CHAPTER 4 DERIVATIVES BY THE CHAIN RULE

4.1 The Chain Rule (page 158)

The function $\sin(3x+2)$ is "composed" out of two functions. The inner function is u(x) = 3x + 2. The outer function is $\sin u$. I don't write $\sin x$ because that would throw me off. The derivative of $\sin(3x+2)$ is not $\cos x$ or even $\cos(3x+2)$. The chain rule produces the extra factor $\frac{du}{dx}$, which in this case is the number 3. The derivative of $\sin(3x+2)$ is $\cos(3x+2)$ times 3.

Notice again: Because the sine was evaluated at u (not at x), its derivative is also evaluated at u. We have $\cos(3x + 2)$ not $\cos x$. The extra factor 3 comes because u changes as x changes:

$$(algebra) \qquad \frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \frac{\Delta u}{\Delta x} \qquad \text{approaches} \qquad \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \qquad (calculus).$$

These letters can and will change. Many many functions are chains of simpler functions.

- 1. Rewrite each function below as a composite function y = f(u(x)). Then find $\frac{dy}{dx} = f'(u)\frac{du}{dx}$ or $\frac{dy}{du}\frac{du}{dx}$.
 - (a) $y = \tan(\sin x)$ (b) $y = \cos(3x^4)$ (c) $y = \frac{1}{(2x-5)^2}$
 - $y = \tan(\sin x)$ is the chain $y = \tan u$ with $u = \sin x$. The chain rule gives $\frac{dy}{du}\frac{du}{dx} = (\sec^2 u)(\cos x)$. Substituting back for u gives $\frac{dy}{dx} = \sec^2(\sin x)\cos x$.
 - $\cos(3x^4)$ separates into $\cos u$ with $u = 3x^4$. Then $\frac{dy}{du}\frac{du}{dx} = (-\sin u)(12x^3) = -12x^3\sin(3x^4)$.
 - $y = \frac{1}{(2x-5)^2}$ is $y = \frac{1}{u^2}$ with u = 2x-5. The chain rule gives $\frac{dy}{dx} = (-2u^{-3})(2) = -4(2x-5)^{-3}$. Another perfectly good "decomposition" is $y = \frac{1}{u}$, with $u = (2x-5)^2$. Then $\frac{dy}{du} = -\frac{1}{u^2}$ and $\frac{du}{dx} = 2(2x-5)(2)$ (really another chain rule). The answer is the same: $\frac{dy}{dx} = \frac{-1}{[(2x-5)^2]^2} \cdot 4(2x-5) = \frac{-4}{(2x-5)^3}$.
- 2. Write $y = \sin \sqrt{3x^2 5}$ and $y = \frac{1}{1 \frac{1}{x}}$ as triple chains y = f(g(u(x))). Then find $\frac{dy}{dx} = f'(g(u)) \cdot g'(u) \cdot \frac{du}{dx}$. You could write the chain as y = f(w), w = g(u), u = u(x). Then you see the slope as a product of three factors, $\frac{dy}{dx} = (\frac{dy}{dw})(\frac{dw}{du})(\frac{du}{dx})$.
 - For $y(x) = \sin \sqrt{3x^2 5}$ the triple chain is $y = \sin w$, where $w = \sqrt{u}$ and $u = 3x^2 5$. The chain rule is $\frac{dy}{dx} = (\frac{dy}{dw})(\frac{dw}{du})(\frac{du}{dx}) = (\cos w)(\frac{1}{2\sqrt{u}})(6x)$. Substitute to get back to x:

$$\frac{dy}{dx} = \cos\sqrt{3x^2 - 5} \cdot \frac{1}{2\sqrt{(3x^2 - 5)}} \cdot 6x = \frac{6x\cos\sqrt{3x^2 - 5}}{2\sqrt{3x^2 - 5}}.$$

• For $y(x) = \frac{1}{1-\frac{1}{x}}$ let $u = \frac{1}{x}$. Let w = 1 - u. Then $y = \frac{1}{w}$. The derivative is

$$\frac{dy}{dx} = \left(\frac{dy}{dw}\right)\left(\frac{dw}{du}\right)\left(\frac{du}{dx}\right) = \left(-\frac{1}{w^2}\right)\left(-1\right)\left(\frac{-1}{x^2}\right) = \frac{-1}{(1-u)^2x^2} = \frac{-1}{(1-\frac{1}{x})^2x^2} = \frac{-1}{(x-1)^2}$$

With practice, you should get to the point where it is not necessary to write down u and w in full detail. Try this with exercises 1 - 22, doing as many as you need to get good at it. Problems 45 - 54 are excellent practice, too.

