has Latin roots in+artis meaning without art or skill and secondarily, resistant to change. Since Newton’s

Principia, physics usage has emphasized the latter: a parcel having inertia will remain at rest, or if in motion, continue

without change unless subjected to an external force. A ’reference frame’ is comprised of a coordinate system that serves

to arithmetize the position of parcels, a clock to tell the time, and an observer who makes an objective record of positions

and times as seen from that reference frame. A reference frame may or may not be attached to a physical object. In this

essay we suppose purely classical physics so that measurements of length and of time are identical in all reference frames;

measurements of position, velocity and acceleration are reference frame-dependent, as discussed in Section 2. This common

sense view of space and time begins to fail when velocities approach the speed of light, which is not an issue here. An ’inertial

reference frame’ is one in which all parcels have the property of inertia and in which the total momentum is conserved, i.e.,

all forces occur as action-reaction force pairs. How this plays out in the presence of gravity is discussed briefly in Sec. 3.1.
5In all of this it is taken for granted that inertial mass (the mass property that is inversely proportional to acceleration for

a given force) is exactly equal to gravitational mass (the mass property that is relevant in gravitational attraction). This is

oftentimes referred to as the Equivalence Principal, and sometimes as the Universality of Free Fall. The simplest and most

important rationalization for this is that inertial mass and gravitational mass are not merely equal numerically, but are one and

the same thing.
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The left and right-hand sides of an equation of motion will be called ’acceleration’ and ’force(s)’, even

though all of the terms necessarily have the physical dimensions of acceleration, [length time−2]. (This

is not the usual convention in geophysical fluid dynamics, where the Coriolis force/M is most often

written on the left side of the equation of motion.)

This inertial frame equation of motion (1) has two fundamental properties that are noted here

because we are about to give them up:

Global conservation. For each of the central forces acting on the parcel there will be a corresponding

reaction force acting on the environment that sets up the force. Thus the global time rate of change of

momentum (global means the parcel plus the environment) due to the sum of all of the central forces

F+g∗M is zero, and so the global momentum is conserved. Usually our attention is focused on the local

problem, i.e., the parcel only, with this global conservation taken for granted and not analyzed explicitly.

Invariance to Galilean transformation. Eqn. (1) should be invariant to a steady, linear translation of

the reference frame, often called a Galilean transformation, because only relative motion has physical

significance. Thus a constant velocity added to V will cause no change in the time derivative, and

should as well cause no change in the forces F or g∗M. Like the global balance just noted, this

fundamental property is not invoked frequently, but is a powerful guide to the form of the forces F. For

example, a frictional force that satisfies Galilean invariance should depend upon the difference of the

parcel velocity with respect to a surface or adjacent parcels, and not the parcel velocity only.

1.1.2 Classical mechanics observed from a rotating, noninertial reference frame

When it comes to the analysis of the atmosphere or ocean, we always use a reference frame that is

attached to the rotating Earth — true (literal) inertial reference frames are not accessible to most kinds

of observation and wouldn’t be desirable even if they were. Some of the reasons for this are discussed

in a later section, 4.3, but for now we are concerned with the consequence that, because of the Earth’s

rotation, Fig. 3, an Earth-attached reference frame is significantly noninertial for the large-scale,

low-frequency motions of the atmosphere and ocean: Eqn. (1) does not hold for large scale winds and

ocean currents, even as a first approximation. The equation of motion appropriate to an Earth-attached,

rotating reference frame (derived in detail in Sections 2 and 4.1) is instead

dV′

dt
= − 2ΩΩΩ×V′ +F′/M +g, (3)

where the prime on a vector indicates that it is observed from the rotating frame, ΩΩΩ is Earth’s rotation

vector (Fig. 3), which has the dimensions [time−1], and g is gravitational mass attraction plus the

centrifugal force associated with Earth’s rotation and called simply ’gravity’ (discussed further in

Section 4.1). Our obsession here will be the new term, −2ΩΩΩ×V′, often called the Coriolis force in

geophysics (though here it has the dimensions [length time−2] of an acceleration).
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Figure 3: Earth’s rotation vector, ΩΩΩ,
maintains a nearly steady bearing
close to Polaris, commonly called
the Pole Star or North Star. Earth
thus has a specific orientation with
respect to the universe at large, and,
in consequence, all directions are not
equal. This is manifest as a marked
anisotropy of most large-scale circu-
lation phenomena, e.g., the east-west
asymmetry of ocean gyres noted in
Fig. 1 and the westward propagation
of low frequency waves and eddies
studied in Part 3.

1.2 The goals and the plan of this essay

Eqn. (2) applied to geophysical flows is not the least bit controversial and so the practical thing to do is

to accept the Coriolis force as given (as we do many other concepts) and get on with the applications.

You can do that here by going directly to Sec. 5. However, that shortcut is very likely to leave you

wondering ... What is the Coriolis force? ... in the conceptual and in the physical sense, and for

example, is it appropriate to call −2ΩΩΩ×V′ the Coriolis ’force’? The classical mechanics literature

applies a bewildering array of names to this term, that it is the Coriolis effect, a pseudo force, a virtual

force, an apparent force, an inertial force (we will use this as well), a noninertial force (which makes

more literal sense), and most equivocal of all, a fictitious correction force.6 A case can be made for each

of these terms, but the choice here will be just plain Coriolis force, since we are going to be most

concerned with what the Coriolis force does in the context of geophysical flows.

The plan for Secs. 1 - 4 is to take a slow and careful journey from Eqn. (1) to Eqn. (2) so that at the

end we should be able to explain the origin and basic properties of the Coriolis force, the first goal of

6The latter is by by J. D. Marion, Classical Mechanics of Particles and Systems (Academic Press, NY, 1965), who de-

scribes the plight of a rotating observer as follows (the double quotes are his): ‘... the observer must postulate an additional

force - the centrifugal force. But the ”requirement” is an artificial one; it arises solely from an attempt to extend the form of

Newton’s equations to a non inertial system and this may be done only by introducing a fictitious ”correction force”. The same

comments apply for the Coriolis force; this ”force” arises when attempt is made to describe motion relative to the rotating

body.’ Rotating observers do indeed have to contend with inertial forces that are not found in otherwise comparable inertial

frames, but these inertial forces are not ad hoc corrections as Marion’s quote (taken out of context) might seem to imply.
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this essay.7 We have already noted that the Coriolis force arises from the rotation of an Earth-attached

reference frame. The origin of the Coriolis force is thus a matter kinematics, i.e., mathematics, rather

than physics, and taken up in Section 2. This is part of the reason why the Coriolis force can be hard to

grasp, conceptually.8 Several very simple applications of the rotating frame equation of motion are

considered in Section 3. These illustrate the often marked difference between inertial and rotating frame

descriptions of the same phenomenon, and they also show that the rotating frame equation of motion (2)

does not retain the fundamental properties of the inertial frame Eqn. (1) noted above. Eqn. (2) applies

on a rotating Earth or a planet, where the centrifugal force associated with planetary rotation is canceled

(Section 4). The rotating frame equation of motion thus treats only the comparatively small relative

velocity, i.e., winds and currents. This is a huge advantage compared with the inertial frame equation of

motion, which has to treat all of the motion, including that due to Earth’s rotation, and more than

compensates for the admittedly peculiar properties of the Coriolis force which comes along with the

rotating frame.

The second goal of this essay is to begin to address ... What are the consequences of Earth’s

rotation and the Coriolis force for the circulation of the atmosphere and ocean? This is an almost

open-ended question that makes up much of the field of geophysical fluid dynamics. A first small step is

taken in Section 5 by analyzing the motion of a parcel released onto a sloping surface, e.g., the sea

surface or 500 hPa pressure surface (if they are considered to be fixed), and including a simplified form

of friction. The resulting motion may include inertial oscillations, the free oscillation of the rotating

frame momentum equations, and a steady motion, called geostrophic flow, that is a first approximation

of the currents and winds of Figs. (1) and (2).

1.3 About these essays

This essay is the first in a five part series,

Part 1: the Coriolis force, inertial and geostrophic motion,

Part 2: a rotating shallow water model, potential vorticity conservation and geostrophic

adjustment,

7’Explanation is indeed a virtue; but still, less a virtue than an anthropocentric pleasure.’ B. van Frassen, ’The pragmatics

of explanation’, in The Philosophy of Science, Ed. by R. Boyd, P. Gasper and J. D. Trout. (The MIT Press, Cambridge Ma,

1999). This pleasure of understanding is the deep motivation of this essay, but clearly the Coriolis force has great practical

significance for the atmosphere and ocean, and for those of us who seek to understand and predict their motions.
8All this talk of ’forces, forces, forces’ seems a little quaint and it is certainly becoming tedious. Modern dynamics is

more likely to be developed around the concepts of energy, action and minimization principles, which are very useful in some

special classes of fluid flow. However, it remains that the majority of fluid mechanics proceeds along the path of Eqn. (1) laid

down by Newton. In part this is because mechanical energy is not conserved in most real fluid flows and in part because the

interaction between a fluid parcel and its surroundings is often at issue, friction for example, and is usually best-described in

terms of forces. Sometimes, just to avoid saying Coriolis force yet again, we will use instead ’rotation’.
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Part 3: beta-effects, westward propagation,

Part 4: the Sverdrup relation and wind-driven ocean circulation, and,

Part 5: on the seasonally-varying Arabian Sea.

These have been written for students who are near the beginning of a quantitative study of geophysical

fluid dynamics. Some background in classical mechanics and applied mathematics is assumed, roughly

second year, undergraduate level physics and applied mathematics.

This Part 1 essay introduces the basics — the kinematics of a rotating reference frame and the

properties of the resulting Coriolis force. Rotating reference frames are a topic included in many

classical mechanics courses and textbooks and there is nothing fundamental and new regarding the

Coriolis force added here.9 The hope is that this essay will make a useful supplement to these sources

by providing more of the relevant physics background and greater mathematical detail than is possible

in a wide-ranging fluid dynamics text, and by emphasizing geophysical phenomena that are missed or

outright misconstrued in many classical mechanics texts.10,11 Ocean and atmospheric sciences are all

about fluids in motion on a grand scale, and the electronic version of this essay includes links to

animations and to source codes of numerical models that provide a more vivid depiction of these

motions than is possible in a hardcopy.

The first version of this essay was released in 2003, and since then the text and models have been

revised and expanded many times. The most up-to-date version of the essays and codes will be posted

to the author’s web site, https://www2.whoi.edu/staff/jprice and look for the page Education

Projects. Comments and questions are encouraged and may be addressed to jprice@whoi.edu

9Classical mechanics texts in order of increasing level: A. P. French, Newtonian Mechanics (W. W. Norton Co., 1971); A.

L. Fetter and J. D. Walecka, Theoretical Mechanics of Particles and Continua (McGraw-Hill, NY, 1990); C. Lanczos, The

Variational Principles of Mechanics (Dover Pub., NY, 1949). Textbooks on geophysical fluid dynamics emphasize mainly the

consequences of Earth’s rotation; excellent introductions at about the level of this essay are by J. R. Holton, An Introduction to

Dynamic Meteorology, 3rd Ed. (Academic Press, San Diego, 1992), and by B. Cushman-Roisin, Introduction to Geophysical

Fluid Dynamics (Prentice Hall, Engelwood Cliffs, New Jersey, 1994). Somewhat more advanced and highly recommended

for the topic of geostrophic adjustment is A. E. Gill, Atmosphere-Ocean Dynamics (Academic Press, NY, 1982), for waves

generally, J. Pedlosky, Waves in the Ocean and Atmosphere, (Springer, 2003) and also J. C. McWilliams, Fundamentals of

Geophysical Fluid Dynamics, (Cambridge Univ. Press, 2006).
10There are several essays or articles that, like this one, aim to clarify the Coriolis force. A fine treatment in great depth is

by H. M. Stommel and D. W. Moore, An Introduction to the Coriolis Force (Columbia Univ. Press, 1989); the present Section

4.1 owes a great deal to their work. A detailed analysis of dropped particle motion is by M. S. Tiersten and H. Soodak,

‘Dropped objects and other motions relative to a noninertial earth’, Am. J. Phys., 68(2), 129–142 (2000). A useful web page

for general science students is http://www.ems.psu.edu/%7Efraser/Bad/BadFAQ/BadCoriolisFAQ.html
11The Coriolis force also has engineering applications; it is exploited to measure the angular velocity required for vehicle

control systems, http://www.siliconsensing.com, and to measure mass transport in fluid flow, http://www.micromotion.com.
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2 Noninertial reference frames

The first step toward understanding the origin of the Coriolis force is to describe the origin of inertial

forces in the simplest possible context, a pair of reference frames that are represented by displaced

coordinate axes, Fig. (4). Frame one is labeled X and Z and frame two is labeled X ′ and Z′. It is helpful

to assume that frame one is stationary and that frame two is displaced relative to frame one by a

time-dependent vector, Xo(t). The measurements of position, velocity, etc. of a given parcel will thus

be different in frame two vs. frame one. Just how the measurements differ is a matter of kinematics;

there is no physics involved until we define the acceleration of frame two, and then use the accelerations

to write an equation of motion appropriate to frame 2, e.g., Eqn. (2).

2.1 Kinematics of a linearly accelerating reference frame

If the position vector of a given parcel is X when observed from frame one, then from within frame two

the same parcel will be observed at the position

X′ = X−Xo.

The position vector of a parcel thus depends upon the reference frame. Suppose that frame two is

translated and possibly accelerated with respect to frame one, while maintaining a constant orientation

(rotation will be considered shortly). If the velocity of a parcel observed in frame one is dX/dt, then in
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Figure 4: Two reference frames
are represented by coordinate axes
that are displaced by the vector Xo

that is time-dependent. In this Sec-
tion 2.1 we consider only a rela-
tive translation, so that frame two
maintains a fixed orientation with
respect to frame one. The rotation
of frame two will be considered be-
ginning in Section 2.2.

frame two the same parcel will be observed to have velocity

dX′

dt
=

dX

dt
−

dXo

dt
.

The accelerations are similarly d2X/dt2 and

d2X′

dt2
=

d2X

dt2
−

d2Xo

dt2
. (4)

We are going to assume that frame one is an inertial reference frame, i.e., that parcels observed in frame

one have the property of inertia so that their momentum changes only in response to a force, F, i.e., Eqn.

(1). From Eqn. (1) and from Eqn. (4) we can easily write down the equation of motion for the parcel as

it would be observed from frame two:

d2X′

dt2
= −

d2Xo

dt2
+F/M +g∗. (5)

The term −(d2Xo/dt2) appearing in the frame two equation of motion (5) will be called an

’inertial force’, and when this term is nonzero, frame two is said to be ’noninertial’. As an example,

suppose that frame two is subject to a constant acceleration, d2Xo/dt2 = A that is upward and to the

right in Fig. (4). From Eqn. (4) it is evident that all parcels observed from within frame two would then

appear to accelerate with a magnitude and direction −A, downward and to the left, and which is, of

course, exactly opposite the acceleration of frame two with respect to frame one. Clearly, the origin of

the inertial force is the acceleration of the reference frame, A, and not an interaction with other objects,

e.g., by friction or collisions.

Inertial forces that arise in this way are exactly proportional to the mass of the object, and in this

key respect are indistinguishable from gravitational mass attraction. If an inertial force is dependent

only upon position, as is the centrifugal force due to Earth’s rotation (Section 4.1), then it might as well
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be added with gravitational mass attraction g∗ to give a single, time-independent acceleration field,

usually termed ’gravity’ and denoted by g. Indeed, this gravity field — mass attraction plus centrifugal

acceleration — is the acceleration field that may be observed directly, for example by observing a

plumb line.12

Since there is no interaction between particles involved in an inertial force, there is also no

action-reaction force pair associated with an inertial force. Global momentum conservation thus does

not hold in the presence of inertial forces. There is something highly equivocal about the phenomenon

we are calling an ’inertial force’, and so you can appreciate why some authors have deemed them to be

’virtual’ or ’fictitious correction’ forces.6

Whether an inertial force is problematic or not depends entirely upon whether the acceleration

d2Xo/dt2 is known or not. If it should happen that the acceleration of frame two is not known, then all

bets are off. For example, imagine observing the motion of a plumb bob within an enclosed trailer that

was moving along in irregular, stop-and-go traffic. The bob would be observed to lurch forward and

backward unexpectedly, and we would soon conclude that studying dynamics in such an uncontrolled,

noninertial reference frame was going to be a very difficult endeavor. Inertial forces could be blamed if

it was observed that all of the physical objects in the trailer, observers included, experienced exactly the

same unaccounted acceleration. In many cases the relevant inertial forces are known well enough to use

noninertial reference frames with great precision, e.g., the topography of Earth’s gravity field must be

known to within a few centimeters to interpret sea surface altimetry data of the kind seen in Fig. (1)13

and the Coriolis force can be readily calculated as in Eqn. (2) knowing only Earth’s rotation vector and

the parcel velocity.