Questions 3-6 are based on the following table, which gives the values of functions f and f' and g and g' at a few points. You do not know what these functions are!

x	f(x)	f'(x)	g(x)	g'(x)	\boldsymbol{x}	f(x)	f'(x)	g(x)	g'(x)
0	1	-1	0	undefined	2	$\frac{1}{3}$	$-\frac{1}{9}$	$\sqrt{2}$	$\frac{\sqrt{2}}{4}$
$\frac{1}{3}$	<u>3</u> 4	$-\frac{9}{4}$	$\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{2}$	3	$\frac{1}{4}$	$-\frac{1}{16}$	$\sqrt{3}$	$\frac{\sqrt{3}}{6}$
$\frac{1}{2}$	$\frac{2}{3}$	$-\frac{4}{9}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	4	$\frac{1}{5}$	$-\frac{1}{25}$	2	$\frac{1}{4}$
1	$\frac{1}{2}$	$-\frac{1}{4}$	1	$\frac{1}{2}$	9	$\frac{1}{10}$	$-\frac{1}{100}$	3	$\frac{1}{6}$

- 3. Find: f(g(4)) and f(g(1)) and f(g(0)). • g(4) = 2 and $f(2) = \frac{1}{3}$ so $f(g(4)) = \frac{1}{3}$. Also g(1) = 1 so $f(g(1)) = f(1) = \frac{1}{2}$. Then f(g(0)) = f(0) = 0.
- 4. Find: g(f(1)) and g(f(2)) and g(f(0)).
 - Since $f(1) = \frac{1}{2}$, the chain g(f(1)) is $g(\frac{1}{2}) = \frac{\sqrt{2}}{2}$. Also $g(f(2)) = g(\frac{1}{3}) = \frac{\sqrt{3}}{3}$. Then g(f(0)) = g(1) = 1. Note that g(f(1)) does not equal f(g(1)). Also $g(f(0)) \neq f(g(0))$. This is normal. Chains in a different order are different chains.
- 5. If y = f(g(x)) find $\frac{dy}{dx}$ at x = 9.
 - The chain rule says that $\frac{dy}{dx} = f'(g(x)) \cdot g'(x)$. At x = 9 we have g(9) = 3 and $g'(9) = \frac{1}{6}$. At g = 3 we have $f'(3) = -\frac{1}{16}$. Therefore at x = 9, $\frac{dy}{dx} = f'(g(9)) \cdot g'(9) = -\frac{1}{16} \cdot \frac{1}{6} = -\frac{1}{96}$.
- 6. If y = g(f(x)) find $\frac{dy}{dx}(1)$. Note that $f(1) = \frac{1}{2}$.
 - $g'(f(1)) \cdot f'(1) = g'(\frac{1}{2}) \cdot f'(1) = \frac{\sqrt{2}}{2}(-\frac{1}{4}) = \frac{-\sqrt{2}}{8}.$
- 7. If y = f(f(x)) find $\frac{dy}{dx}$ at x = 2. This chain repeats the same function (f = g). It is "iteration."
 - If you let u = f(x), then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ becomes $\frac{dy}{dx} = f'(u) \cdot f'(x)$. At x = 2 the table gives $u = \frac{1}{3}$. Then $\frac{dy}{dx} = f'(\frac{1}{3}) \cdot f'(2) = (-\frac{9}{4})(-\frac{1}{9}) = \frac{1}{4}$. Note that $(f'(2))^2 = (-\frac{1}{9})^2$. The derivative of f(f(x)) is not $(f'(x))^2$. And it is not the derivative of $(f(x))^2$.

Read-throughs and selected even-numbered solutions :

z = f(g(x)) comes from z = f(y) and y = g(x). At x = 2 the chain $(x^2 - 1)^3$ equals $3^3 = 27$. Its inside function is $y = x^2 - 1$, its outside function is $z = y^3$. Then dz/dx equals $3y^2dy/dx$. The first factor is evaluated at $y = x^2 - 1$ (not at y = x). For $z = \sin(x^4 - 1)$ the derivative is $4x^3 \cos(x^4 - 1)$. The triple chain $z = \cos(x + 1)^2$ has a shift and a square and a cosine. Then $dz/dx = 2\cos(x + 1)(-\sin(x + 1))$.

The proof of the chain rule begins with $\Delta z/\Delta x = (\Delta z/\Delta y) (\Delta y/\Delta x)$ and ends with dz/dx = (dz/dy) (dy/dx). Changing letters, $y = \cos u(x)$ has $dy/dx = -\sin u(x) \frac{du}{dx}$. The power rule for $y = [u(x)]^n$ is the chain rule $dy/dx = nu^{n-1} \frac{du}{dx}$. The slope of 5g(x) is 5g'(x) and the slope of g(5x) is 5g'(5x). When f = cosine and g = sine and x = 0, the numbers f(g(x)) and g(f(x)) and f(x)g(x) are 1 and sin 1 and 0.

- 18 $\frac{dz}{dx} = \frac{\cos(x+1)}{2\sqrt{\sin(x+1)}}$ 20 $\frac{dz}{dx} = \frac{\cos(\sqrt{x}+1)}{2\sqrt{x}}$ 22 $\frac{dz}{dx} = 4x(\sin x^2)(\cos x^2)$ 28 $f(y) = y + 1; h(y) = \sqrt[3]{y}; k(y) \equiv 1$
- **38** For g(g(x)) = x the graph of g should be symmetric across the 45° line: If the point (x, y) is on the graph so is (y, x). Examples: $g(x) = -\frac{1}{x}$ or -x or $\sqrt[3]{1-x^3}$.
- 40 False (The chain rule produces -1: so derivatives of even functions are odd functions) False (The derivative of f(x) = x is f'(x) = 1) False (The derivative of f(1/x) is f'(1/x) times $-1/x^2$)

True (The factor from the chain rule is 1) False (see equation (8)).

42 From $x = \frac{\pi}{4}$ go up to $y = \sin \frac{\pi}{4}$. Then go **across** to the parabola $z = y^2$. Read off $z = (\sin \frac{\pi}{4})^2$ on the horizontal z axis.

4.2 Implicit Differentiation and Related Rates (page 163)

Questions 1-5 are examples using implicit differentiation (ID).

- 1. Find $\frac{dy}{dx}$ from the equation $x^2 + xy = 2$. Take the x derivative of all terms.
 - The derivative of x^2 is 2x. The derivative of xy (a product) is $x \frac{dy}{dx} + y$. The derivative of 2 is 0. Thus $2x + x \frac{dy}{dx} + y = 0$, and $\frac{dy}{dx} = -\frac{y+2x}{x}$.

In this example the original equation can be solved for $y = \frac{1}{x}(2-x^2)$. Ordinary *explicit* differentiation yields $\frac{dy}{dx} = \frac{-2}{x^2} - 1$. This must agree with our answer from ID.

- 2. Find $\frac{dy}{dx}$ from $(x+y)^3 = x^4 + y^4$. This time we cannot solve for y.
 - The chain rule tells us that the x-derivative of $(x + y)^3$ is $3(x + y)^2(1 + \frac{dy}{dx})$. Therefore ID gives $3(x + y)^2(1 + \frac{dy}{dx}) = 4x^3 + 4y^3\frac{dy}{dx}$. Now algebra separates out $\frac{dy}{dx} = \frac{3(x+y)^2 4y^3}{4x^3 3(x+y)^2}$.
- 3. Use **ID** to find $\frac{dy}{dx}$ for $y = x\sqrt{1-x}$.
 - Implicit differentiation (ID for short) is not necessary, but you might appreciate how it makes the problem easier. Square both sides to eliminate the square root: $y^2 = x^2(1-x) = x^2 x^3$, so that

$$2y \frac{dy}{dx} = 2x - 3x^2$$
 and $\frac{dy}{dx} = \frac{2x - 3x^2}{2y} = \frac{2x - 3x^2}{2x\sqrt{1 - x}} = \frac{2 - 3x}{2\sqrt{1 - x}}$

- 4. Find $\frac{d^2y}{dx^2}$ when $xy + y^2 = 1$. Apply ID twice to this equation.
 - First derivative: $x \frac{dy}{dx} + y + 2y \frac{dy}{dx} = 0$. Rewrite this as $\frac{dy}{dx} = \frac{-y}{x+2y}$. Now take the derivative again. The second form needs the quotient rule, so I prefer to use ID on the first derivative equation:

$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} + \frac{dy}{dx} + 2y \frac{d^2y}{dx^2} + 2(\frac{dy}{dx})^2 = 0 \text{ or } \frac{d^2y}{dx^2} = -2\frac{\frac{dy}{dx} + (\frac{dy}{dx})^2}{x + 2y}.$$

Now substitute $\frac{-y}{x+2y}$ for $\frac{dy}{dx}$ and simplify the answer to $\frac{d^2y}{dx^2} = \frac{2}{(x+2y)^3}$.