In the specific example of a translating reference frame sketched in Fig. (4), one could just as well

transform the observations made from frame two back into the inertial frame one, use the inertial frame

equation of motion to make a calculation, and then transform back to frame two if required. By that

tactic we could avoid altogether the seeming delusion of an inertial force. However, when it comes to

the observation and analysis of Earth’s atmosphere and ocean, there is really no choice but to use an

Earth-attached and thus rotating and noninertial reference (discussed in Section 4.3). That being so, we

have to contend with the Coriolis force, an inertial force that arises from the rotation of an

Earth-attached frame. The kinematics of rotation add a small complication that is taken up in the next

Section 2.2. But the key point is this — if you followed the development of Eqn. (5), then you already

12 A plumb bob is nothing more than a weight, the bob, that hangs from a string, the plumb line (and plumbum is the Latin

for lead, Pb). When a plumb bob is at rest in a given reference frame, the plumb line is parallel to the local acceleration field

of that reference frame. If the bob is displaced and released, it will oscillate as a simple pendulum. The observed period of

small amplitude oscillations, P, can be used to infer the magnitude of the acceleration, g = L/(P/2π)2, where L is the length

of the plumb line. If the reference frame is attached to the rotating Earth (and it probably will be!), then the motion of the bob

will be effected also by the Coriolis force, in which case the device is often termed a Foucault pendulum discussed in a later

section, 4.5.
13Earth’s gravity field is the object of extensive and ongoing survey by some truly remarkable technology and methods, see

http://www.csr.utexas.edu/grace/
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understand the origin of inertial forces, including the Coriolis force.

2.2 Kinematics of a rotating reference frame

The Coriolis force will arise in the equivalent of Eqn. (5) for the case of a steadily rotating reference

frame. Reference frame one will again be assumed to be stationary and defined by a triad of orthogonal

unit vectors, e1, e2 and e3 (Fig. 5). A parcel P can then be located by a position vector X

X = e1x1 + e2x2 + e3x3, (6)

where the Cartesian (rectangular) components, xi, are the projection of X onto each of the unit vectors

in turn. It is useful to rewrite Eqn. (6) using matrix notation. The unit vectors are made the elements of

a row matrix,

E = [e1 e2 e3], (7)

and the components xi are taken to be the elements of a column matrix,

X =





x1

x2

x3



 . (8)

Eqn. (6) may then be written in a way that conforms with the usual matrix multiplication rules as

X = EX. (9)

The vector X and its time derivatives are presumed to have an objective existence, i.e., they

represent something physical that is unaffected by our arbitrary choice of a reference frame.

Nevertheless, the way these vectors appear clearly does depend upon the reference frame (Fig. 5) and

for our purpose it is essential to know how the position, velocity and acceleration vectors will appear

when they are observed from a steadily rotating reference frame. In a later part of this section we will

identify the rotating reference frame as an Earth-attached reference frame and the stationary frame as

one aligned on the distant fixed stars. It is assumed that the motion of the rotating frame can be

represented by a time-independent rotation vector, ΩΩΩ. The e3 unit vector can be aligned with ΩΩΩ with no

loss of generality, Fig. (5a). We can go a step further and align the origins of the stationary and rotating

reference frames because the Coriolis force is independent of position (Section 2.2).

2.2.1 Transforming the position, velocity and acceleration vectors

Position: Back to the question at hand: how does this position vector look when viewed from a

second reference frame that is rotated through an angle θ with respect to the first frame? The answer is
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Figure 5: (a) A parcel P is located by the tip of a position vector, X. The stationary reference frame
has solid unit vectors that are presumed to be time-independent, and a second, rotated reference frame
has dashed unit vectors that are labeled èi. The reference frames have a common origin, and rotation
is about the e3 axis. The unit vector e3 is thus unchanged by this rotation and so `e3 = e3. This holds
also for ΩΩΩ′ = ΩΩΩ, and so we will use ΩΩΩ exclusively. The angle θ is counted positive when the rotation is
counterclockwise. (b) The components of X in the stationary reference frame are x1,x2,x3, and in the
rotated reference frame they are x′1,x′2,x′3.

that the vector ’looks’ like the components appropriate to the rotated reference frame, and so we need to

find the projection of X onto the unit vectors that define the rotated frame. The details are shown in Fig.

(5b); notice that x2 = L1+L2, L1 = x1tanθ , and x′2 = L2cosθ . From this it follows that

x′2 = (x2 − x1tanθ )cosθ = −x1sinθ + x2cosθ . By a similar calculation we can find that

x′1 = x1cosθ + x2sinθ . The component x′3 that is aligned with the axis of the rotation vector is

unchanged, x′3 = x3, and so the set of equations for the primed components may be written as a column

vector

X
′ =





x′1
x′2
x′3



 =





x1 cosθ + x2 sinθ

−x1 sinθ + x2 cosθ

x3



 . (10)

By inspection this can be factored into the product

X
′ = RX, (11)
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where X is the matrix of stationary frame components and R is the rotation matrix,14

R(θ ) =





cosθ sinθ 0

− sinθ cosθ 0

0 0 1



 . (12)

This θ is the angle displaced by the rotated reference frame and is positive counterclockwise. The

position vector observed from the rotated frame will be denoted by X′; to construct X′ we sum the

rotated components, X′, times a set of unit vectors that are fixed and thus

X′ = e1x′1 + e2x′2 + e3x′3 = EX
′ (13)

For example, the position vector X of Fig. (5) is at an angle of about 45◦ counterclockwise from

the e1 unit vector and the rotated frame is at θ = 30◦ counterclockwise from the stationary frame one.

That being so, the position vector viewed from the rotated reference frame, X′, makes an angle of 45◦ -

30◦ = 15◦ with respect to the e1 (fixed) unit vector seen within the rotated frame, Fig. (6). As a kind of

verbal shorthand we might say that the position vector has been ’transformed’ into the rotated frame by

Eqs. (10) and (13). But since the vector has an objective existence, what we really mean is that the

components of the position vector are transformed by Eqn. (10) and then summed with fixed unit

vectors to yield what should be regarded as a new vector, X′, the position vector that we observe from

the rotated (or rotating) reference frame.

Velocity: The velocity of parcel P seen in the stationary frame is just the time rate of change of the

position vector seen in that frame,
dX

dt
=

d

dt
EX = E

dX

dt
,

since E is time-independent. The velocity of parcel P as seen from the rotating reference frame is

similarly
dX′

dt
=

d

dt
EX

′ = E
dX′

dt
,

which indicates that the time derivatives of the rotated components are going to be very important in

what follows. For the first derivative we find

dX′

dt
=

d(RX)

dt
=

dR

dt
X+R

dX

dt
. (14)

The second term on the right side of Eqn. (14) represents velocity components from the stationary

frame that have been transformed into the rotating frame, as in Eqn. (11). If the rotation angle θ was

14A concise and clear reference on matrix representations of coordinate transformations is by J. Pettofrezzo Matrices

and Transformations (Dover Pub., New York, 1966). An excellent all-around reference for undergraduate-level applied

mathematics including coordinate transformations is by M. L. Boas, Mathematical Methods in the Physical Sciences, 2nd

edition (John Wiley and Sons, 1983).
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Figure 6: (a) The position vector X seen from the stationary reference frame. (b) The position vector as
seen from the rotated frame, denoted by X′. Note that in the rotated reference frame the unit vectors are
labeled ei since they are fixed; when these unit vectors are seen from the stationary frame, as on the left,
they are labeled èi. If the position vector is stationary in the stationary frame, then θ + ψ = constant.
The angle ψ then changes as dψ/dt = −dθ/dt = −Ω, and thus the vector X′ appears to rotate at the
same rate but in the opposite sense as does the rotating reference frame.

constant so that R was independent of time, then the first term on the right side would vanish and the

velocity components would transform exactly as do the components of the position vector. In that case

there would be no Coriolis force.

When the rotation angle is time-varying, as it will be here, the first term on the right side of Eqn.

(14) is non-zero and represents a velocity component that is induced solely by the rotation of the

reference frame. For an Earth-attached reference frame

θ = θ0 +Ωt,

where Ω is Earth’s rotation rate measured with respect to the distant stars, effectively a constant defined

below (and θ0 is unimportant). Though Ω may be presumed constant, the associated reference frame is

nevertheless accelerating and is noninertial in the same way that circular motion at a steady speed is

accelerating because the direction of the velocity vector is continually changing (cf. Fig. 10). Given this

θ (t), the time-derivative of the rotation matrix is

dR

dt
= Ω





− sinθ (t) cosθ (t) 0

−cosθ (t) − sinθ (t) 0

0 0 0



 , (15)

which has the elements of R, but shuffled around. By inspection, this matrix can be factored into the
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product of a matrix C and R as
dR

dt
= Ω CR(θ (t)), (16)

where the matrix C is

C =





0 1 0

−1 0 0

0 0 0



 =





1 0 0

0 1 0

0 0 0



R(π/2). (17)

Multiplication by C acts to knock out the component ( )3 that is parallel to ΩΩΩ and causes a rotation of

π/2 in the plane perpendicular to ΩΩΩ. Substitution into Eqn. (14) gives the velocity components

appropriate to the rotating frame

d(RX)

dt
= ΩCRX+R

dX

dt
, (18)

or using the prime notation ( )′ to indicate multiplication by R, then

dX′

dt
= ΩCX

′ +

(

dX

dt

)′

(19)

The second term on the right side of Eqn. (19) is just the rotated velocity components and is present

even if Ω vanished (a rotated but not a rotating reference frame). The first term on the right side

represents a velocity that is induced by the rotation rate of the rotating frame; this induced velocity is

proportional to Ω and makes an angle of π/2 radians to the right of the position vector in the rotating

frame (assuming that Ω > 0).

To calculate the vector form of this term we can assume that the parcel P is stationary in the

stationary reference frame so that dX/dt = 0. Viewed from the rotating frame, the parcel will appear to

move clockwise at a rate that can be calculated from the geometry (Fig. 7). Let the rotation in a time

interval δ t be given by δ ψ = −Ωδ t; in that time interval the tip of the vector will move a distance

|δ X′| = |X′|sin(δ ψ) ≈ | X′|δ ψ, assuming the small angle approximation for sin(δ ψ). The parcel will

move in a direction that is perpendicular (instantaneously) to X′. The velocity of parcel P as seen from

the rotating frame and due solely to the coordinate system rotation is thus limδ t→0
δX′

δ t
= −Ω×X ′Ω×X ′Ω×X ′, the

vector cross-product equivalent of ΩCX′ (Fig. 8). The vector equivalent of Eqn. (19) is then,

dX′

dt
=−Ω×X ′Ω×X ′Ω×X ′ +

(

dX

dt

)′

(20)

This and a handful of other equations upcoming are boxed to indicate their special importance.

The relation between time derivatives given by Eqn. (20) applies to velocity vectors, acceleration

vectors, etc., and may be written as an operator equation,

d( )′

dt
=−Ω×Ω×Ω×( )′+

(

d( )

dt

)′

(21)
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Figure 7: The position vector X′ seen from
the rotating reference frame. The unit vectors
that define this frame, `ei, appear to be station-
ary when viewed from within this frame, and
hence we label them with ei (not primed). As-
sume that Ω > 0 so that the rotating frame is
turning counterclockwise with respect to the
stationary frame, and assume that the parcel P
is stationary in the stationary reference frame
so that dX/dt = 0. Parcel P as viewed from
the rotating frame will then appear to move
clockwise on a circular path.

that is valid for all vectors regardless of their position with repsect to the axis of rotation.15 From left to

right the terms are: 1) the time rate of change of a vector as seen in the rotating reference frame, 2) the

cross-product of the rotation vector with the vector and 3) the time rate change of the vector as seen in

the stationary frame and then rotated into the rotating frame. Notice that the time rate of change and

prime operators of (21) do not commute, the difference being the cross-product term which represents a

time rate change in the direction of the vector, but not its magnitude. The left hand side, term 1), is the

time rate of change that we observe directly or seek to solve when working from the rotating frame.

Acceleration: Our goal here is to relate the accelerations seen in the two reference frames and so

differentiating Eqn. (19) once more and after rearrangement of the kind used above

d2X′

dt2
= 2ΩC

dX′

dt
+Ω2

C
2
X
′+

(

d2X

dt2

)′

(22)

The middle term on the right includes multiplication by the matrix C2 = CC,

C2 =





1 0 0

0 1 0

0 0 0



R(π/2)





1 0 0

0 1 0

0 0 0



R(π/2) =





1 0 0

0 1 0

0 0 0



R(π) =





−1 0 0

0 −1 0

0 0 0



 ,

that knocks out the component parallel to the rotation vector ΩΩΩ and reverses the other two components;

the vector equivalent of Ω2C2X′ is thus −ΩΩΩ×ΩΩΩ×X′ (Fig. 8). The vector equivalent of Eqn. (22) is

15Imagine arrows taped to a turntable with random orientations. Once the turntable is set into (solid body) rotation, all of

the arrows will necessarily rotate at the same rotation rate regardless of their position or orientation. The rotation will, of

course, cause a translation of the arrows that depends upon their location, but the rotation rate is necessarily uniform, and

this holds regardless of the physical quantity that the vector represents. This is of some importance for our application to a

rotating Earth, since Earth’s motion includes a rotation about the polar axis, as well as an orbital motion around the Sun and

yet we represent Earth’s rotation by a single vector.
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Figure 8: A schematic showing the relation-
ship of a vector X, and various cross-products
with a second vector ΩΩΩ (note the signs). The
vector X is shown with its tail perched on the
axis of the vector ΩΩΩ as if it were a position
vector. This helps to visualize the direction of
the cross-products, but it is important to note
that the relationship among the vectors and
vector products shown here holds for all vec-
tors, regardless of where they are defined in
space or the physical quantity, e.g., position
or velocity, that they represent.

then16

d2X′

dt2
= −2ΩΩΩ×

dX′

dt
− ΩΩΩ×ΩΩΩ×X′ +

(

d2X

dt2

)′

(23)

Note the similarity with Eqn. (3). From left to right the terms are 1) the acceleration as seen in the

rotating frame, 2) the Coriolis term, 3) the centrifugal17 term, and 4) the acceleration as seen in the

stationary frame and then rotated into the rotating frame. As before, term 1) is the acceleration that we

directly observe or seek to solve for when working from the rotating reference frame.

2.2.2 Stationary ⇒ Inertial; Rotating ⇒ Earth-Attached

The third and final step in this derivation of the Coriolis force is to define the inertial reference frame

one, and then the rotation rate of frame two. To make frame one inertial it is presumed that the unit

16The relationship between the stationary and rotating frame velocity vectors given by Eqs. (19) and (20) is clear visually

and becomes intuitive given just a little experience. It is not so easy to intuit the corresponding relationship between the

accelerations given by Eqs. (22) and (23). To understand the transformation of acceleration there is really no choice but to

understand (be able to reproduce and then explain) the mathematical steps going from Eqn. (19) to Eqn. (22) and/or from

Eqn. (20) to Eqn. (23).
17’Centrifugal’ and ’centripetal’ have Latin roots, centri+fugere and centri+peter, meaning center-fleeing and center-

seeking, respectively. Taken literally these would indicate merely the sign of a radial force, for example. However, they

are very often used to mean specifically a term of the sort Ω2r, seen on the right side of Eq. (23), i.e., the centrifugal force

in an equation of motion written for a rotating, non-inertial reference frame. The same kind of term, though with the rotation

rate written as ω and referring to the angular coordinate of the parcel rather than the reference frame, will also arise as the

acceleration observed from an inertial reference frame. In that case ω2r is the centripetal acceleration that must accompany

every curving trajectory. This seeming change of identity from an inertial force to an acceleration will be discussed further in

Sec. 3.2.
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vectors ei could in principle be aligned on the distant, ’fixed stars’.18 The rotating frame two is

presumed to be attached to Earth, and the rotation rate Ω is then given by the rate at which the same

fixed stars are observed to rotate overhead, one revolution per sidereal day (Latin for from the stars),

Ω = 2π/(23 hrs,56 min and 4.09 sec) = 7.2921×10−5 rad s−1 (24)

A sidereal day is only about four minutes less than a solar day, and so in a purely numerical sense,

Ω ≈ Ωsolar = 2π/24 hours = 7.2722×10−5 rad s−1 which is certainly easier to remember than is Eqn.

(24). For the purpose of a rough estimate, the small numerical difference between Ω and Ωsolar is not

significant. However, the difference between Ω and Ωsolar can be told in numerical simulations and in

well-resolved field observations. And too, on Mach’s Principle,18 the difference between Ω and Ωsolar

is highly significant.

Earth’s rotation rate is very nearly constant, and the axis of rotation maintains a nearly steady

bearing on a point on the celestial sphere that is close to the North Star, Polaris (Fig. 3). The Earth’s

rotation vector thus provides a definite orientation of Earth with respect to the universe, and Earth’s

rotation rate has an absolute magnitude. The practical evidence of this comes from rotation rate

sensors11 that read out Earth’s rotation rate with respect to the fixed stars as a kind of gage pressure,

called ’Earth rate’.19

18Fixed is a matter of degree. The Sun and the planets certainly do not qualify as fixed, but even some nearby stars move

detectably over the course of a year. The intent is that the most distant stars should serve as sign posts for the spatially-averaged

mass of the universe as a whole on the hypothesis that inertia arises whenever there is an acceleration (linear or rotational) with

respect to the mass of the universe. This grand idea was expressed most forcefully by the Austrian philosopher and physicist

Ernst Mach, and is often termed Mach’s Principle (see, e.g., J. Schwinger, Einstein’s Legacy Dover Publications, 1986; M.

Born, Einstein’s Theory of Relativity, Dover Publications, 1962). Mach’s Principle seems to be in accord with all empirical

data, including the magnitude of the Coriolis force. Mach’s principle is probably best thought of as a (profound) relationship,

rather than the fundamental mechanism of inertia. A new hypothesis takes the form of so-called vacuum stuff (or Higgs field)

that is presumed to pervade all of space and so provide a local mechanism for resistance to accelerated motion (see P. Davies,

‘On the meaning of Mach’s principle’, http://www.padrak.com/ine/INERTIA.html). The debate between Newton and Leibniz

over the reality of absolute space — which had seemed to go in favor of relative space, Leibniz and Mach’s Principle — has

been renewed in the search for a physical origin of inertia. When this is achieved, we can then point to a physical origin of

the Coriolis force.

Observations on the fixed stars are a very precise means to define rotation rate, but can not, in general, be used to define the

linear translation or acceleration of a reference frame. The only way to know if a reference frame that is aligned on the fixed

stars is inertial is to carry out mechanics experiments and test whether Eqn.(1) holds and global momentum is conserved. If

yes, the frame is inertial.
19For our present purpose ΩΩΩ may be presumed constant. In fact, there are small but observable variations of Earth’s rotation

rate due mainly to changes in the atmospheric and oceanic circulation and due to mass distribution within the cryosphere, see

B. F. Chao and C. M. Cox, ‘Detection of a large-scale mass redistribution in the terrestrial system since 1998,’ Science, 297,

831–833 (2002), and R. M. Ponte and D. Stammer, ‘Role of ocean currents and bottom pressure variability on seasonal polar

motion,’ J. Geophys. Res., 104, 23393–23409 (1999). The direction of ΩΩΩ with respect to the celestial sphere also varies

detectably on time scales of tens of centuries on account of precession, so that Polaris has not always been the pole star (Fig.

3), even during historical times. The slow variation of Earth’s orbital parameters (slow enough to be assumed to vanish for

our purpose) are an important element of climate, see e.g., J. A. Rial, ‘Pacemaking the ice ages by frequency modulation of
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Assume that the inertial frame equation of motion is

d2X

dt2
= F/M +G∗ and

d2X

dt2
= F/M +g∗ (25)

(G∗ is the component matrix of g∗). The acceleration and force can always be viewed from another

reference frame that is rotated (but not rotating) with respect to the first frame,

(

d2X

dt2

)′

= F
′ +G

′
∗ and

(

d2X

dt2

)′

= F′+g′∗, (26)

as if we had chosen a different set of fixed stars or multiplied both sides of Eqn. (22) by the same

rotation matrix. This equation of motion preserves the global conservation and Galilean transformation

properties of Eqn. (25). To find the rotating frame equation of motion, eliminate the rotated acceleration

from Eqn. (26) using Eqs. (22) and (23) and then solve for the acceleration seen in the rotating frame:

the components are

d2X′

dt2
= 2ΩC

dX′

dt
−Ω2

C
2
X
′ +F

′+G
′
∗ (27)

and the vector equivalent is

d2X′

dt2
= − 2ΩΩΩ×

dX′

dt
− ΩΩΩ×ΩΩΩ×X′+F′ +g∗

′. (28)

Eqn. (28) has the form of Eqn. (4), the difference being that the noninertial reference frame is rotating

rather than translating. If the origin of this noninertial reference frame was also accelerating, then there

would be a third inertial force term, −(d2Xo/dt2). Notice that we are not yet at Eqn. (2); in Section 4.1

the centrifugal force and gravitational mass attraction terms will be combined into the time-independent

inertial force g.

Earth’s orbital eccentricity,’ Science, 285, 564–568 (1999).

As well, Earth’s motion within the solar system and galaxy is much more complex than a simple spin around a perfectly

stable polar axis. Among other things, the Earth orbits the Sun in a counterclockwise direction with a rotation rate of 1.9910

×10−7 s−1, which is about 0.3% of the rotation rate Ω. Does this orbital motion enter into the Coriolis force, or otherwise

affect the dynamics of the atmosphere and oceans? The short answer is no and yes. We have already accounted for the rotation

of the Earth with respect to the fixed stars. Whether this rotation is due to a spin about an axis centered on the Earth or due to

a solid body rotation about a displaced center is not relevant for the Coriolis force per se, as noted in the discussion of Eqn.

(21). However, since Earth’s polar axis is tilted significantly from normal to the plane of the Earth’s orbit around the Sun

(the tilt implied by Fig. 3), we can ascribe Earth’s rotation Ω to spin alone. The orbital motion about the Sun combined with

Earth’s finite size gives rise to tidal forces, which are small but important spatial variations of the centrifugal/gravitational

balance that holds for the Earth-Sun and for the Earth-Moon as a whole (described particularly well by French9, and see also

Tiersten, M. S. and H Soodak, ’Dropped objects and other motions relative to the noninertial earth’, Am. J. Phys., 68 (2), Feb.

2000, 129-142).
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2.2.3 Remarks on the transformed equation of motion

Once the transformation rule for accelerations, Eqn. (23), is in hand, the path to the rotating frame

equation of motion is short and direct — if Eqn. (26) holds in a given reference frame (say an inertial

frame, but that is not essential) then Eqs. (27) and (28) hold exactly in a frame that rotates at the

constant rate and direction given by ΩΩΩ with respect to the first frame. The rotating frame equation of

motion includes two terms that are dependent upon the rotation vector, the Coriolis term,

−2ΩΩΩ×(dX′/dt), and the centrifugal term, −ΩΩΩ×ΩΩΩ×X′. These terms are sometimes written on the left

side of an equation of motion as if they were going to be regarded as part of the acceleration, i.e.,

d2X′

dt2
+ 2ΩΩΩ×

dX′

dt
+ ΩΩΩ×ΩΩΩ×X′ = F′/M +g∗′. (29)

Comparing the left side of Eqn. (29) with Eqn. (23), it is evident that the rotated acceleration is equal to

the rotated force,
(

d2X

dt2

)′

= F′/M +g∗′,

which is well and true and the same as Eqn. (26).20 However, it is crucial to understand that the left side

of Eqn. (29), (d2X/dt2)′ is not the acceleration that is observed from the rotating reference frame,

d2X′/dt2. When Eqn. (29) is solved for d2X′/dt2, it follows that the Coriolis and centrifugal terms are,

figuratively or literally, sent to the right side of the equation of motion where they are interpreted as if

they were forces.

When the Coriolis and centrifugal terms are regarded as forces — and it is argued here that they

should be when observing from a rotating reference frame — they have all of the peculiar properties of

inertial forces noted in Section 2.1. From Eqn. (29) (and Eqn. 4) it is evident that the centrifugal and

Coriolis terms are exactly proportional to the mass of the parcel observed, whatever that mass may be.

The acceleration associated with these inertial forces arises from the rotational acceleration of the

reference frame, combined with relative velocity for the Coriolis force. They differ from central forces

F and g∗M in the respect that there is no physical interaction that causes the Coriolis or centrifugal

force and hence there is no action-reaction force pair. As a consequence the rotating frame equation of

motion does not retain the global conservation of momentum that is a fundamental property of the

inertial frame equation of motion and central forces (an example of this nonconservation is described in

Section 3.4). Similarly, we note here only that invariance to Galilean transformation is lost since the

Coriolis force involves the velocity rather than velocity derivatives. Thus V′ is an absolute velocity in

the rotating reference frame of the Earth. If we need to call attention to these special properties of the

Coriolis force, then the usage Coriolis inertial force seems appropriate because it is free from the taint

20Recall that ΩΩΩ = ΩΩΩ′ and so we could put a prime on every vector in this equation. That being so, it would be better to

remove the visually distracting primes and then make note that the resulting equation holds in a steadily rotating reference

frame. We will keep the primes for now, since we will be considering both inertial and rotating reference frames until Section

5.
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of unreality that goes with ’virtual force’, ’fictitious correction force’, etc., and because it gives at least a

hint at the origin of the Coriolis force. It is important to be aware of these properties of the rotating

frame equation of motion, and also to be assured that in most analysis of geophysical flows they are of

no great practical consequence. What is most important is that the rotating frame equation of motion

offers a very significant gain in simplicity compared to the inertial frame equation of motion, discussed

further in Section 4.

The Coriolis and centrifugal forces taken individually have simple interpretations. From Eqn. (28)

it is evident that the Coriolis force is normal to the velocity, dX′/dt, and to the rotation vector, ΩΩΩ. The

Coriolis force will thus tend to cause the velocity to change direction but not magnitude, and is

appropriately termed a deflecting force as noted in Section 1 (the purest example of this deflection

occurs in an important phenomenon called inertial motion, described in Section 5.2.) The centrifugal

force is in a direction perpendicular to and directed away from the axis of rotation. It is independent of

time and is dependent upon position. How these forces effect dynamics in simplified conditions will be

considered in Sections 3, 4.3 and 5.

2.3 Problems

(1) It is important that Eqs. (10) through (13) have an immediate and concrete meaning for you. Some
questions/assignments to help you along: Verify Eqs. (10) and (13) by some direct
experimentation, i.e., try them and see. Show that the transformation of the vector components
given by Eqs. (11) and (12) leaves the magnitude of the vector unchanged, i.e., |X′| = |X|. Verify

that R(θ1)R(θ2) = R(θ1 +θ2) and that Rθ−1 = R(−θ ), where R−1 is the inverse (and also the
transpose) of the rotation matrix.

(2) Show that the unit vectors that define the rotated frame can be related to the unit vectors of the
stationary frame by `E = ER

−1 and hence the unit vectors observed from the stationary frame
turn the opposite direction of the position vector observed from the rotating frame (and thus the
reversed prime). The components of an ordinary vector (a position vector or velocity vector) are
thus said to be contravariant, meaning that they rotate in a sense that is opposite the rotation of

the coordinate system. What, then, can you make of `EX′ = ER
−1

RX?

(3) What is the rotation rate of the Moon? Hint, make a sketch of the Earth-Moon orbital system and
consider what we observe of the Moon from Earth. What would the Coriolis and centrifugal
forces be on the Moon?

3 Inertial and noninertial descriptions of elementary motions

The object of this section is to evaluate the equations of motion (25) and (28) for several examples of

elementary motions. The goal will be to understand how the accelerations and the inertial forces —

gravity, centrifugal and Coriolis — depend upon the reference frame. Though the motions considered
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A characterization of the forces on geophysical flows.

central? inertial? Galilean invariant? position only?

contact forces yes no yes no

grav. mass attraction yes yes yes yes

centrifugal no yes yes yes

Coriolis no yes no no

Table 1: Contact forces on fluid parcels include pressure gradients (normal to a surface) and frictional

forces (mainly tangential to a surface). The centrifugal force noted here is that associated with Earth’s ro-

tation. ’position only’ means dependent upon the parcel position but not the parcel velocity, for example.

This table ignores electromagnetic forces since they are usually small.

here are truly elementary, nevertheless the analysis is slightly subtle in that the acceleration and inertial

force terms may change identity, as if be fiat, when observing from one reference frame or another. To

appreciate that there is more to this analysis than an arbitrary relabeling of terms, it will be very helpful

for you to make a sketch of each case, starting with the observed acceleration.

3.1 Switching sides

3.1.1 One-dimensional, vertical motion with gravity

Consider a parcel of fixed mass M that is in contact with the ground and at rest. For the purpose here, a

reference frame that is attached to the ground may be considered to be inertial. The vertical component

of the equation of motion is then, in general,

d2z

dt2
= Fz/M−g,

where the observed acceleration is written on the left hand side and the forces are listed on the right side.

The forces acting on this parcel include the vertical component of a contact force, Fz, that acts over the

surface of the parcel. To measure the contact force, the parcel could (in principal) be enclosed in a

wrap-around strain gage that reads out the tangential and normal stresses acting on the surface of the

parcel. In this case, the strain gauge will read a contact force that is upwards, Fz > 0. The other force

acting on this parcel is due to gravity, gM, an inertial force that acts throughout the body of the parcel

(in this section there is no need to make a distinction between g and g∗) (Table 1). To make an

independent measure of g, the direction may be observed as the direction of a stationary plumb line, and

the magnitude of g may be inferred from the period of small oscillations.12 For the conditions

prescribed, a parcel at rest, the equation of motion for a ground-attached reference frame is just

ground− attached frame : 0 = Fz −gM, (30)
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a static force balance between the upward contact force, Fz, and the downward force due to gravity, i.e.,

the parcel’s weight (you were warned that this would be elementary).

Now suppose that the same parcel is observed from a reference frame that is in free-fall and

accelerating downwards at the rate −g with respect to the ground-attached frame.21 When viewed from

this free-falling reference frame, the parcel is observed to be accelerating upward at the rate

d2z′

dt2
= g > 0.

In this free-falling frame, there is no gravitational force (imagine astronauts free-falling (floating) in

space and attempting pendulum experiments ..... ’Houston, we have a pendulum problem’) and so the

only force recognized as acting on the parcel is the upward contact force, Fz, which is unchanged from

the case before, i.e., the contact force is invariant. The equation of motion for the parcel observed from

this free-falling reference frame is then, with the observed acceleration on the left,

free− falling frame :
d2z′

dt2
= g = Fz/M. (31)

Notice that in going from the inertial frame and Eqn. (30) to the free-falling frame and Eqn. (31), the

term involving g has seemed to switch sides; gM is the force of gravity (an inertial force) in the

ground-attached reference frame, Eqn. (30), and appears as an acceleration in the free-falling reference

frame, Eqn. (31). Exactly this kind of switching sides will obtain when we consider rotating reference

frames and the centrifugal and Coriolis forces.

3.1.2 Two-dimensional, circular motion; polar coordinates

Now consider the purely horizontal motion of a parcel so that gravity and the vertical component of the

motion are ignored. It will be advantageous to utilize polar coordinates, which are reviewed here briefly.

If you are familiar with polar coordinates, then jump ahead to Eqns. (36) and (37).

Presume that the motion is confined to a plane defined by the usual cartesian coordinates x1 and x2

and unit vectors e1 and e2. Thus the position of any point in the plane may be specified by (x1,x2) and

vectors by their projection onto e1 and e2. Alternatively, a position may also be defined by polar

coordinates, the distance from the origin, r, and an angle, λ between the radius vector and (arbitrarily)

21Gravitational mass attraction is an inertial force and a central force that has a very long range. Consider two gravitating

bodies and a reference frame attached to one of them, say parcel one, which will then be observed to be at rest. If parcel two

is then found to accelerate towards parcel one, the total momentum of the system (parcel one plus parcel two) will not be

conserved, i.e., in effect, gravity would not be recognized as a central force. A reference frame attached to one of the parcels

is thus noninertial. To define an inertial reference frame in the presence of mutually gravitating bodies we can use the center

of mass of the system, and then align on the fixed stars. This amounts to putting the entire system into free-fall with respect

to any larger scale (external to this system) gravitational mass attraction. For more on gravity and inertial reference frames

see http://plato.stanford.edu/entries/spacetime-iframes/.
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Figure 9: The unit vectors e1,e2

define a cartesian reference frame.
The unit vectors for a polar coordi-
nate system, er and eλ , are defined
at the position of a given parcel
(red dot) with er in the direction
of the line segment from the origin
to the parcel position. These po-
lar unit vectors are in general time-
dependent because the angle λ is
time-dependent.

e1. The angle λ increases anti-clockwise (Fig. 9). To insure that the polar coordinates are unique we

will require that

r ≥ 0 and 0 ≤ λ < 2π.

The position vector is then

X = rer,

where the unit vector er has an origin at the parcel position and is in the direction of a line segment from

the origin to the parcel position. The direction of er is thus λ . The unit vector eλ is orthogonal and to

the left of er. The conversion from cartesian to polar coordinates is

r =
√

x2 + y2 and λ = tan−1 (y/x),

and back,

x = r cosλ and y = r sinλ .

The polar system unit vectors are time-dependent because λ is in general time-dependent. To find

out how they vary with λ(t) we start by writing their expression in terms of the time-independent

cartesian unit vectors as

er = cosλe1 + sinλe2, and, eλ = − sinλe1 + cosλe2. (32)
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From Eqn (32) the time rate changes are

der

dt
= ωeλ and

deλ

dt
= −ωer, (33)

where ω = dλ/dt. The d/dt operating on a polar unit vector induces a rotation of 90 degrees in the

direction of ω , and stretching by the factor ω . With these results in hand the parcel velocity is readily

computed as
dX

dt
=

dr

dt
er + r

der

dt
=

dr

dt
er + rωeλ (34)

which shows the polar velocity components

Ur =
dr

dt
and Uλ = rω.

A second, similar differentiation yields the the acceleration,

d2X

dt2
=

(

d2r

dt2
− rω2

)

er +

(

2ω
dr

dt
+ r

dω

dt

)

eλ , (35)

and the equation of motion sorted into radial and tangential components,

d2r

dt2
− rω2 = Fr/M, (36)

2ω
dr

dt
+ r

dω

dt
= Fλ /M. (37)

Notice that there are terms −rω2 and 2ω dr
dt

on the left-hand side of (36) and (37) that have the

form of centrifugal and Coriolis terms and are sometimes said to be such, e.g., the excellent applied

mathematics text by Boas.14 However, the angular velocity ω in these equations is that of the parcel

position, not the rotation rate of the reference frame, and these terms are an essential part of the

acceleration seen in the inertial reference frame. Casual labeling may be harmless in most contexts, but

for the goals here it is an error: these equations have been written for an inertial reference frame where

centrifugal and Coriolis forces do not arise.

To see this last important point, consider uniform circular motion, r = const and

ω = dλ/dt = const. The radial acceleration is then from Eqn (36), −rω2 < 0, which is the centripetal

(center-seeking) acceleration of uniform circular motion (d/dt operating twice on er times a constant r,

or, Fig. 10). To say it a little more emphatically, −rω2 is the entire acceleration observed in the case of

uniform circular motion. This radial acceleration implies a centripetal radial force, Fr = − rω2M < 0,

and the radial component balance Eqn (36) reduces to

uniform circular motion, inertial frame : − rω2 = Fr/M. (38)
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Figure 10: The velocity at two times
along a circular trajectory (thin blue line)
having radius r and frequency ω . The
angular distance between the two times
is δ λ = δ tω and the velocity change
is δ V = V2 −V1. In the limit δ t → 0,
the time rate change of velocity δ V/δ t
is toward the center of curvature, i.e.,
a centripetal acceleration. If the mo-
tion is steady and circular, then dV/dt =
−|V|ωer = −rω2er, where er is the ra-
dial unit vector. The centripetal accel-
eration may also be written −(U2

λ/r)er,
where Uλ = ωr is the azimuthal speed.
The shaded rectangle is a control volume
used in a later problem to find the equiv-
alent of centripetal acceleration in carte-
sian coordinates, u∂ v/∂ x, for the partic-
ular position shown here.