- 5. Find the equation of the tangent line to the ellipse $x^2 + xy + y^2 = 1$ through the point (1,0).
 - The line has equation y = m(x-1) where *m* is the slope at (1,0). To find that slope, apply ID to the equation of the ellipse: $2x + x \frac{dy}{dx} + y + 2y \frac{dy}{dx} = 0$. Do not bother to solve this for $\frac{dy}{dx}$. Just plug in x = 1 and y = 0 to obtain $2 + \frac{dy}{dx} = 0$. Then $m = \frac{dy}{dx} = -2$ and the tangent equation is y = -2(x-1).

Questions 6-8 are problems about *related rates*. The slope of one function is known, we want the slope of a *related* function. Of course slope = rate = derivative. You must find the relation between functions.

- 6. Two cars leave point A at the same time t = 0. One travels north at 65 miles/hour, the other travels east at 55 miles/hour. How fast is the distance D between the cars changing at t = 2?
 - The distance satisfies $D^2 = x^2 + y^2$. This is the relation between our functions! Find the rate of change (take the derivative): $2D\frac{dD}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt}$. We need to know $\frac{dD}{dt}$ at t = 2. We already know $\frac{dx}{dt} = 55$ and $\frac{dy}{dt} = 65$. At t = 2 the cars have traveled for two hours: x = 2(55) = 110, y = 2(65) = 130 and $D = \sqrt{110^2 + 130^2} \approx 170.3$.

Substituting these values gives $2(170.3) \frac{dD}{dt} = 2(110)(55) + 2(130)(65)$, so $\frac{dD}{dt} \approx 85$ miles/hour.

- 7. Sand pours out from a conical funnel at the rate of 5 cubic inches per second. The funnel is 6" wide at the top and 6" high. At what rate is the sand height falling when the remaining sand is 1" high?
 - Ask yourself what rate(s) you know and what rate you want to know. In this case you know $\frac{dV}{dt} = -5$ (V is the volume of the sand). You want to know $\frac{dh}{dt}$ when h = 1 (h is the height of the sand). Can you get an equation relating V and h? This is usually the crux of the problem.

The volume of a cone is $V = \frac{1}{3}\pi r^2 h$. If we could eliminate r, then V would be related to h. Look at the figure. By similar triangles $\frac{r}{h} = \frac{3}{6}$, so $r = \frac{1}{2}h$. This means that $V = \frac{1}{3}\pi (\frac{h}{2})^2 h = \frac{1}{12}\pi h^3$. Now take the t derivative: $\frac{dV}{dt} = \frac{1}{12}\pi (3h^2)\frac{dh}{dt}$. After the derivative has been taken, substitute what is known at h = 1: $-5 = \frac{1}{12}\pi (3)\frac{dh}{dt}$, so $\frac{dh}{dt} = \frac{-20}{\pi}$ in/sec ≈ -6.4 in/sec.

- 8. (This is Problem 4.2.21) The bottom of a 10-foot ladder moves away from the wall at 2 ft/sec. How fast is the top going down the wall when the top is (a) 6 feet high? (b) 5 feet high? (c) zero feet high?
 - We are given $\frac{dx}{dt} = 2$. We want to know dy/dt. The equation relating x and y is $x^2 + y^2 = 100$. This gives $2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0$. Substitute $\frac{dx}{dt} = 2$ to find $\frac{dy}{dt} = -\frac{2x}{y}$.
 - (a) If y = 6, then x = 8 (use $x^2 + y^2 = 100$) and $\frac{dy}{dt} = -\frac{8}{3}$ ft/sec.
 - (b) If y = 5, then $x = 5\sqrt{3}$ (use $x^2 + y^2 = 100$) and $\frac{dy}{dt} = -2\sqrt{3}$ ft/sec.
 - (c) If y = 0, then we are dividing by zero: $\frac{dy}{dx} = -\frac{2x}{0}$. Is the speed infinite? How is this possible?

Read-throughs and selected even-numbered solutions :

For $x^3 + y^3 = 2$ the derivative dy/dx comes from implicit differentiation. We don't have to solve for y. Term by term the derivative is $3x^2 + 3y^2 \frac{dy}{dx} = 0$. Solving for dy/dx gives $-x^2/y^2$. At x = y = 1 this slope is -1. The equation of the tangent line is y - 1 = -1(x - 1).

A second example is $y^2 = x$. The x derivative of this equation is $2y \frac{dy}{dx} = 1$. Therefore dy/dx = 1/2y. Replacing y by \sqrt{x} this is $dy/dx = 1/2\sqrt{x}$.