The azimuthal component Eqn. (37) vanishes term by term.

We can rewrite Eqns. (36) and (37) in a way that will help develop a physical interpretation by

noting that rω2 = U2
λ /r and that the angular momentum is L = rUλ M and thus

d2r

dt2
−

U2
λ

r
= Fr/M (39)

and
1

M

dL

dt
= rFλ /M (40)

Two points: 1) The centripetal acceleration of Eqn.(39) depends quadratically upon the tangential

velocity, Uλ , times the radius of curvature, 1/r, and 2) The angular momentum of Eqn.(40) can change

only if there is a torque, rFλ , exerted upon the parcel, with the moment arm being the distance to the

origin, r.

It is straightforward to find the corresponding rotating reference frame equation of motion. The

origin of the rotating frame may be set at the origin of the fixed frame, and hence the radius is the same,

r′ = r. The unit vectors are identical since they are defined at the location of the parcel, e′r = er and

e′λ = eλ . The components of the force F are also identical in the two frames, F ′
r = Fr and F ′

λ = Fλ .

Differences arise when the angular velocity ω of the parcel is decomposed into the presumed constant

angular velocity of the rotating frame, Ω, and a relative angular velocity of the parcel when viewed

from the rotating frame, i.e., ω ′, i.e.,

ω = Ω+ω ′.
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An observer in the rotating reference frame will see the parcel motion associated with the relative

angular velocity, but not the angular velocity associated with rotation of the reference frame, Ω.

Substituting this into the inertial frame equations of motion above, and rearrangement to keep the

observed acceleration on the left hand side while moving terms containing Ω to the right hand side

yields the rather formidable-looking rotating frame equations of motion:

d2r′

dt2
− r′ω ′2 = r′Ω2 +2Ωω ′r′+F ′

r /M, (41)

2ω ′dr′

dt
+ r′

dω ′

dt
= −2Ω

dr′

dt
+F ′

λ /M. (42)

We can write these using the rotating frame velocity components, U ′
r = dr′/dt and U ′

λ = ω ′r′ and

angular momentum, L′ = r′U ′
λ M, as

d2r′

dt2
−

U ′2
λ

r
= r′Ω2 +2ΩU ′

λ +F ′
r/M (43)

1

rM

dL′

dt
= −2ΩU ′

r +F ′
λ /M (44)

There is a genuine centrifugal force term ∝ Ω2 > 0 in the radial component (43), and there are Coriolis

force terms, ∝ 2Ω, on the right hand sides of both (43) and (44). This makes the third time that we have

derived the centrifugal and Coriolis terms — in Cartesian coordinates, Eqn. (27), in vector form, Eqn.

(28), and here in polar coordinates. It is worthwhile for you to verify the steps leading to these

equations, as they are perhaps the most direct derivation of the Coriolis force and most easily show how

the factor of 2 arises in the Coriolis term.

Now let’s use these rotating polar coordinates to analyze the simple but important example of

uniform circular motion whose inertial frame description was Eqn (38). Assume that the reference

frame rotation rate is ω , the angular velocity of the parcel seen in the inertial frame. Thus dω ′/dt = 0,

and the parcel is stationary in the rotating frame; we might call this a co-rotating frame. It follows that

d( )/dt = Uλ = Ur = 0 and so the azimuthal component Eqn. (42) vanishes term by term. All that is

left of the radial component Eqn. (43) is

co− rotating, non− inertial frame : 0 = r′ω2 +F ′
r /M (45)

and recall that r′ = r. The term r′ω2 > 0 is a centrifugal (center fleeing) force that is balanced by a

centripetal contact force, F ′
r , which is the same contact force observed in the inertial frame,

F ′
r = Fr =−r′ω2M, consistent with Eqn. (45). Thus Eqns. (38) and (45) comprise another example of

switching sides: an acceleration seen in an inertial frame — in this case a centripetal acceleration on the
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left side of Eqn. (38) — is transformed into an inertial force — a centrifugal force on the right side of

(45) — when the same parcel is observed from a non-inertial, co-rotating reference frame.

Before moving on to an application below, it may be prudent to note that a rotating frame

description is not always so adept as it may appear above. For example, assume that the parcel is at rest

in the inertial frame, and that the horizontal component of the contact force vanishes. The inertial frame

equation of motion in polar coordinates Eqns. (36) and (37) vanishes term by term; clearly, nothing is

happening in an inertial frame. Now suppose that the same parcel is viewed from a steadily rotating

reference frame, say rotating at a rate Ω, and at a distance r′ from the origin. Viewed from this frame,

the parcel will appear to be moving in a circle of radius r′ = constant and in a direction opposite the

rotation of the reference frame. The parcel’s rotation rate is ω ′ =−Ω, just as in Figure (7). With these

conditions the tangential component equation of motion vanishes term by term (F = 0), but three of the

radial component terms are nonzero,

−r′ω ′2 = r′Ω2 +2Ωω ′r′, (46)

and indicate an interesting balance between the centripetal acceleration, −r′ω ′2 (the observed

acceleration is listed on the left hand side), and the sum of the centrifugal and Coriolis inertial forces

(the right hand side, divided by M, and note that ω ′ = −Ω). Interesting perhaps, but also a bit alarming;

a parcel that is at rest and doing nothing in an inertial frame has acquired a rather complex momentum

balance when observed from a rotating reference frame. It is tempting to deem the Coriolis and

centrifugal terms that arise in this example to be ’virtual’, or ’fictitious, correction’ forces to

acknowledge this discomfort.6 But labeling terms this way wouldn’t add anything useful, and it might

obscure the fundamental issue — accelerations and inertial forces are relative to a reference frame. This

applies just as well to centrifugal and Coriolis forces as it does to gravitational mass attraction.

3.2 To get a feel for the Coriolis force

A centrifugal force is often encountered in daily life. For example, a runner having a speed V = 5 m s−1

and making a moderately sharp turn, radius R = 15 m, will easily feel the centrifugal force,

(V 2/R)M ≈ 0.15gM or 15% of her weight. It is unlikely that a runner would think of this centrifugal

force as virtual or fictitious.

The Coriolis force associated with Earth’s rotation is by comparison very, very small, only about

2ΩVM ≈ 10−4gM for the same runner, and not noticeable. To experience the Coriolis force in the same

direct way that we can experience (feel) the centrifugal force, requires a platform having a rotation rate

that exceeds Earth’s rotation rate by a factor of about 104. A typical merry-go-round has a rotation rate

Ω = 2π/12 rad s−1 = 0.5 rad s−1 that is ideal.

In what follows, the heretofore nondescript ’parcel’ is presumed to be a sentient being i.e., a rider

(is that you?). Motion is observed by a separate observer who can be either external to the
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merry-go-round, and thus is an inertial reference frame, or riding on the merry-go-round, and thus in a

non-inertial reference frame. To calculate the forces on this rider, assume a mass, M = 75 kg, the

standard airline passenger before the era of super-sized meals and passengers.

3.2.1 At rest in the rotating frame

To start, let’s presume that we are standing quietly at the radius r = 6 m of a merry-go-round that it is

rotating at a steady rate, Ω = 0.5 rad s−1. How does the description of our motion depend upon the

reference frame, and what are the forces involved?

Viewed from an inertial frame outside of the merry-go-round, the radial component balance Eqn.

(37) is, with ω = Ω and dr/dt = dω/dt = Fθ = 0

− rΩ2M = Fr, (47)

in which a centripetal acceleration (×M) is balanced by an inward-directed contact force,

Fr =−rΩ2M =−112 N, equivalent to the weight of a mass Fr/g = 11.5 kg ( equivalent to about 28 lbs)

and which is quite noticeable. This contact force is exerted by the merry-go-round on us, say through a

hand rail.

Viewed from a rotating, non-inertial reference frame, i.e., from the merry-go-round, there is no

acceleration, and the radial force balance is Eqn. (45) with r′ = r,

0 = r′Ω2M +F ′
r . (48)

The physical conditions are unchanged and thus the contact force exerted by the merry-go-round is

exactly as before, F ′
r = Fr = −112 N. As noted by examples in Sec. 3.1, the acceleration seen in the

inertial frame Eqn. (47) has become an inertial force, r′Ω2M, a centrifugal force, in the rotating frame,

Eqn. (48). Within the rotating frame, the centrifugal force is quite vivid; it appears that we are being

pushed outwards, or centrifugally, by a force that is distributed throughout our body. To maintain a

fixed position, this centrifugal force must be opposed by a centripetal contact force, F ′
r , exerted by the

hand rail.

3.2.2 A cautious walk in the rotating frame

Most merry-go-rounds have signs posted that caution riders to remain in their seats after the ride begins.

This is a good and prudent rule, of course. But if the goal is to get a feel for the Coriolis force, then we

may decide to go for a very cautious walk on the merry-go-round.

Azimuthal relative velocity. Let’s assume that we begin to walk azimuthally, so that r = 6 m and

constant. A reasonable walking pace under the circumstance is about Uw = 1.5 m s−1, which
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corresponds to a relative rotation rate ω ′ = 0.25 rad s−1, and recall that Ω = 0.5 rad s−1. If the direction

is in the direction of the merry-go-round rotation, then ω = Ω+ω ′ = 0.75 rad s−1. From the inertial

frame, Eqn. (37), the centripetal force required to maintain r = constant when moving at this greater

angular velocity is

Fr = − rω2M = − r(Ω+ω ′)2M = −253 N,

which is roughly twice the centripetal force experienced when stationary. If we then reverse direction

and walk at the same speed against the direction of rotation of the merry-go-round, ω ′ = −0.25 rad s−1,

then Fr is reduced to about -28 N. This pronounced variation of Fr with ωw is a straightforward

consequence of the quadratic dependence of centripetal acceleration upon azimuthal velocity.

When our motion is viewed and analyzed from within the rotating frame of the merry-go-round,

we distinguish between the rotation rate of the merry-go-round, Ω, and the relative rotation rate, ω ′, due

to the presumed relative motion. The radial component of the rotating frame equation of motion (41)

reduces to

−r′ω ′M = r′Ω2M +2Ωω ′r′M +F ′
r . (49)

The term on the left is a centripetal force, the first term on the right is the centrifugal force due to the

merry-go-round’s rotation, and the second term on the right, 2Ωω ′M, is a Coriolis force. For these

conditions, the Coriolis force is substantial, 2r′Ωω ′M±112 N, with the sign determined by the

direction of motion relative to Ω. If Ω > 0 and ω ′ > 0, i.e., walking in the anti-clockwise direction of

the merry-go-round rotation, then the radial Coriolis force is positive and to the right of the relative

velocity.

Radial relative velocity. Now consider going for a very cautious walk in the radial direction so that

ω ′ = 0 and the rotation rate remains constant at Ω = 0.5 rad sec−1. Presume a modest radial speed

dr′/dt = 1 m s−1 and positive. In practice, even this slow pace is difficult to maintain for more than a

few steps, but that will suffice.

Viewed from an inertial frame, the azimuthal component of the equation of motion, Eqn. (37),

reduces to

2Ω
dr

dt
M = Fλ , (50)

where Fλ ≈ 75 N (or about 16 pounds) for the given data. The sense of Fλ is positive, or anti-clockwise.

The left hand side of (50) has the form of a Coriolis force, but don’t jump to that conclusion; this is an

inertial frame description, so there is no Coriolis force. The inertial frame description may be cast as a

balance of angular momentum, L = r2ΩM and hence L ∝ r2 since Ω and M are constant in this case.

When dr/dt > 0 the angular momentum is necessarily increasing and must be provided by a positive

torque, i.e., rFλ > 0. If instead the radial motion was inward, so that dr/dt < 0, then the angular

momentum would be decreasing, and Fλ would be negative. Be sure that the sense (the direction) of Fλ

is clear before going on to consider this motion from the rotating frame.
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From within the rotating frame, and given that the motion is constrained to be radial only, the

azimuthal component of the equation of motion reduces to a force balance,

0 =−2Ω
dr′

dt
M +F ′

λ , (51)

where −2Ωdr′

dt
M is now a Coriolis force and F ′

λ = Fλ is the same contact force as before. For example,

if the radial motion is outward, dr′

dt
≥ 0, then the azimuthal Coriolis force is clockwise, −2Ωdr′

dt
M ≤ 0,

which is to the right of and normal to the radial velocity. If the radial motion is inward, then the Coriolis

force is reversed, and again is to the right of the radial motion.

Be careful! If you have the opportunity to do this experiment you will learn with the first few steps

whether the Coriolis force is better described as a real force, or as a fictitious correction force. Be sure

to ask permission of the merry-go-round operator before you start walking around, and exercise genuine

caution. The Coriolis force is an inertial force and so is distributed throughout your body, unlike the

contact force which acts only where you are in contact with the merry-go-round, i.e., through a secure

grip on a hand rail. The radial Coriolis force associated with azimuthal motion feels much like an

increase or slackening of the centrifugal force, and is not especially difficult to compensate. Be warned,

though, that the azimuthal Coriolis force associated with radial motion is startling, even presuming that

you are the complete master of this analysis. (If you do not have access to a merry-go-round or if you

judge that this experiment is unwise, then see Stommel and Moore10 for alternate ways to accomplish

some of the same things.)

3.3 An elementary projectile problem

A very simple projectile problem analyzed from inertial and rotating reference frames can reveal some

other aspects of rotating frame dynamics. Assume that a projectile is launched with velocity

(U0,V0,W0) = (0,1,1) and from the origin (x,y) = (0,0). The only force presumed to act on the

projectile after launch is the downward force of gravity, −gMe3, which is the same in either reference

frame.

From the inertial frame. The equations of motion and initial conditions in Cartesian components are

linear and uncoupled;

d2x

dt2
= 0; x(0) = 0,

dx

dt
= 0, (52)

d2y

dt2
= 0; y(0) = 0,

dy

dt
= V0,

d2z

dt2
= −g; z(0) = 0,

dz

dt
= W0,
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where M has been divided out. These are readily integrated to yield the solution for the time interval

when the parcel is in flight;

0 < t <
2W0

g
, (53)

x(t) = 0,

y(t) = y0 + tV0,

z(t) = t(W0−
1

2
gt).

The horizontal displacement (x,y) is sketched as the blue curve of Fig. (11), a linear displacement

toward positive y until to t = 2π when the parcel returns to the ground. The vertical displacement (not

shown) is a simple up and down, with constant downward acceleration.

From the rotating frame. How would this same motion look when viewed from a rotating reference

frame? Set the origin of the rotating frame coincident with the origin of the inertial frame and assume

that the rotation is about the e3 (vertical, or z) axis at a constant Ω. The equations of motion, with F = 0,

are (Eqn. (28),

d2x′

dt2
= −2Ωv′+ x′Ω2; x′(0) = 0,

dx′

dt
= 0, (54)

d2y′

dt2
= 2Ωu′ + y′Ω2; y′(0) = 0,

dy′

dt
= V0,

d2z′

dt2
= −g; z′(0) = 0,

dz′

dt
= W0.

The z component equation is unchanged since the rotation axis was aligned with z. This is quite general;

motion that is parallel to the rotation vector ΩΩΩ is unchanged by rotation.

The horizontal components of the rotating frame equations (54) include Coriolis and centrifugal

force terms that are coupled but linear, and so we can integrate this system almost as easily as the

inertial frame counterpart,

0 < t <
2W0

g
, (55)

x′(t) = −tV0 sin(−Ωt),

y′(t) = tV0 cos(−Ωt),

z′(t) = t(W0−
1

2
gt)

and find the black trajectory of Fig. (11). The rotating frame trajectory rotates clockwise, or opposite

the reference frame rotation, and makes a complete rotation in time = 2π/Ω. When it intersects the

inertial frame trajectory we are reminded that the distance from the origin (radius) is not changed by
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Figure 11: (left) The horizontal trace of a parcel launched from (0,0) in the positive y-direction as seen
from an inertial reference frame (blue line) and as seen from a rotating frame (black line). The elapsed
time is marked at intervals of π/2. The rotating frame was turning anti-clockwise with respect to the
inertial frame, and hence the black trajectory turns clockwise with time at the same rate, though in the
opposite direction. For comparison, the red trajectory was computed with the Coriolis force only (no
centrifugal force; the motivation for this will come in Sec. 4). This an inertial motion that makes two
complete clockwise orbits in time = 2π, twice the rate of the reference frame rotation. Videos from
comparable laboratory experiments may be viewed at https://spinlab.ess.ucla.edu/ (right) (upper) The

radius (distance from origin) and (lower) speed for the three trajectories. Notice that 1) the inertial and
rotating trajectories have equal radius, while the radius of the Coriolis trajectory is much less, and 2)
the inertial and Coriolis trajectories show the same, constant speed, while the rotating trajectory has a
greater and increasing speed on account of the centrifugal force.

rotation, r′ = r, since the coordinate systems have coincident origins. We know the inertial frame radius,

r = tV0, and hence we also know

r′ = tV0. (56)

The angular position of the parcel in the inertial frame is λ = π/2 and constant, since the motion is

purely radial. The relative rotation rate of the parcel seen from the rotating frame is ω ′ =−Ω, and thus

λ ′ = π/2−Ωt, (57)

which, together with Eqn. (56), gives the polar coordinates of the parcel position. Both the radius and

the angle increase linearly in time, and the rotating frame trajectory is Archimedes spiral.