In related rates, we are given dg/dt and we want df/dt. We need a relation between f and g. If $f = g^2$, then (df/dt) = 2g(dg/dt). If $f^2 + g^2 = 1$, then $df/dt = -\frac{g}{f}\frac{dg}{dt}$. If the sides of a cube grow by ds/dt = 2, then its volume grows by $dV/dt = 3s^2(2) = 6s^2$. To find a number (8 is wrong), you also need to know s.

- 6 $f'(x) + F'(y) \frac{dy}{dx} = y + x \frac{dy}{dx}$ so $\frac{dy}{dx} = \frac{\mathbf{y} \mathbf{f}'(\mathbf{x})}{\mathbf{f}'(\mathbf{y}) \mathbf{x}}$ 12 $2(x-2) + 2y \frac{dy}{dx} = 0$ gives $\frac{dy}{dx} = 1$ at (1,1); $2x + 2(y-2) \frac{dy}{dx} = 0$ also gives $\frac{dy}{dx} = 1$. 20 x is a constant (fixed at 7) and therefore a change $\Delta \mathbf{x}$ is not allowed 24 Distance to you is $\sqrt{x^2 + 8^2}$, rate of change is $\frac{x}{\sqrt{x^2 + 8^2}} \frac{dx}{dt}$ with $\frac{dx}{dt} = 560$. (a) Distan
- 24 Distance to you is $\sqrt{x^2 + 8^2}$, rate of change is $\frac{x}{\sqrt{x^2+8^2}} \frac{dx}{dt}$ with $\frac{dx}{dt} = 560$. (a) Distance = 16 and $x = 8\sqrt{3}$ and rate is $\frac{8\sqrt{3}}{16}(560) = 280\sqrt{3}$; (b) x = 8 and rate is $\frac{8}{\sqrt{8^2+8^2}}(560) = 280\sqrt{2}$; (c) x = 0 and rate = 0. 28 Volume = $\frac{4}{3}\pi r^3$ has $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$. If this equals twice the surface area $4\pi r^2$ (with minus for evaporation)

than $\frac{dr}{dt} = -2$.

4.3 Inverse Functions and Their Derivatives (page 170)

The vertical line test and the horizontal line test are good for visualizing the meaning of "function" and "invertible." If a vertical line hits the graph twice, we have two y's for the same x. Not a function. If a horizontal line hits the graph twice, we have two x's for the same y. Not invertible. This means that the inverse is not a function.

These tests tell you that the sideways parabola $x = y^2$ does not give y as a function of x. (Vertical lines intersect the graph twice. There are two square roots $y = \sqrt{x}$ and $y = -\sqrt{x}$.) Similarly the function $y = x^2$ has no inverse. This is an ordinary parabola – horizontal lines cross it twice. If y = 4 then $x = f^{-1}(4)$ has two answers x = 2 and x = -2. In questions 1 - 2 find the inverse function $x = f^{-1}(y)$.

1. $y = x^2 + 2$. This function fails the horizontal line test. It has no inverse. Its graph is a parabola opening upward, which is crossed twice by some horizontal lines (and not crossed at all by other lines).

Here's another way to see why there is no inverse: $x^2 = y - 2$ leads to $x = \pm \sqrt{y-2}$. Then $x + = \sqrt{y-2}$ represents the right half of the parabola, and $x = -\sqrt{y-2}$ is the left half. We can get an inverse by reducing the domain of $y = x^2 + 2$ to $x \ge 0$. With this restriction, $x = f^{-1}(y) = \sqrt{y-2}$. The positive square root is the inverse. The domain of f(x) matches the range of $f^{-1}(y)$.

- 2. $y = f(x) = \frac{x}{x-1}$. (This is Problem 4.3.4) Find x as a function of y.
 - Write $y = \frac{x}{x-1}$ as y(x-1) = x or yx y = x. We always have to solve for x. We have yx x = y or x(y-1) = y or $x = \frac{y}{y-1}$. Therefore $f^{-1}(y) = \frac{y}{y-1}$.

Note that f and f^{-1} are the same! If you graph y = f(x) and the line y = x you will see that f(x) is symmetric about the 45° line. In this unusual case, x = f(y) when y = f(x).

You might wonder at the statement that $f(x) = \frac{x}{x-1}$ is the same as $g(y) = \frac{y}{y-1}$. The definition of a function does not depend on the particular choice of letters. The functions $h(r) = \frac{r}{r-1}$ and $F(t) = \frac{t}{t-1}$ and $G(z) = \frac{z}{z-1}$ are also the same. To graph them, you would put r, t, or z on the horizontal axis-they are the input (domain) variables. Then h(r), F(t), G(z) would be on the vertical axis as output variables. The function y = f(x) = 3x and its inverse $x = f^{-1}(y) = \frac{1}{3}y$ (absolutely not $\frac{1}{3y}$) are graphed on page 167. For f(x) = 3x, the domain variable x is on the horizontal axis. For $f^{-1}(y) = \frac{1}{3}y$, the domain variable for f^{-1} is y.

This can be confusing since we are so accustomed to seeing x along the horizontal axis. The advantage of $f^{-1}(x) = \frac{1}{3}x$ is that it allows you to keep x on the horizontal and to stick with x for domain (input). The advantage of $f^{-1}(y) = \frac{1}{3}y$ is that it emphasizes: f takes x to y and f^{-1} takes y back to x.

- 3. (This is 4.3.34) Graph y = |x| 2x and its inverse on separate graphs.
 - y = |x| 2x should be analyzed in two parts: positive x and negative x. When $x \ge 0$ we have |x| = x. The function is y = x - 2x = -x. When x is negative we have |x| = -x. Then y = -x - 2x = -3x. Then y = -x on the right of the y axis and y = -3x on the left. Inverses x = -y and $x = -\frac{y}{3}$. The second graph shows the inverse function.

4. Find $\frac{dx}{dy}$ when $y = x^2 + x$. Compare implicit differentiation with $\frac{1}{dy/dx}$.

- The x derivative of $y = x^2 + x$ is $\frac{dy}{dx} = 2x + 1$. Therefore $\frac{dx}{dy} = \frac{1}{2x+1}$.
- The y derivative of $y = x^2 + x$ is $1 = 2x \frac{dx}{dy} + \frac{dx}{dy} = (2x+1)\frac{dx}{dy}$. This also gives $\frac{dx}{dy} = \frac{1}{2x+1}$.
- It might be desirable to know $\frac{dx}{dy}$ as a function of y, not x. In that case solve the quadratic equation $x^2 + x y = 0$ to get $x = \frac{-1 \pm \sqrt{1+4y}}{2}$. Substitute this into $\frac{dx}{dy} = \frac{1}{2x+1} = \frac{\pm 1}{\sqrt{1+4y}}$.
- Now we know $x = \frac{-1 \pm \sqrt{1+4y}}{2}$ (this is the inverse function). So we can directly compute $\frac{dx}{dy} = \pm \frac{1}{2} \cdot \frac{1}{2} (1+4y)^{-1/2} \cdot 4 = \frac{\pm 1}{\sqrt{1+4y}}$. Same answer four ways!
- 5. Find $\frac{dx}{dy}$ at $x = \pi$ for $y = \cos x + x^2$.

 $\frac{dy}{dx} = -\sin x + 2x$. Substitute $x = \pi$ to find $\frac{dy}{dx} = -\sin \pi + 2\pi = 2\pi$. Therefore $\frac{dx}{dy} = \frac{1}{2\pi}$.

Read-throughs and selected even-numbered solutions :

The functions g(x) = x - 4 and f(y) = y + 4 are inverse functions, because f(g(x)) = x. Also g(f(y)) = y. The notation is $f = g^{-1}$ and $g = f^{-1}$. The composition of f and f^{-1} is the identity function. By definition $x = g^{-1}(y)$ if and only if y = g(x). When y is in the range of g, it is in the **domain** of g^{-1} . Similarly x is in the **domain** of g when it is in the **range** of g^{-1} . If g has an inverse then $g(x_1) \neq g(x_2)$ at any two points. The function g must be steadily **increasing** or steadily **decreasing**.

The chain rule applied to f(g(x)) = x gives (df/dy)(dg/dx) = 1. The slope of g^{-1} times the slope of g equals 1. More directly dx/dy = 1/(dy/dx). For y = 2x + 1 and $x = \frac{1}{2}(y-1)$, the slopes are dy/dx = 2 and $dx/dy = \frac{1}{2}$. For $y = x^2$ and $x = \sqrt{y}$, the slopes are dy/dx = 2x and $dx/dy = 1/2\sqrt{y}$. Substituting x^2 for y gives dx/dy = 1/2x. Then (dx/dy)(dy/dx) = 1.

The graph of y = g(x) is also the graph of $x = g^{-1}(y)$, but with x across and y up. For an ordinary graph of g^{-1} , take the reflection in the line y = x. If (3,8) is on the graph of g, then its mirror image (8,3) is on the graph of g^{-1} . Those particular points satisfy $8 = 2^3$ and $3 = \log_2 8$.