When viewed from the rotating frame, the projectile is observed to be deflected to the right which

we can attribute to the Coriolis force. Notice that the horizontal speed and thus the kinetic energy
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increase with time (Fig. 11, right). This cannot be attributed to the Coriolis force, which is always

perpendicular to the velocity and so can do no work. The rate of increase of rotating frame kinetic

energy (per unit mass) is

dV′2/2

dt
=

d(V 2
0 + r′2Ω2)/2

dt

=
dr′

dt
r′Ω2

(58)

which may be interpreted as the work done by the centrifugal force, r′Ω2, on the radial velocity, dr′/dt.

In fact, if the projectile had not returned to the ground, its speed (observed from the rotating reference

frame) would have increased without limit so long as the radius increased. It was noted earlier that a

rotating, non-inertial reference frame does not, in general, conserve global momentum, and now it is

apparent that energy is also not conserved. Nevertheless, we can provide a complete and internally

consistent accounting of the energy changes seen in a rotating frame, as in Eqn. (58).

3.4 Appendix to Section 3; Spherical Coordinates

Spherical coordinates can be very useful when motion is more or less confined to the surface of a

sphere, e.g., the Earth, approximately. We will have occasion to use spherical coordinates later on, and

so will go ahead and write them down here while polar coordinates are still fresh and pleasing(?). The

method for finding the equation of motion in spherical coordinates is exactly as above, though with the

need for an additional angle. There are many varieties of spherical coordinates; we will use ’geographic’

spherical coordinates in which the longitude (also called azimuth) is measured by λ , where 0 ≤ λ ≤ 2π,

increasing anti-clockwise (Figure 12), the latitude (also called elevation) is measured by φ , where

−π/2 ≤ φ ≤ π/2, increasing anti-clockwise and with a zero at the equator and distance from the origin

by r. The conversion from spherical to cartesian coordinates is:

x = r cos2 φ , y = r cosφ sinλ , z = r sinφ ,

and the reverse,

λ = tan−1 (y/x), φ = sin−1 (z/
√

x2 + y2 + z2), r =
√

x2 + y2 + z2.

The spherical system unit vectors (Fig. 13) written in Cartesian coordinates are:

eλ = − sinλe1 + cosλe2, (59)

eφ = −cosλ sinφe1 − sinλ sinφe2 + cosφe3, (60)
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er = cosλ cosφe1 + sinλ cosφe2 + sinφe3. (61)

Notice that when φ = 0 these reduce to the polar coordinate system.

The position and velocity vectors are

X = rer, (62)

and
dX

dt
=

dr

dt
er + r

dφ

dt
eφ + r cosφ

dλ

dt
eλ , (63)

where the velocity components are

Uλ = r cosφ
dλ

dt
, Uφ = r

dφ

dt
, and Ur =

dr

dt
.

These bear obvious similarity to the now familiar polar velocity, though with the moment arm

r cosφ = b in the longitudinal component in place of r only. Continuing on to find the acceleration and

then the equation of motion in λ , φ and r components:

(2
dr

dt

dλ

dt
cosφ − 2r

dφ

dt

dλ

dt
sinφ + r cosφ

d2λ

dt2
)M = Fλ , (64)

(2
dr

dt

dφ

dt
+ r

d2φ

dt2
+ r cosφ (

dλ

dt
)2 sinφ )M = Fφ , (65)

(
d2r

dt2
− r cosφ (

dλ

dt
)2 cosφ − r(

dφ

dt
)2)M = Fr. (66)

These may be rewritten in a more compact and revealing form be defining angular momentum for the λ

and φ coordinates:

Lλ = (r cosφ )2 dλ

dt
M, and Lφ = r2 dφ

dt
M,

and centripetal accelerations (×M) for the λ and φ components:

Cλ = − r cosφ (
dλ

dt
)2M and Cφ = − r(

dφ

dt
)2M.

In these variables the equations of motion are:

1

r cosφ

dLλ

dt
= Fλ , (67)

1

r

dLφ

dt
− Cλ sinφ = Fφ , (68)
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d2r

dt2
M + Cλ cosφ +Cφ = Fr. (69)

The rotating frame equations follow from the substitution

dλ

dt
= Ω+

dλ ′

dt
,

and rearranging the way we did for the polar coordinates:

(2
dr′

dt

dλ ′

dt
cosφ ′ + r cosφ ′ d2λ ′

dt2
− 2r′

dφ ′

dt

dλ ′

dt
sinφ ′)M = −2Ω

dr′

dt
cosφ ′ + 2Ωr′

dφ ′

dt
sinφ ′ + F ′

λ ,

(70)

(2
dr′

dt

dφ ′

dt
+ r′ cosφ ′ (

dλ ′

dt
)2 sinφ ′ + r′

d2φ ′

dt2
)M = − r′ cosφ ′Ω2 sinφ ′ − 2Ω r cosφ ′ dλ ′

dt
sinφ ′ + F ′

φ ,

(71)

(
d2r′

dt2
− r′ cosφ ′ (

dλ ′

dt
)2 cosφ ′ − r′(

dφ ′

dt
)2)M = r′ cosφ ′ Ω2 cosφ ′ + 2Ωr′ cosφ ′dλ ′

dt
cosφ ′ + F ′

r .

(72)

We can tidy these up a little by rewriting in terms of L′
λ = (r′ cosφ ′)2 dλ ′

dt
M, etc.,

1

r′ cosφ ′

dL′
λ

dt
= −2ΩU ′

r cosφM + 2ΩsinφU ′
φ M +F ′

λ , (73)

1

r′

dL′
φ

dt
− C′

λ sinφ = − r′ cosφ ′ sinφ ′Ω2M−2Ωsinφ ′Uλ M + F ′
φ , (74)

d2r′

dt2
M + Cλ cosφ + Cφ = r′ cos2 φΩ2M + 2ΩcosφUλ M + F ′

r . (75)

3.5 Problems

(1) Given that we know the inertial frame trajectory, Eqns. (53), show that the rotating frame trajectory
may be computed by applying a time-dependent rotation operation via Eqn. (12), X′ = RX and
with θ = Ωt, with the result Eqns. (55). So for this case — a two-dimensional planar domain and
rotation vector normal to the plane, we can either integrate the rotating frame equations of motion,
or, rotate the inertial frame solution. This will not be the case when we finally get to an
Earth-attached, rotating frame.
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(2) In the example of Sec. 3.2, walking on a merry-go-round, it was suggested that you would be able
to feel the Coriolis force directly. Imagine that you are riding along on the projectile of Sec 3.3
(don’t try this one at home) — would you be able to feel the Coriolis force?

(3) The centrifugal force produces a radial acceleration on every object on the merry-go-round and
thus contributes to the direction and magnitude of the time-independent acceleration field
observed in a rotating frame, an important point returned to in Section 4.1. For example, show that
a plumb line makes an angle to the vertical of arctan (r′Ω2/g), where the vertical direction and g
are in the absence of rotation.

(4) Your human pinball experiments on the merry-go-round (Sec. 3.2) were illuminating, and
something you were eager to share with your father, Gustav-Gaspard, and younger brother,
Gustav-Gaspard Jr. Your father is old school — he doesn’t believe in ghosts or magic or virtual
forces — and engaged in a heated debate with GG Jr. regards just what happened on the
merry-go-round: was it a Coriolis force that pushed every moving object sideways — this is GG
Jr.’s assertion — or was it simply a torque required to change angular momentum, as your father
insists?

(5) The spherical system equations (64) - (66) are fairly forbidding upon a first or second encounter
and you certainly can not expect to spot errors without considerable experience (and in fact, errors
(probably typographical) are common in the literature). How can we check that the equations
listed here are correct? One straightforward if slightly tedious way to check the equations is to
define a 3-dimensional trajectory in the spherical system, X(λ ,φ , r), convert to the familiar
X(x,y, z) coordinates, and compute the velocity, acceleration, Coriolis force, etc. in the cartesian
coordinates. Then compute the same quantities using the spherical system, and compare the
results directly. The script sphere check.m (Sec. 6.3) does just this. You can use that script to
define a new trajectory (your choice), and check the results for yourself.

4 A reference frame attached to the rotating Earth

4.1 Cancellation of the centrifugal force by Earth’s (slightly chubby) figure

If Earth was a perfect, homogeneous sphere (it is not), the gravitational mass attraction at the surface,

g∗, would be directed towards the center (Fig. 14). Because the Earth is rotating, every parcel on the

surface is also subject to a centrifugal force

CCC = −ΩΩΩ×ΩΩΩ×X (76)

of magnitude Ω2RE cosφ , where RE is Earth’s nominal radius, and φ is the latitude. The vector CCC is

perpendicular to the Earth’s rotation axis, and is directed away from the axis. This centrifugal force has

a component parallel to the surface, a shear force, Eqn. (71),

Cφ = Ω2RE cosφ sinφ , (77)
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Figure 14: Cross-section through a hemi-
sphere of a gravitating and rotating planet. The
gravitational acceleration due to mass attrac-
tion is shown as the vector g∗ that points to the
center of a spherical, homogeneous planet. The
centrifugal acceleration, C, associated with the
planet’s rotation is directed normal to and away
from the rotation axis, and is to scale for the
planet Saturn. The combined gravitational and
centrifugal acceleration is shown as the heav-
ier vector, g. This vector is in the direction
of a plumb line, and defines vertical. A sur-
face that is normal to g similarly defines a level
surface, and has the approximate shape of an
oblate spheroid (the solid curve). The ellipse
of this diagram has a flatness F = 0.1 that ap-
proximates Saturn; for Earth, F = 0.0033.

that is directed towards the equator (except at the equator where the 3-d vector centrifugal force is

vertical).22 Cφ is very small compared to g∗, Cφ/g∗ ≈ 0.002 at most, but it has been present since the

Earth’s formation. A fluid can not sustain a shear without deforming, and over geological time this

holds as well for the Earth’s interior and crust. Thus it is highly plausible that the Earth long ago settled

into a rotational-gravitational equilibrium configuration in which this Cφ is exactly balanced by a

component of the gravitational (mass) attraction that is parallel to the displaced surface and poleward,

i.e., centripetal.

To make what turns out to be a pretty rough estimate of the displaced surface, ηΩ, assume that the

gravitational mass attraction remains that of a sphere and that the meridional slope (1/RE)∂ ηΩ/∂ φ

times the gravitational mass attraction is in balance with the tangential component of the centrifugal

force (Eqn. 71),
g∗

RE

∂ η

∂ φ
= Ω2RE cosφ sinφ . (78)

22Ancient critics of the rotating Earth hypothesis argued that loose objects on a spinning sphere should fly off into space,

which clearly does not happen. Even so, given the persistent centrifugal force due to Earth’s rotation it is plausible that we

might drift towards the equator. Alfred Wegner proposed just this as the engine of Earth’s moving continents, which may

have helped delay the acceptance of his otherwise remarkable inference that continents move (see D. McKenzie, ’Seafloor

magnetism and drifting continents’, in A Century of Nature, 131-137. Ed. by L. Garwin and T. Lincoln, The Univ. of Chicago

Press, Chicago, Il, 2003.).
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This may then be integrated with latitude to yield the equilibrium displacement,

ηΩ(φ ) =

∫ φ

0

Ω2R2
E

g∗
cosφ sinφdφ

=
Ω2R2

E

2g∗
sinφ 2 + constant.

(79)

When this displacement is added onto a sphere the result is an oblate (flattened) spheroid, Fig. (14),

which is consistent qualitatively (but not quantitatively) with the observed shape of the Earth.23 A

convenient measure of flattening is J = (Reqt −Rpol)/Reqt , where the subscripts refer to the equatorial

and polar radius. Earth’s flatness is J = 0.0033, which seems quite small, but is nevertheless highly

significant in ways beyond that considered here.24,25

Closely related is the notion of ’vertical’. A direct measurement of vertical can be made by means

of a plumb line; the plumb line of a plumb bob that is at rest is parallel to the local gravity and defines

the direction vertical. Following the discussion above we know that the time-independent, acceleration

field of the Earth is made up of two contributions, the first and by far the largest being mass attraction,

g∗, and the second being the centrifugal acceleration, C, associated with the Earth’s rotation, Fig. (14).

Just as on the merry-go-round, this centrifugal acceleration adds with the gravitational mass attraction

to give the net acceleration, called ’gravity’, g = g∗+C, a time-independent vector (field) whose

direction is observable with a stationary plumb line and whose magnitude may be inferred by observing

the period of small amplitude oscillations when the plumb bob is displaced and released, i.e., a

pendulum. A surface that is normal to the gravitational acceleration vector is said to be a level surface

in as much as the acceleration component parallel to that surface is zero. A resting fluid can sustain a

23The idea behind Eqn. (79) is a good start, but doesn’t go far enough. The pole-to-equator rise given by Eqn. (79) is

about 11 km whereas precise observations show that Earth’s equatorial radius, Reqt = 6378.2, is greater than the polar radius,

Rpol = 6356.7 km, by about 21.5 km. The calculation (79) is a first approximation insofar as it ignores the gravitational mass

attraction of the equatorial bulge, which is toward the equator and thus also has a centrifugal component. Thus still more

mass must be displaced equatorward in order to increase ηΩ enough to reach a rotational-gravitational equilibrium. The net

result is roughly a factor of two greater amplitude than Eqn. (79) indicates.

A comprehensive source for physical data on the planets is C. F. Yoder, ‘Astrometric and geodetic data on Earth and the

solar system,’ Ch. 1, pp 1–32, of A Handbook of Physical Constants: Global Earth Physics (Vol. 1). American Geophysical

Union (1995).
24To note just two: 1) Earth’s ellipsoidal shape must be accounted for in highly precise, long range navigation systems

(GPS), while shorter range or less precise systems can approximate the Earth as spherical. 2) Because the Earth is not

perfectly spherical, the gravitational tug of the Sun, Moon and planets can exert a torque on the Earth and thereby perturb

Earth’s rotation vector. The resulting, slow variations lead to dramatic changes in Earth’s climate.19

25The flatness of a rotating planet is given roughly by J ≈ Ω2R/g. If the gravitational acceleration at the surface, g, is

written in terms of the planet’s mean radius, R, and density, ρ , then J = Ω2/( 4
3
πGρ), where G = 6.67×10−11 m3 kg−1 s−2 is

the universal gravitational constant. The rotation rate and the density vary a good deal among the planets, and consequently

so does J. The gas giant, Saturn, has a rotation rate a little more than twice that of Earth and a very low mean density, about

one eighth of Earth’s. The result is that Saturn’s flatness is large enough, J ≈ 0.10, that it can be discerned through a good

backyard telescope or in a figure drawn to scale, Fig. (14).
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normal stress, i.e., pressure, but not a shear stress. Thus a level surface can also be defined by observing

the free surface of a water body that is at rest in the rotating frame.26 In sum, the measurements of

vertical and level that we can readily make necessarily lump together gravitational mass attraction with

the centrifugal force due to Earth’s rotation.

4.2 The equation of motion for an Earth-attached reference frame

Now we are going to apply the inference made above, that there exists a tangential component of

gravitational mass attraction that exactly balances the centrifugal force due to Earth’s rotation and that

we define vertical in terms of the measurements that we can readily make; thus

g = g∗+ΩΩΩ×ΩΩΩ×X. (80)

The equations of motion for a rotating/gravitating planet are then,

dV′

dt
= −2ΩΩΩ×V′ +F′/M +g (81)

which is Eqn. (2), at last! The happy result is that the rotating frame equation of motion applied in an

Earth-attached reference frame does not include the centrifugal force associated with Earth’s rotation

(and neither do we tend to roll towards the equator).

Vector notation is handy for many derivations and for visualization, but when it comes time to do a

calculation we will need the component-wise equations, usually Earth-attached, rectangular coordinates.

The east unit vector is ex, north is ey, and the horizontal is defined by a tangent plane to Earth’s surface.

The vertical direction, ez, is thus radial with respect to the (approximately) spherical Earth. The rotation

vector ΩΩΩ makes an angle φ with respect to the local horizontal x′,y′ plane, where φ is the latitude of the

coordinate system and thus

ΩΩΩ = Ωcosφey +Ωsinφez.

If V′ = u′ex + v′ey +w′ez, then the full, three-dimensional Coriolis force is

−2ΩΩΩ×V′ = − (2Ωcosφw′−2Ωsinφv′)ex − 2Ωsinφu′ey + 2Ωcosφu′ez. (82)

4.3 Coriolis force on motions in a thin, spherical shell

Application to geophysical flows is made somewhat simpler by noting that large scale geophysical

flows are very flat in the sense that the horizontal component of wind and current are very much larger

26The ocean and atmosphere are not at rest, and the observed displacements of constant pressure surfaces, e.g., the sea

surface and 500 hPa surface, are invaluable, indirect measures of that motion that may be inferred via geostrophy, Sec 5.
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than the vertical component, u′ ∝ v′ � w′, in part because the oceans and the atmosphere are quite thin,

having a depth to width ratio of about 0.001. As well, the ocean and atmosphere are stably stratified in

the vertical, which greatly inhibits the vertical component of motion. For large scale (in the horizontal)

flows, the Coriolis term multiplying w′ in the x component of Eqn. (82) is thus very much smaller than

the terms multiplied by u′ or v′ and as an excellent approximation the w′ terms may be ignored; very

often they are ignored with no mention made. The Coriolis term that appears in the vertical component

is usually much, much smaller than the gravitational acceleration, and it too is often dropped without

mention. The result is the thin fluid approximation of the Coriolis force in which only the horizontal

Coriolis force acting on horizontal motions is retained,

−2ΩΩΩ×V′ ≈−f×V′ = f v′ex− f u′ey (83)

where f = f ez, and f is the very important Coriolis parameter,

f = 2Ωsinφ (84)

and φ is the latitude. Notice that f varies with the sine of the latitude, having a zero at the equator and

maxima at the poles; f < 0 in the southern hemisphere. The horizontal, component-wise momentum

equations written for the thin fluid form of the Coriolis force are:

du

dt
= f v − g

∂ η

∂ x
dv

dt
= − f u − g

∂ η

∂ y

(85)

where the force associated with a tilted constant pressure surface is included on the right.27

For problems that involve parcel displacements, L, that are very small compared to the radius of

the Earth, RE , a simplification of f itself is often appropriate. The Coriolis parameter may be expanded

in a Taylor series about a central latitude φ0 where the north coordinate y = y0,

f (y) = f (y0)+(y− y0)
d f

dy
|y0

+HOT. (86)

If the second term involving the first derivative d f/dy = 2Ωcosφ/RE , often written as d f/dy = β , is

demonstrably much smaller than the first term, which follows if L � RE , then the second and higher

terms may be dropped to leave

f = f (y0), (87)

and thus f is taken as constant. This is called the f -plane approximation. While the f -plane

approximation is very useful in a number of contexts, there is an entire class of low frequency motions

27This system has what will in general be three unknowns: u, v and η . For now we will take η as known, i.e., the height

of the sea floor in Sec. 5. In a genuine fluid model, which we will come to in Part 2, η will be connected to the flow by the

conservation of mass.
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known as Rossby waves that go missing and which are of great importance for the real atmosphere and

ocean. We will come to this phenomena in Part 3 by keeping the second order term of (86), and thus

represent f (y) by

f (y) = f (y0)+β(y− y0), (88)

often called a β -plane approximation.

4.4 One last look at the inertial frame equations

We have noted that the rotating frame equation of motion has some inherent awkwardness, viz., the loss

of Galilean invariance and global momentum conservation that accompany the Coriolis force. Why,

then, do we insist upon using the rotating frame equations for nearly all of our analyses of geophysical

flow?

The reasons are several, any one of which would be compelling, but beginning with the fact that

the definition and implementation of an inertial frame (outside of the Earth) is simply not a viable

option; whatever conceptual clarity might be gained by avoiding the Coriolis force would be more than

offset by difficulty with observation. Consider just one aspect of this: the inertial frame velocity,

V = VΩ +V′, (89)

is dominated by the planetary velocity due to the solid-body rotation VΩ = ΩREcosφ , where RE is

earth’s nominal radius, 6365 km, and thus VΩ ≈ 450 m s−1 near the equator. A significant wind speed at

mid-level of the atmosphere is V ′ ≈ 30 m s−1 (the westerlies of Fig. 2) and a fast ocean current is

V ′ ≈ 1 m s−1 (the western boundary current of Fig. 1). An inertial frame description must account for

VΩ and the associated, very large centripetal force, and yet our interest is almost always the

comparatively small relative motion of the atmosphere and ocean, V′, since it is the relative motion that

transports heat and mass over the Earth. In that important regard, the planetary velocity VΩ is invisible

to us Earth-bound observers, no matter how large it is. To say it a little differently — it is the relative

velocity that we measure when observe from Earth’s surface, and it is the relative velocity that we seek

to know for almost every practical purpose. The Coriolis force follows.

The reservations regards practical use of the inertial frame equations apply mainly to observations.

Given that we presume to know exactly the centripetal force required to balance the planetary velocity,

then in principle a calculation based upon the inertial frame equations should be quite doable. To

illustrate this, and before we turn away completely and finally from the inertial frame equations, it is

instructive to analyze some very simple motions using the inertial frame, spherical equations of motion

(Sec. 3.4). This is partly repetitious with the discussions of Secs. 3.2 and 3.3. It will differ importantly

insofar as the setting will be a rotating planet, Fig. (15). As before we will analyze the motion of a

single parcel, but just for the sake of visualization it is helpful to imagine that this parcel is part of a

torus of fluid, Fig. (15), that encircles a rotating planet. It is presumed that the torus will move in a

completely coherent way, so that the motion of any one parcel will be the same as all other parcels.
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Figure 15: A schematic showing a ro-
tating planet and an encircling tube
of fluid whose motion includes a ro-
tation at the same rate as the under-
lying planet, i.e., a planetary veloc-
ity. A single parcel whose motion is
identical with the tube at large is de-
noted by the red dot. This analysis
will use spherical coordinates, Sec.
3.4. Here the radial distance from
the center will be written r = R + z,
where z � R. Not shown here is the
longitude (or azimuth) coordinate, λ ,
which is the same as in the spherical
system.

The only two forces acknowledged here will be gravity, certainly in the vertical component, and

also the horizontal gravitational acceleration associated with Earth’s oblate figure (equatorial bulge).

The basic state velocity is that due to planetary rotation, Uλ = (R+ z)cosφΩ and which is azimuthal, or

eastward. With these in mind, the inertial frame, spherical system equations of motion are:

1

(R+ z)cos φ

dLλ

dt
= 0, (90)

1

(R+ z)

dLφ

dt
− Cλ sinφ = − (R+ z)cosφΩ2 sinφ , (91)

d2z

dt2
+ Cλ cosφ +Cφ = −g. (92)

Northward motion: For the first example, presume that the parcel stays in contact with a frictionless

planet so that r = R and constant. The longitudinal angular velocity may be written

dλ

dt
= Ω+

dλ ′

dt

and the tangential or λ -component angular momentum is

Lλ = (Rcosφ )2(Ω+
dλ ′

dt
).
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The λ component equation of motion (Eqn. 67) is just conservation of this angular momentum,

dLλ

dt
= 0,

and hence

−2Rsinφ
dφ

dt
(Ω+

dλ ′

dt
) + Rcosφ

d2λ ′

dt2
= 0.

Factoring out the Ω term and moving it to the right gives,

1

Rcosφ

dL′
λ

dt
= 2ΩsinφRcosφ

dφ

dt

= fUφ ,

(93)

which is the corresponding rotating frame equation of motion. But the inertial frame interpretation is

via angular momentum conservation: as the parcel (or torus) moves northward, dφ/dt ≥ 0 say, it

acquires some positive or eastward L′
λ specifically because the perpendicular to the rotation axis, b,

shrinks northward. The initial angular momentum includes a very large (dominant) contribution from

the Earth’s rotation, i.e., Ω � dλ ′/dt. You may very well feel that the inertial frame derivation is based

upon much more familiar, ’physical’ principles than is the rotating frame version. However, the

inference of an eastward relative acceleration associated with northward motion is exactly the same

from both perspectives, as it should be.

Eastward motion: The inertial frame φ component equation of motion includes a significant

contribution from the planetary velocity and centripetal force; if in steady state, assuming that U ′
φ = 0

for the moment, then Eqn. (68) is just,

−Cλ sinφ = Fφ

= −RcosφΩ2 sinφ ,
(94)

a steady balance between the φ component of the centripetal acceleration and the centripetal force

associated with the equatorial bulging noted in Sec. 4.1. Now suppose that there is comparatively small

relative λ component velocity so that
dλ

dt
= Ω +

dλ ′

dt

and substitute into the φ component equation of motion, Eqn. (68),

1

r

dLλ

dt
+ Rcosφ (Ω2 +2Ω

dλ ′

dt
+ (

dλ ′

dt
)2)sinφ = −RcosφΩ2 sinφ .

Rearranging and moving the 2Ω term to the right side yields

1

R

dL′
λ

dt
− C′

λ sinφ = 2ΩsinφRcosφ
dφ ′

dt

= fU ′
φ .

(95)
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Again, this is the rotating frame equivalent. A significant difference with the example of northward

motion noted above is that the induced acceleration comes from an out-of-balance centripetal force and

acceleration. As in the previous case, the basic state is that due to Earth’s rotation and resulting

gravitational-rotational equilibrium.

Vertical motion: Imagine a parcel that is released from (relative) rest at a height h and allowed to free

fall. The initially purely vertical motion has no appreciable consequences for either the φ or r

component equations of motion, but it does appear in the λ component equation multiplied by Ω (Eqn.

67). The vertical acceleration, ignoring air resistance is just

d2z

dt2
= −g, (96)

with g the presumed constant acceleration of gravity, 9.8 m sec−2. Integrating once to find the vertical

velocity, w = −gt, and once more for the displacement, z = h−1/2gt2. The time of flight is just

T =
√

2h/g.

The only force acting on the parcel is the radial force of gravity, and hence the parcel will conserve

angular momentum. The λ -component angular momentum conservation, Eqn. (67), is then just

d

dt

(

(R + z)2 cos2 φ (Ω +
dλ ′

dt
)

)

= 0. (97)

Expanding the derivative and cancelling terms gives

2
dz

dt
cosφ (Ω+

dλ ′

dt
)+(R+ z)cosφ

d2λ ′

dt2
= 0

Rewriting in terms of u′ = Rcosφ dλ ′

dt
and w′ = dz

dt
and assuming that z is O(100), then z � R, and the

relative speed u′ is very, very small compared to the planetary rotation speed, u′ � ΩR. To an excellent

approximation Eqn. (97) is
du′

dt
≈−2Ωcosφw′. (98)

Thus, as the parcel falls, w′ ≤ 0, and moves into orbit closer to the rotation axis, it is accelerated to the

east at a rate that is proportional to twice the rotation rate Ω and the cosine of the latitude. Viewed from

an inertial reference frame, this eastward acceleration is the expected consequence of angular

momentum conservation, where the angular momentum is that due to planetary rotation. The

complementary rotating frame description of this motion is that eastward acceleration is due to the

Coriolis force acting upon the relative vertical velocity.

4.5 Problems

(1) The rather formal notions of vertical and level raised in Sec. 4.2 turned out to have considerable
practical importance beginning on a sweltering August afternoon when the University Housing
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Office notified your dear younger brother, GG Jr., that because of an unexpectedly heavy influx of
freshmen, his old and comfortable dorm room was not going to be available. As a consolation,
they offered him the use of the merry-go-round (the one in Section 3.3, and still running) at the
local, failed amusement park just gobbled up by the University. He shares your enthusiasm for
rotation and accepts, eagerly. The centrifugal force, amusing at first, was soon a huge annoyance.
GG suffered from recurring nightmares of sliding out of bed and over a cliff. Something had to be
done, so you decide to build up the floor so that the tilt of the floor, combined with gravitational
acceleration, would be just sufficient to balance the centrifugal force, as in Eqn. (78). What shape
η(r) is required, and how much does the outside edge (r = 6 m, Ω = 0.5 rad s−1) have to be built
up? How could you verify success? Given that GG’s bed is 2 m long and flat, what is the axial
traction, or tidal force? Is the calibration of a bathroom scale effected? Guests are always
impressed with GG’s rotating dorm room, and to make sure they have the full experience, he sends
them to the refrigerator for another cold drink. Describe what happens next using Eqn. (81). Is
their experience route-dependent?

(2) In most of what follows the Coriolis force will be represented by the thin fluid approximation Eqn.
(83) that accounts only for the horizontal Coriolis force due to horizontal velocity. This horizontal
component of the Coriolis force is proportional to the Coriolis parameter, f , and thus vanishes
along the equator. This is such an important and striking result that it can be easy to forget the
three-dimensional Coriolis force. Given an eastward and then a northward relative velocity, make
a sketch that shows the 3-d Coriolis force at several latitudes including the pole and the equator
(and recall Fig. 8), and resolve into (local) horizontal and vertical components. The vertical
component of the Coriolis force is negligible for most geophysical flow phenomena, but it is of
considerable importance for gravity mapping, where it is called the Eotvos effect (see
https://en.wikipedia.org/wiki/Eotvos effect ).

(3) The vertical component of the Coriolis force has a small but observable effect on the motion of free
projectiles. Consider the Coriolis deflection of a long-range rifle shot, say range is L = 1 km and
with a trajectory that is nearly flat. Assuming mid-latitude; estimate the horizontal deflection and
show that it is given by δ y ≈ δ t f L/2, where δ t is the time of flight, 2 sec. Show that the vertical
deflection is similar and given approximately by δ z ≈ δ t fvert L cos(ψ)/2, where fvert = 2Ωcosφ
and ψ is the direction of the projectile motion with respect to east (north is π/2). How do these
deflections vary with latitude, φ , and with the direction, ψ?

(4) The effect of Earth’s rotation on the motion of a simple (one bob) pendulum, called a Foucault

pendulum in this context, is treated in detail in many physics texts, e.g. Marion6, and need not be
repeated here. Foucault pendulums are commonly displayed in science museums, though seldom
to large crowds (see The Prism and the Pendulum by R. P. Crease for a more enthusiastic
appraisal). It is, however, easy and fun (!) to make and observe your own Foucault pendulum,
nothing more than a simple pendulum having two readily engineered properties. First, the
e-folding time of the motion due to frictional dissipation must be long enough that the precession
will become apparent before the motion dies away, 20 min will suffice at mid-latitudes. This can
be achieved using a dense, smooth and symmetric bob having a weight of about half a kilogram or
more, and suspended on a fine, smooth monofilament line. It is helpful if line is several meters or
more in length. Second, the pendulum should not interact appreciably with its mounting. This is
harder to evaluate, but generally requires a very rigid support, and a bearing that can not exert
appreciable torque, for example a fish hook bearing on a very hard steel surface. The precession is
easily masked by any initial motion you might inadvertently impose, but after several careful trials
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you will very likely begin to see the Earth rotate under your pendulum. Can you infer your latitude
from the observations? The rotation effect is proportional to the rotation rate, and so you should
plan to bring a simple and rugged pocket pendulum (a rock on a string will do) on your
merry-go-round ride (Section 3.2). How do your observations (even if qualitative) compare with
your solution for a Foucault pendulum? (Hint - consider the initial condition.)

(5) In Sec. 4.4 we used the spherical system equations of motion as the starting point for an analysis of
some simple motions. The spherical system is an acquired taste, which I am betting you have not
acquired. There is a simpler way to come to several of the results of that section that you may find
more appealing. When observed from an inertial reference frame, the eastward velocity of the
parcel is U = Ωb+u′ where b = (R+ z)cos φ is the perpendicular distance to the rotation axis.
The parcel has angular momentum associated with this eastward velocity, L = Ub. For what
follows here we can think of the angular momentum as a scalar. Presume that the parcel motion is
unforced, aside from gravity. Show that conservation of this angular momentum under changing φ
and z leads immediately to the inference of a Coriolis force. In fact, you can think of this as your
(partial) derivation of the Coriolis force (partial since it does not include the planetary centripetal
acceleration, the second case considered in Sec. 4.4).

(6) The Coriolis force on most everyday (every weekend) motions is not noticeable. For example,
golfers worry about about all kinds of environmental and fluid dynamical issues, but never the
Coriolis force. A good golf drive may go 250 m, and stay in the air for about 5 sec. Can you
explain quantitatively why this motion is not much affected by the Coriolis force? Contrast this
with the very large effects upon winds and ocean currents.

5 A dense parcel released onto a rotating slope with friction

The second goal of this essay is to begin to understand the consequences of rotation for the atmosphere

and ocean. As already noted in Sec. 1, the consequences of rotation are profound and wide ranging and

will likely be an enduring topic of your study of the atmosphere and ocean. In this section we can take a

rewarding and nearly painless first step toward understanding the consequences of rotation by analyzing

the motion of a dense parcel that is released onto a rotating, sloping sea floor. This simple problem

serves to illustrates two fundamental modes of the rotating momentum equations — inertial motion and

geostrophic motion — that will recur in much more comprehensive models and in the real atmosphere

and ocean.

The sea floor is presumed to be at a depth z = −b(y) that increases uniformly in the y direction as

db/dy = α, a small positive constant, O(10−2). The fixed buoyancy of the parcel is g′ = −g
δρ
ρo

, where

δ ρ is the density anomaly of the parcel with respect to its surroundings, say 0.5 kg m−3, and ρo is a

nominal sea water density, 1030 kg m−3. (Notice that a prime superscript is used here to denote

buoyancy, or reduced gravity. The prime previously used to indicate rotating frame velocity will be

omitted, with rotating frame understood.) The component of the buoyancy parallel to the sea floor, g′α,

thus provides a constant force (per unit mass, understood from here on) in the y direction. Absent

rotation, the parcel would accelerate down hill in the positive y direction. With rotation, the parcel
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velocity V will be significantly altered in a time Tr in the scale analysis sense (rough magnitude only)

that

f V Tr ≈ V

and hence

Tr =
1

f
(99)

The important time scale 1/ f is dubbed the rotation time. For a mid-latitude, 1/ f ≈ 4 hours. In other

words, for rotation to be of first order importance, the motion has to persist for several hours or more.

Thus the flight path of a golf ball (requiring about 3 seconds) is very little affected by Earth’s rotation

when compared to other curves and swerves, and as we knew from a more detailed calculation in Sec. 3.

Given that the motion will be nearly horizontal and that we seek the simplest model, rotation will be

modeled by the thin fluid form of the Coriolis force, and the Coriolis parameter f will be taken as

constant (the f -plane approximation).

Since the parcel is imagined to be in contact with the bottom, it is plausible that the momentum

balance should include bottom friction. Here the bottom friction will be represented by the simplest

linear (or Rayleigh) law in which the friction is presumed to be proportional to and antiparallel to the

velocity difference between the parcel velocity and the bottom, i.e., bottom friction = −r(V−Vbot).