The inverse of the chain z = h(g(x)) is the chain $x = g^{-1}(h^{-1}(z))$. If g(x) = 3x and $h(y) = y^3$ then $z = (3x)^3 = 27x^3$. Its inverse is $x = \frac{1}{3}z^{1/3}$, which is the composition of $g^{-1}(y) = \frac{1}{3}y$ and $h^{-1}(z) = z^{1/3}$. 4 $x = \frac{y}{y^{-1}}(f^{-1}$ matches f)

14 f^{-1} does not exist because f(3) is the same as f(5).

16 No two x's give the same y. 22 $\frac{dy}{dx} = -\frac{1}{(x-1)^2}; \frac{dx}{dy} = -\frac{1}{y^2} = -(x-1)^2.$

44 First proof Suppose y = f(x). We are given that y > x. This is the same as $y > f^{-1}(y)$.

Second proof The graph of f(x) is above the 45° line, because f(x) > x. The mirror image is below the 45° line so $f^{-1}(y) < y$.

48 $g(x) = x + 6, f(y) = y^3, g^{-1}(y) = y - 6, f^{-1}(z) = \sqrt[3]{z}; \mathbf{x} = \sqrt[3]{z} - \mathbf{6}$

4.4 Inverses of Trigonometric Functions (page 175)

The table on page 175 summarizes what you need to know – the six inverse trig functions, their domains, and their derivatives. The table gives you $\frac{dx}{dy}$ since the inverse functions have input y and output x. The input y is a number and the output x is an angle. Watch the restrictions on y and x (to permit an inverse). 1. Compute (a) $\sin^{-1}(\sin \frac{\pi}{4})$ (b) $\cos^{-1}(\sin \frac{\pi}{3})$ (c) $\sin^{-1}(\sin \pi)$ (d) $\tan^{-1}(\cos 0)$ (e) $\cos^{-1}(\cos(-\frac{\pi}{2}))$

- (a) $\sin \frac{\pi}{4}$ is $\frac{\sqrt{2}}{2}$ and $\sin^{-1} \frac{\sqrt{2}}{2}$ brings us back to $\frac{\pi}{4}$.
- (b) $\sin \frac{\pi}{3} = \frac{1}{2}$ and then $\cos^{-1}(\frac{1}{2}) = +\frac{2\pi}{3}$. Note that $\frac{\pi}{3} + \frac{2\pi}{3} = \frac{\pi}{2}$. The angles $\frac{\pi}{3}$ and $\frac{2\pi}{3}$ are complementary (they add to 90° or $\frac{\pi}{2}$). Always $\sin^{-1} y + \cos^{-1} y = \frac{\pi}{2}$.
- (c) $\sin^{-1}(\sin \pi)$ is not π ! Certainly $\sin \pi = 0$. But $\sin^{-1}(0) = 0$. The \sin^{-1} function or arcsin function only yields angles between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

• (d)
$$\tan^{-1}(\cos 0) = \tan^{-1} 1 = \frac{\pi}{4}$$

• (e) $\cos^{-1}(\cos(-\frac{\pi}{2}))$ looks like $-\frac{\pi}{2}$. But $\cos(-\frac{\pi}{2}) = 0$ and then $\cos^{-1}(0) = \frac{\pi}{2}$.

2. Find $\frac{dx}{dy}$ if $x = \sin^{-1} 3y$. What are the restrictions on y?

We know that $x = \sin^{-1} u$ yields $\frac{dx}{du} = \frac{1}{\sqrt{1-u^2}}$. Set u = 3y and use the chain rule: $\frac{dx}{du}\frac{du}{dy} = \frac{3}{\sqrt{1-u^2}} = \frac{3}{\sqrt{1-y^2}}$. The restriction $|u| \le 1$ on sines means that $|3y| \le 1$ and $|y| \le \frac{1}{3}$.

3. Find $\frac{dz}{dx}$ when $z = \cos^{-1}(\frac{1}{x})$. What are the restrictions on x?

 \cos^{-1} accepts inputs between -1 and 1, inclusive. For this reason $\left|\frac{1}{x}\right| \leq 1$ and $|x| \geq 1$. To find the derivative, use the chain rule with $z = \cos^{-1} u$ and $u = \frac{1}{x}$:

$$\frac{dz}{dx} = \frac{dz}{du}\frac{du}{dx} = \frac{-1}{\sqrt{1-u^2}} \cdot \frac{-1}{x^2} = \frac{1}{x\sqrt{x^2 - x^2u^2}} = \frac{1}{x\sqrt{x^2 - 1}}$$