The ocean bottom is at rest in the rotating frame and hence Vbot = 0 and omitted from here on. From

observations of ocean density currents (looking ahead to Fig. 16), a reasonable order of magnitude of

the friction coefficient is r = O(10−5) s−1.28

The equations of motion for the parcel including rotation and this simplified bottom friction are

d2x

dt2
=

du

dt
= f v− ru, (100)

d2y

dt2
=

dv

dt
= − f u− rv+g′α,

with vector equivalent,
dV

dt
=− f k×V− rV+g′∇b. (101)

Initial conditions on the position and the velocity components are

x(0) = X0, y(0) = Yo and u(0) = Uo, v(0) = 0. (102)

28This use of a linear friction law is purely expedient. A linear friction law is most appropriate in a viscous, laminar

boundary layer that is in contact with a no-slip boundary. In that case τ = µ ∂U
∂ z

within the laminar boundary layer, where µ

is the viscosity of the fluid. However, the laminar boundary layer above a rough ocean bottom is very thin, O(10−3) m, and

above this the flow will in general be turbulent. If the velocity that is used to estimate or compute friction is measured or

computed within the much thicker turbulent boundary layer, as it almost always has to be, then the friction law is likely better

approximated as independent of the viscosity and quadratic in the velocity, i.e., τ = ρCdU2, where Cd is the drag coefficient.

Typically, Cd = 1−3×10−3, but depending upon bottom roughness, mean speed, and more.
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In most of what follows we will presume Uo = 0. Integrating once gives the solution for the velocity

components,

u(t) =
g′α

r2 + f 2
[ f − exp(−rt)( f cos(− f t)− r sin(− f t))] , (103)

v(t) =
g′α

r2 + f 2
[r− exp (−rt)( f sin (− f t)+ r cos(− f t))] .

If the position (trajectory) is required, it may be computed by integrating the velocity

x(t) = Xo +

∫ t

0
udt and y(t) = Yo +

∫ t

0
vdt,

and if the depth is required,

z(t) = Zo−αy(t).

5.1 The nondimensional equations; Ekman number

The solution above is simple by the standards of fluid dynamics, but it does contain three parameters

along with the time, and so has a fairly large parameter space. We will consider a couple of specific

cases motivated by observations, but our primary intent is to develop some understanding of the effects

of rotation and friction over the entire family of solutions. How can the solution be displayed to this

end?

A very widely applicable approach is to rewrite the governing equations and (or) the solution using

nondimensional variables. This will serve to reduce the number of parameters to the fewest possible

while retaining everything that was present in the dimensional equations. Lets start with the

x-component momentum equation, and hence u will be the single dependent variable and it has units

length and time, l and t. Time is the sole independent variabil, and obviousl its units are em t. There are

three independent parameters in the problem; 1) the buoyancy and bottom slope, g′α, which always

occur in this combination and so count as one parameter, an acceleration with units l and t and

dimensions l t −2. 2) the Coriolis parameter, f , an inverse time, dimensions t−1, and 3) the bottom

friction coefficient, r, also an inverse time scale, t−1. Thus there are five variables or parameters having

two fundamental units. Because we anticipate that rotation will be of great importance in the parameter

space of most interest, the inverse Coriolis parameter or rotation time, will be used to scale time, i.e.,

t∗ = t f . You can think of this as measuring the time in units of the rotation time. A velocity (speed)

scale is then estimated as the product of this time scale and the acceleration g′α,

Ugeo =
g′α

f
(104)
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the very important geostrophic speed. Measuring the velocity in these units then gives the

nondimensional velocity, u∗ = u/Ugeo and similarly for the v component. Rewriting the governing

equations in terms of these nondimensional variables

du∗

dt∗
= v∗ − Eu∗, (105)

dv∗

dt∗
= −u∗ − Ev∗ + 1, (106)

where E is the Ekman number,

E =
r

f
(107)

the nondimensional ratio of the friction parameter to the Coriolis parameter. There are other forms of

the Ekman number that follow from different forms of friction parameterization. They all have in

common that small E indicates small friction compared to rotation. The initial condition is presumed to

be a state of rest, u∗(0) = 0, v∗(0) = 0 and the solution of these equations is

u∗(t∗) =
1

1+E2
[1− exp(−Et∗)(cos(−t∗)−E sin (−t∗))] , (108)

v∗(t∗) =
1

1+E2
[E − exp (−Et∗)(sin (−t∗)+E cos(−t∗))] ,

and for completeness,

t∗ = t f , Ugeo =
g′α

f
, u∗ =

u

Ugeo
and v∗ =

v

Ugeo
.

The geostrophic scale Ugeo serves only to scale the velocity amplitude, and thus the parameter space of

this problem has been reduced to a single independent, nondimensional variable, t∗, and one

nondimensional parameter E.29

The solution Eqn. (108) can be written as the sum of a time-dependent part, termed an inertial

motion (or just as often, inertial ’oscillation’) that is here damped by friction,
[

u∗

v∗

]

i

= −
exp(−Et∗)

1+E2

[

cos(−t∗)−Esin(−t∗)

sin(−t∗)+Ecos(−t∗)

]

, (109)

and a time-independent motion that is the single parcel equivalent of geostrophic motion
[

u∗

v∗

]

g

=
1

1+E2

[

1

E

]

, (110)

29On first encounter, this kind of dimensional analysis is likely to seem abstract, arbitrary and abstruse, i.e., far more

harmful than helpful. The method and the benefits of dimensional analysis will become clearer with experience, mainly, and

an attempt to help that along is ‘Dimensional analysis of models and data sets’, by J. Price, Am. J. Phys., 71(5), 437–447

(2003) and available online in an expanded version from the author’s web page (Sec. 1.3).
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also damped by friction. Since the IC was taken to be a state of rest, Uo = 0, the dimensional amplitude

is directly proportional to the geostrophic velocity scale, Ugeo. Since the model and solution are linear,

the form of the solution does not change with Ugeo.

Our discussion of the solution will generally refer to the velocity, Eqns. (109) and (110), which are

simple algebraically. However, the solution is considerably easier to visualize in the form of the parcel

trajectory, computed by integrating the velocity in time (Fig. 16, left, and see the embedded animation

or better, run the script partslope.m to make your own).

Immediately after the parcel is released from rest it accelerates down the slope. The Coriolis force

acts to deflect the moving parcel to the right, and by about t = 1/ f , or t∗ = 1, the parcel has been turned

by 1 radian, or about 50◦, with respect to the buoyancy force. The time required for the Coriolis force to

have an appreciable effect on a moving object is thus 1/ f , the very important rotation time scale noted

previously. The Coriolis force continues to turn the parcel to the right, and by about t∗ = π the parcel

velocity is directed up the slope. If E = 0 and there is no friction, the parcel will climb back to its

starting depth at t∗ = 2π (or t = 2π/ f ) where it will stop momentarily, before repeating the cycle. In the

meantime it will have moved a significant distance along the slope. When friction is present, 0 < E < 1,

the parcel still makes at least a few oscillations up and down slope, but with decreasing amplitude with

time, and will gradually slide down the slope. The clockwise-turning looping motion is associated with

near-inertial motion Eqn. (109) and the steadily growing displacement along the slope, in the positive x

direction mainly, is associated with quasi-geostrophic motion, Eqn. (110). In fact, these specific

trajectories may be viewed as nothing but the superposition of inertial and geostrophic motion, damped

by friction when E > 0.

5.2 (Near-) Inertial motion

In Eqn. (109) we already have a solution for inertial motion, but it is helpful to take a step back to the

dimensional form of the momentum equations, (4.3) and point out the subset that supports pure inertial

motion:
du

dt
= f v

dv

dt
= − f u

(111)

The Coriolis force can not generate a velocity, and so to get things started we have to posit an initial

velocity, u(t = 0) = Uo and v(t = 0) = 0. The solution is pure inertial motion,

u = Uo cos(− f t), and v = Uo sin(− f t), (112)

which is the free mode of the f-plane momentum equations, i.e., when the Coriolis force is left on it its

own. The speed of a pure inertial motion is constant in time, and the velocity vector rotates at a steady
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Figure 16: (left) Trajectories of three dense parcels released from rest onto a rotating slope. The buoy-
ancy force is toward positive y (up in this figure). These parcels differ by having rather large friction
(blue trajectory, E = r/ f = 0.25), moderate, more or less realistic friction (green trajectory, E = 0.05)
and no friction at all (red trajectory, E = 0). The elapsed time in units of inertial periods, 2π/ f , is at up-
per left. At mid-latitude, an inertial period is approximately one day, and hence these trajectories span a
little more than one week. The along- and across-slope distance scales are distorted by a factor of almost
10 in this plot, so that the blue trajectory having E = 0.25 makes a much shallower descent of the slope
than first appears here. Notice that for values of E � 1 (red and green trajectories), the motion includes
a looping inertial motion, and a long-term displacement that is more or less along the slope, the analog
of geostrophic motion. This is presumed to be a northern hemisphere problem, f > 0, so that shallower
bottom depth is to the right when looking in the direction of the long-term motion. Experiments that test
different r or different initial conditions may be carried out via the Matlab script partslope.m (linked in
Sec. 6.3). (right) The time-mean horizontal velocity (the dotted vector) and the time-mean force balance
(solid arrows) for the case E = 0.25 (the blue trajectory). The Coriolis force (/M) is labeled −f×V. The
angle of the velocity with respect to the isobaths is E = r/ f , the Ekman number.
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rate f = 2Ωsinφ in a direction opposite the rotation of the reference frame, Ω; inertial rotation is

clockwise in the northern hemisphere and anti-clockwise in the southern hemisphere.

Inertial motion is a striking example of the non-conservation property inherent to the rotating

frame equations: the velocity of the parcel is continually accelerated (deflected) with nothing else

showing a reaction force; i.e., there is no evident physical cause for this acceleration, and global

momentum is not conserved.30, 31

The trajectory of a pure inertial motion is circular (Fig. 11),

x(t) =
∫

u(t)dt =
Uo

f
sin (− f t), (113)

y(t) =
∫

v(t)dt = −
Uo

f
cos(− f t), (114)

up to a constant. The radius of the circle is r =
√

x2 + y2 = |Uo | / f . A complete orbit takes time

2π/ f , a so-called inertial period: just a few minutes less than 12 hrs at the poles, a little less than 24 hrs

at 30 N or S, and infinite at the equator. (Infinite is, of course, unlikely physically, and suggests that

something more will arise on the equator; more on this below). Though inertial motion rotates in the

sense opposite the reference frame, it is clearly not just a simple rotation of the inertial frame solution

(cf., Fig. 11). In most cases (equator aside) the displacement associated with an inertial motion is not

large, typically a few kilometers in the mid-latitude ocean. Inertial motion thus does not, in general,

contribute directly to what we usually mean by ’circulation’, viz., significant transport by fluid flow.

The centripetal acceleration associated with circular, inertial motion is −U2
o /r (Fig. 10). This

centripetal acceleration is provided by the Coriolis force, and hence the radial momentum balance of

this pure inertial motion is just

−U2
o

r
= fUo. (115)

30To discern a physical cause of inertial motion we could analyze the inertial frame equivalent motion as in Sec. (3.4),

a combination of angular momentum conservation (northward relative motion) and the slightly out of balance centripetal

acceleration (eastward relative motion). See also D. R. Durran, ‘Is the Coriolis force really responsible for the inertial

oscillation?’ Bull. Am. Met. Soc., 74(11), 2179–2184 (1993).
31The Coriolis force is isomorphic to the Lorentz force, qV×B, on a moving charged particle having charge q and mass M in

a magnetic field B. The charged particle will be deflected into a circular orbit with the cyclotron frequency, qB/M, analogous

to an inertial oscillation at the frequency f . A difference in detail is that geophysical flows are generally constrained to

occur in the local horizontal plane, while a charged particle may have an arbitrary three dimensional velocity with respect

to B. What happens when V is parallel to B? Where on Earth does it happen that V (a horizontal current) may be parallel

to Ω? Still another example of such a force law comes from General Relativity which predicts that a rotating object will be

accompanied by a gravitomagnetic field that gives rise to a Coriolis-like gravitational force on moving objects. The Gravity

Probe B mission, one of the most challenging physics experiments ever conducted, has apparently confirmed the presence of

a gravitomagnetic field around Earth, see http://einstein.stanford.edu/
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Figure 17: Ocean currents measured at a depth of 25 m by a current meter deployed southwest of
Bermuda. The time scale is inertial periods, 2π/ f , which are nearly equal to days at this latitude. Hurri-
cane Felix passed over the current meter mooring between 1 < t/(2π/ f ) < 2 and the strong and rapidly
changing wind stress produced energetic, clockwise rotating currents within the upper ocean. (a) East
and north current components. Notice that the maximum north leads maximum east by about a quarter
inertial period, and hence the velocity vector is rotating clockwise. (b) Current vectors, with north ’up’.
To a first, the fluctuating current seen here is an inertial inertial oscillation. A more refined description
is to note that it is a near-inertial oscillation; the frequency is roughly 5% percent higher than f and the
amplitude e-folds over about 10 days (by inspection). These small departures from pure inertial motion
are indicative of wave-like dynamics considered in Part 2. (c) Acceleration estimated from the current
meter data as dV′/dt + 2ΩΩΩ×V′, as if the measurements were made on a specific parcel. The large ac-
celeration to the west northwest corresponds in time to the passage of Felix and the direction of the
estimated acceleration is very roughly parallel to the wind direction (not shown here). Notice the much
smaller oscillations of the acceleration having a period of about 0.5 inertial periods (especially the last
several inertial periods). These are likely due to pressure gradients associated with the semidiurnal tide.
This is a small part of the data described in detail by Zedler, S.E., T.D. Dickey, S.C. Doney, J.F. Price,
X. Yu, and G.L. Mellor, ’Analysis and simulations of the upper ocean’s response to Hurricane Felix at
the Bermuda Testbed Mooring site: August 13-23, 1995’, J. Geophys. Res., 107, (C12), 25-1 - 25-29,
(2002), available online at http://www.opl.ucsb.edu/tommy/pubs/SarahFelixJGR.pdf.
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Interestingly, there are two quite different flows that are consistent with a single parcel undergoing

inertial motion given by Eqns. (114) and (115): 1) a vortical inertial motion associated with a steady,

anticyclonic eddy (or vortex), and 2) a time-dependent but spatially quasi-homogeneous inertial

oscillation. To treat either of these at a useful depth will require a more comprehensive two-dimensional

fluid model that we will come to in Part 2.32 For now, suffice it to say that vortical inertial motion is

very rarely (never ?) observed in the ocean or atmosphere, while near-inertial oscillations are very

widely observed in the upper ocean following a sudden shift in the wind speed or direction, (Fig. 17).

Observed near-inertial oscillations differ from pure inertial motion in that their frequency is usually

slightly higher than f or ’blue shifted’. As we will see in Part 2, near-inertial oscillations may be

thought of as the long wave length limit of gravity waves in the presence of rotation (inertial-gravity

waves) and the slight blue shift is characteristic of the gravity wave dynamics. The amplitude of

observed near-inertial oscillations also changes with time; in the case of Fig. (17), the current amplitude

e-folds in about one week following the very strong, transient forcing caused by a passing hurricane.

This decay is likely a consequence of energy dispersion in space by wave propagation, and almost

certainly not the dissipation process modeled here as −rV.

5.3 (Quasi-) Geostrophic motion

The long-term displacement of the parcel is associated with the time-independent part of the solution,

Eqn. (110), which is the parcel equivalent of damped, geostrophic motion. Again it is helpful to take a

short step back to the dimensional momentum equations (Sec. 4.3) and point out the subset that

supports pure geostrophic motion, r = 0 and d/dt = 0, in which case the x-momentum equation

vanishes term by term, and the y-component is algebraic,

0 = − f u+g′α (116)

where we have assumed reduced gravity and in this case α = ∂ η/∂ y. Thus pure geostrophic motion is

in the x-direction only,

u =
g′α

f
,

32A preview. The d( )/dt of Eqn. (111) is time rate of change following a given parcel and is thus Lagrangian. In order to

discern the difference between a vortical inertial motion and an inertial oscillation we would need to compute trajectories of

some additional, different parcels, but there is presently no clear motivation for proceeding that way. Analysis in an Eulerian

frame is helpful: the time derivative is then d( )/dt = ∂ ( )/∂ t + V.∇( ), a local time rate of change and an advective rate

of change. If the balance is between the local time rate change and the Coriolis force, then the solution will be a spatially

homogeneous inertial oscillation. If the balance is between the advective rate of change and the Coriolis force, then the

solution will be a steady, spatially-dependent vortical inertial motion. A map of the velocity field would be completely

different in these two flows, and yet the trajectory af a given parcel may be identical, Eqn. (114).
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which is the geostrophic velocity scale, Ugeo. In a more general vector form, good for any steady,

horizontal force G,

Vgeo =−
1

ρo f
k×G (117)

where k is the vertical unit vector. In practice we usually reserve the distinction ’geostrophic’ for the

case that the force is a horizontal pressure gradient, G = −∇P or equivalently a geopotential gradient,

∝ −g∇η . If the force is the vertical divergence of a horizontal wind stress, G = ∂ τ/∂ z, then the steady

velocity is often termed an Ekman velocity.

Simple though (117) is, there are several important points to make regarding geostrophy:

1) Perhaps the key point is that when the Coriolis force is present along with a persistent

applied force, there can exist (likely will exist) a steady velocity that is perpendicular to the

applied force provided that the forcing persists for a sufficient time, several or more rotation

times. Looking in the direction of the applied force, Vgeo is to the right in the northern

hemisphere, and to the left in the southern hemisphere.

2) For a given G, the geostrophic wind or current goes as 1/ f , and hence will be larger at a

lower latitude. Clearly something beyond pure geostrophy will be important on or very near

the equator where f = 0. With that important proviso, we can use Eqn. (117) to evaluate the

surface geostrophic current that is expected to accompany the tilted sea surface of Fig. (1)

outside of a near-equator zone, say ±5 degrees of latitude.

3) A pure geostrophic balance is sometimes said to be degenerate, insofar as it gives no clue

to either the origin of the motion or to the future evolution of the motion. Some other

dynamics has to be added before these crucial aspects of the flow can be addressed.

Nevertheless, geostrophy is a very important and widely used diagnostic relationship as

noted above, and is the starting point for more comprehensive models.

4) An exact instantaneous geostrophic balance does not hold, in general, even in the

idealized case, E = 0, because of nearly ubiquitous inertial motions. However, if we are able

to time-average the motion over a long enough interval that the oscillating inertial motion

may be averaged out, then the remaining, time-average velocity will be closer to geostrophic

balance. Said a little differently, geostrophic balance may be present on time-average even if

not instantaneously.

5) Because geostrophic motion may be present on long-term average (unlike inertial motion),

the parcel displacements and transport associated with geostrophic motion may be very large.

Thus, geostrophic motion makes up most of the circulation of the atmosphere and oceans.



5 A DENSE PARCEL RELEASED ONTO A ROTATING SLOPE WITH FRICTION 62

An exact geostrophic balance is an idealization (albeit a very useful one) insofar as many processes

can cause small departures, e.g., time dependence, advection, friction, and more. In the parcel on a

slope experiments we can see that quasi-geostrophy, a phrase often used to mean near-geostrophy, will

hold provided that the applied force varies slowly compared to the rotation time scale, 1/ f , and that the

Ekman number is not too large, say E ≤ 0.1, which commonly occurs. Aside from the startup transient,

the former condition holds exactly in these experiments since the bottom slope is spatially uniform and

unlimited in extent. The more realistic shallow water (fluid) model of Part 2 will supplant this latter

condition with the requirement that the horizontal scale L of a layer thickness (mass) anomaly must

exceed the rotation length scale, C/ f , where C is the gravity wave speed dependent upon stratification.
33 Trajectories having larger E show a steeper descent of the slope, from Eqn. (110), v∗/u∗ = E. It is

important to note that friction is large or small depending upon the ratio r/ f and not simply r alone. In

other words, for a given r, frictional effects are greater at lower latitudes (smaller f ). Very near the

equator, E will thus be large for almost any r, and on that basis alone geostrophic motion would not be

expected near the equator. Friction may be somewhat important in this regard, but a more

comprehensive fluid model treated in Part 3 Sec. 3 shows that gravity wave dynamics is likely to be

more important than is friction alone.

5.4 Energy balance

Energy balance makes a compact and sometimes useful diagnostic; it is compact since energy is a scalar

vs. a vector momentum, and it is more or less useful depending mainly upon how well the dissipation

processes may be evaluated. In this model problem, the energy source is the potential energy associated

with the dense parcel sitting on a sloping bottom and we have the luxury of knowing the dissipation

(bottom drag) exactly. As the parcel descends the slope, it will release potential energy and so generate

kinetic energy and thus motion.

To find the energy balance equation, multiply the x-component momentum equation (105) by u∗

and the y-component equation by v∗ and add:

d(u2
∗+ v2

∗)/2

dt∗
− v∗ = −E(u2

∗ + v2
∗). (118)

The term on the left is the time rate change of kinetic energy; the term on the right of (118) is the rate of

work by bottom friction, always negative since bottom friction opposes the velocity. The second term

on the left is the rate of work by the buoyancy force (in nondimensional units), which is also the rate of

change of potential energy. The dimensional potential energy is just PE = g′(z−Z0) = −g′α(y−Y0)

33A subtle distinction between the present single parcel model result and the usual idea of geostrophy is that the single

parcel model is Lagrangian, i.e., the dependent variables are the position and velocity of a specific parcel, not the velocity at

a point in space as is implicit in Fig. 1, say, which is an Eulerian representation. These two representations merge only in the

highly idealized case that all fields are spatially uniform.
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Figure 18: Observations of a dense bottom current, the Faroe Bank Channel Overflow, found on the
southern flank of the Scotland-Iceland Ridge. (left) A section made across the current showing dense
water that has come through the narrow Faroe Bank Channel (about 15 km width, at latitude 62 N and
about 90 km to the northeast (upstream) of this site). This dense water will eventually settle into the deep
North Atlantic where it makes up the Upper North Atlantic Deep Water. The units of density are kg m−3,
and 1000 has been subtracted away. By inspection of these data, the reduced gravity of the dense water is
g′ = g δ ρ/ρ0 ≈ g 0.5/1000 = 0.5×10−2 m s−2, and the bottom slope is roughly α = 1.3×10−2. (right)
A current profile measured at the thick vertical line shown on the density section. The density section
was aligned normal to the isobaths and the current appeared to be flowing roughly along the isobaths.
The core of the dense water has descended roughly 200 m between this site and the Faroe Bank Channel.

with Zo the initial depth, and

v∗ =
v f

g′α
= −

dz

dt

f

g′α2
=

−dPE

dt

1

fU2
geo

=
−dPE∗

dt∗
,

the rate of change of potential energy in nondimensional units, fU2
geo. It can be helpful to integrate

(118) with time to compute the change in energy from the initial state:

(u2
∗ + v2

∗)/2 −
∫ t

o v∗dt∗ = −
∫ t

o E(u2
∗ + v2

∗)dt∗,

KE + PE = FW,

(119)

where KE is the kinetic energy, PE is the change in potential energy as the parcel is displaced up and

down the slope, and FW is the net frictional work done by the parcel, always a loss (Fig. 19).

The Coriolis force does no work on the parcel since it is perpendicular to the velocity, and hence

does not appear directly in the energy balance. Rotation nevertheless has a profound effect on the
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Figure 19: The energy balance for the
trajectory of Fig. (16) having E = 0.2.
These data are plotted in a nondimen-
sional form in which the energy or work
is normalized by the square of the ve-
locity scale, Ugeo = g′α/ f , and time is
nondimensionalized by the inertial pe-
riod, 2π/ f . Potential energy was as-
signed a zero at the initial depth of the
parcel. Note the complementary inertial
oscillations of PE and KE, and that the
decrease of total energy was due to work
against bottom friction (the solid green
and dashed red lines that overlay one an-
other).

energy balance. The inertial oscillations that carry the parcel up and down the slope show up in the

energy balance as a reversible (aside from friction) interchange of kinetic and potential energy, exactly

analogous to a simple pendulum. The most profund consequence of rotation is that it inhibits the release

of potential energy. In the important limit that E → 0, and aside from inertial motion, the parcel velocity

will be perpendicular to the buoyancy force, as in Eqn. (117), and the parcel will coast along an isobath

in steady, energy-conserving geostrophic motion. If there is some friction, as there is in the case shown,

then the cross-isobath component of the motion carries the parcel to greater bottom depth and thus

releases potential energy at a rate that is proportional to the Ekman number, Eqn. (107),

v∗/u∗ = E = r/ f . Whether friction or rotation is dominant, and thus whether the motion is rapidly

dissipated or long-lived, depends solely upon the Ekman number in this simplified system (Fig. 16b).

5.5 Problems

(1) Draw the vector force balance for inertial oscillations (include the acceleration) with and without
bottom friction as in Fig. (16, right).

(2) What value of r is required to mimic the observed decay of near-inertial oscillations of Fig. (17)?
Does the same model solution account also for the small, super-inertial frequency shift noted in
the field data?

(3) Write the non-dimensional form of the pure inertial motion model and solution, Eqn. (114). This
model is so reduced that there is, admittedly, not much to gain by nondimensionalizing Eqn. (111).

(4) The parcel displacement, Eq. (114), δ = Uo/ f associated with an inertial motion goes as 1/ f , and
hence δ → ∞ as f → 0, i.e., as the latitude approaches the equator. We can be pretty sure that
something will intervene to preclude infinite displacements. One possibility is that the north-south
variation of f around the equator will become relevant as the displacement becomes large, i.e., the
f−plane assumption that δ � RE noted with Eqn. (87) will break down. Suppose that we keep
the first order term in f (y), and assume f = βy, i.e., an equatorial beta-plane. Describe the
equatorial inertial oscillations of a parcel initially on the equator, and given an impulse Uo directed
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toward the northeast. How about an impulse directed toward the northwest? You should find that
these two cases will yield quite different trajectories. This is an example, of which we will see
more in Part 2, of the anisotropy that arises from rotation and Earth’s spherical shape.

(5) In Sec. 5.1 it was noted that dimensional analysis may be somewhat arbitrary, as there are usually
several possible ways to nondimensionalize any given model. For example, in this parcel on a
slope problem the time scale 1/r could be used to nondimensionalize (that is, to scale or measure)
the time. How would this change the solution, Eqn. (108) and the family of trajectories?

(6) Assuming small Ekman number, how long does it take for a geostrophic balance to arise after a
parcel is released? Are the time-averaged solutions of the single parcel model the solutions of the
time-averaged model equations? Suppose the model equations were not linear, say that friction is
∝ U2, then what?

(7) Inertial oscillations do not contribute to the long-term displacement of the parcel, though they can
dominate the instantaneous velocity. Can you find an initial condition on the parcel velocity that
prevents these pesky inertial oscillations? You can test your ideas against solutions from
partslope.m (Section 7).

(8) Explain in words why a geostrophic balance (or a near geostrophic balance) is expected in this
problem, given only small enough E and sufficient space and time.

(9) Make a semi-quantitative test of geostrophic balance for the westerly wind belt seen in Fig. (2).
Sample (by eye) the sea surface height of Fig. (1) along an east-west section at 33 oN, including at
least a few points in the western boundary region. Then estimate the east-west profile of the
inferred geostrophic current (and note that the buoyancy of the sea surface is effectively the full g
since the density difference is between water and air). What is the current direction? Using this
result as a guide, sketch the (approximate) large-scale pattern of surface geostrophic current over
the subpolar gyre and lower subtropics on Fig. (1). You can check your result against observed
surface currents, http://oceancurrents.rsmas.miami.edu/atlantic/florida.html

(10) Assuming that the descent of the dense water from Faroe Bank Channel to the site observed in
(Fig. 18) was due mainly to bottom friction, which trajectory of Fig. (16) is analogous to this
current? Said a little differently, what is the approximate Ekman number of this current?

(11) An important goal of this essay has been to understand geostrophic balance, the characteristic
feature of many large scale geophysical flows. However, it has also been noted that pure
geostrophy is a dead end insofar as it gives no clue to the origin or the evolution with time. To
predict the evolution of a flow we have to understand what are usually small departures from pure
geostrophy, here limited to time-dependence, e.g., inertial motion, and friction. With that in mind,
compare the relative importance of friction in the time-average momentum balance, Fig. (16),
right, and in the energy balance, Fig. (19).

(12) The Coriolis parameter, f , changes signs crossing the equator, and thus a northern hemisphere
inertial motion turns clockwise in time, and a southern hemisphere inertial motion turns
anticlockwise. You are in very good company if you are wondering ... ’What’s it do right on the
equator?’ (see S. Adams, It’s Obvious You Won’t Survive by Your Wits Alone, p. 107, Andrews and
McNeil Press, Kansas City, Kansas, 1995). By symmetry, the horizontal component of the
Coriolis force must vanish right on the equator and hence the contrast between mid-latitude
phenomena and equatorial phenomena is of great interest and taken up in the Part 3 essay. To start
on this, how would you characterize the near-equatorial (±10 deg of latitude) wind and height
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relationship of the 500 hPa winds evident in Fig. 2? You may find it helpful to see an animation of
these charts available online at http://www.nrlmry.navy.mil/metoc/nogaps/.

6 Summary and Closing Remarks

6.1 What is the Coriolis force?

The winds and currents of Earth’s atmosphere and oceans are necessarily observed and analyzed from

the perspective of an Earth-attached and thus a rotating, non-inertial reference system. The inertial

frame equation of motion transformed to a general rotating frame includes two terms due to the rotation,

a centrifugal force term and a Coriolis term, −2ΩΩΩ×V′M (Section 2). There is nothing ad hoc or

discretionary about the appearance of these terms in a rotating frame equation of motion. In the case of

an Earth-attached frame, the centrifugal force is cancelled by the aspherical gravitational mass

attraction associated with the slightly out of round shape of the Earth (Section 4). The Coriolis force

remains, and is of first importance for large scale, low frequency winds and currents.

It is debatable what the Coriolis term should be called, whether a force as done here, or an

acceleration. The latter is sensible insofar as the Coriolis force on a parcel is exactly proportional to the

mass of the parcel, regardless of what the mass may be. This is a property shared with gravitational

mass attraction, but not with central forces that arise from the physical interaction of objects.

Nevertheless, we chose the Coriolis ’force’ label, since we are especially concerned with the

consequences of the Coriolis term.

Because the atmosphere and the oceans are thin when viewed in the large and also stably stratified,

the horizontal component of winds and currents is generally much, much larger than is the vertical

component. In place of the full three-dimensional Coriolis, it is usually sufficient to consider only the

horizontal component acting upon the horizontal wind or ocean currents,

−2ΩΩΩ×V′ ≈−f×V′ = f v′ex− f u′ey

where f = f ez, and

f = 2Ωsin (latitude)

is the Coriolis parameter, which will arise very, very often in a study of geophysical fluid dynamics.

6.2 Consequences of the Coriolis force for the circulation of the atmosphere and

ocean

Here in Part 1 we have made a small start toward understanding the profound consequences of the

Coriolis force with an analysis of a dense parcel released onto a slope (Section 5). This revealed two
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kinds of motion that depend directly upon the Coriolis force. There is a free oscillation, usually called

an inertial oscillation, in which an otherwise unforced current rotates at the inertial frequency, f . These

inertial oscillations are a prominent phenomenon of the upper ocean current following the passage of a

storm. A crucial, qualitative effect of rotation is that it makes possible a steady motion for which an

external force (wind stress or geopotential gradient) is balanced by the Coriolis force acting upon a

geostrophic current,

Vgeo = −
g

ρo f
k×∇η.

A characteristic of geostrophic motion is that the velocity is perpendicular to the applied force; in the

northern hemisphere, high SSH is to the right of a geostrophic current (Fig.1). It would be easy to

over-interpret the results from our little single parcel model, but, a correct inference is that Earth’s

rotation — by way of the Coriolis force — is a key to understanding the persistent, large scale

circulation of both the atmosphere and the ocean (outside of equatorial regions).

6.3 What comes next?

This introduction to the Coriolis force continues in Parts 2, 3, 4 and 5 with an emphasis on the

consequences of rotation for the atmosphere and ocean. Specific goals are to understand

Part 2: a rotating shallow water model, potential vorticity balance and geostrophic adjustment.

What circumstances lead to a near geostrophic balance? As we have noted throughout this essay, a near

geostrophic balance is almost inevitable for large scale, low frequency motions of the atmosphere or

ocean. The essential piece of this is to define large scale and low frequency, which depends upon the

stratification and the Coriolis parameter, f , and so varies substantially with latitude.

The plan/method of Part 2 is to construct a model of a single fluid layer, often called the shallow

water model, and to conduct a sequence of initial value experiments that may or may not evolve into

geostrophic balance. The potential vorticity of the initial state is a key diagnostic. The tools and

methods introduced in Part 2 are thus a very considerable advance over those employed here in Part 1,

and are more likely to be directly useful in your own research. Everything that you have learned in Part

1 regarding the Coriolis force acting on a single parcel will be essential background for understanding

the more comprehensive models and experiments introduced in Part 2 and on.

Part 3: β -effects, and westward propagation. The single new feature introduced in Part 3 is the

explicit recognition that the Coriolis parameter varies with latitude, in the beta-plane approximation,

f = fo +βy with y the north coordinate. The resulting beta-effects includes some of the most

interesting and important phenomena of geophysical flows — a pronounced east-west asymmetry in

many large scale phenomenona, and westward propagation of eddies in the ocean and long waves in the

westerlies (Fig. 2).

Part 4: wind-driven ocean circulation and the Sverdrup relation. The goals are to learn how the
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Sverdrup relation is established following the onset of a wind field applied to an ocean basin, and to

understand some important properties of the wind-driven, upper-ocean gyres, e.g., the marked east-west

asymmetry.

Part 5: on the seasonally-varying wind-driven circulation of the Arabian Sea. This capstone

project that brings together many of the results from the previous essays applied to the Arabian Sea. As

the title implies, this is mostly oceanographic, though some details of the South Asia Monsoon winds

are highly significant.

6.4 Supplementary material

Matlab scripts that will help you do the homework problems may be downloaded from

https://www2.whoi.edu/staff/jprice/aCt-codes which includes the following:

rotation 1.m solves for the three-dimensional motion of a parcel as seen from an inertial and from a

rotating reference frame. Used to make Fig. 11.

rotation 2.m solves for the inertial oscillation of a parcel moving freely on a rotating, parabolic surface

so that centrifugal force is cancelled, and as seen from an inertial and from a rotating reference frame.

partslope.m solves for the motion of a single dense parcel on a slope and subject to buoyancy, bottom

friction and Coriolis forces as in Section 5. It is easy to specify a new experiment by changing the initial

velocity, bottom slope, etc.

sphere check.m used to check the spherical system equations of motion, and useful as an introduction

to spherical coordinates (Sec. 3.4).
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