4. Find $\frac{dy}{dx}$ when $y = \sec^{-1} \sqrt{x^2 + 1}$. (This is Problem 4.4.23)

• The derivative of $y = \sec^{-1} u$ is $\frac{1}{|u|\sqrt{u^2-1}}$. In this problem $u = \sqrt{x^2+1}$. Then

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{1}{|u|\sqrt{u^2 - 1}}\frac{x}{\sqrt{x^2 + 1}} = (\text{substitute for } u) = \frac{x}{(x^2 + 1)|x|} = \pm \frac{1}{x^2 + 1}.$$

Here is another way to do this problem. Since $y = \sec^{-1} \sqrt{x^2 + 1}$, we have $\sec y = \sqrt{x^2 + 1}$ and $\sec^2 y = x^2 + 1$. This is a trig identity provided $x = \pm \tan y$. Then $y = \pm \tan^{-1} x$ and $\frac{dy}{dx} = \pm \frac{1}{x^2 + 1}$.

- 5. Find $\frac{dy}{dx}$ if $y = \tan^{-1} \frac{2}{x} \cot^{-1} \frac{x}{2}$. Explain zero.
 - The derivative of $\tan^{-1}\frac{2}{x}$ is $\frac{1}{1+(\frac{2}{x})^2} \cdot \frac{-2}{x^2} = \frac{-2}{x^{2}+4}$. The derivative of $\cot^{-1}\frac{x}{2}$ is $-\frac{1}{1+(\frac{x}{2})^2} \cdot \frac{1}{2} = -\frac{2}{x^{2}+4}$. By subtraction $\frac{dy}{dx} = 0$. Why do $\tan^{-1}\frac{2}{x}$ and $\cot^{-1}\frac{x}{2}$ have the same derivative? Are they equal? Think about domain and range before you answer that one.

The relation $x = \sin^{-1} y$ means that y is the sine of x. Thus x is the angle whose sine is y. The number y lies between -1 and 1. The angle x lies between $-\pi/2$ and $\pi/2$. (If we want the inverse to exist, there cannot be two angles with the same sine.) The cosine of the angle $\sin^{-1} y$ is $\sqrt{1 - y^2}$. The derivative of $x = \sin^{-1} y$ is $dx/dy = 1/\sqrt{1 - y^2}$.

The relation $x = \cos^{-1} y$ means that y equals $\cos x$. Again the number y lies between -1 and 1. This time the angle x lies between 0 and π (so that each y comes from only one angle x). The sum $\sin^{-1} y + \cos^{-1} y = \pi/2$. (The angles are called **complementary**, and they add to a **right** angle.) Therefore the derivative of $x = \cos^{-1} y$ is $dx/dy = -1/\sqrt{1-y^2}$, the same as for $\sin^{-1} y$ except for a **minus** sign.

The relation $x = \tan^{-1} y$ means that $y = \tan x$. The number y lies between $-\infty$ and ∞ . The angle x lies between $-\pi/2$ and $\pi/2$. The derivative is $dx/dy = 1/(1 + y^2)$. Since $\tan^{-1} y + \cot^{-1} y = \pi/2$, the derivative of $\cot^{-1} y$ is the same except for a minus sign.

The relation $x = \sec^{-1} y$ means that $y = \sec x$. The number y never lies between -1 and 1. The angle x lies between 0 and π , but never at $x = \pi/2$. The derivative of $x = \sec^{-1} y$ is $dx/dy = 1/|y| \sqrt{y^2 - 1}$.

10 The sides of the triangle are $y, \sqrt{1-y^2}$, and 1. The tangent is $\frac{y}{\sqrt{1-y^2}}$. $\frac{d(\sin^{-1}y)}{dy}|_{x=0} = 1; \frac{d(\cos^{-1}y)}{dy}|_{x=0} = -\infty; \frac{d(\tan^{-1}y)}{dy}|_{x=0} = 1; \frac{d(\sin^{-1}y)}{dy}|_{x=1} = \frac{1}{\cos 1}; \frac{d(\cos^{-1}y)}{dy}|_{x=1} = -\frac{1}{\sin 1}; \frac{d(\tan^{-1}y)}{dy}|_{x=1} = \frac{1}{\sec^2 1}.$ $\cos^{-1}(\sin x)$ is the complementary angle $\frac{\pi}{2} - x$. The tangent of that angle is $\frac{\cos x}{\sin x} = \cot x$. 34 The requirement is $u' = \frac{1}{1+t^2}$. To satisfy this requirement take $u = \tan^{-1}t$. $u = \tan^{-1}y$ has $\frac{du}{dy} = \frac{1}{1+y^2}$ and $\frac{d^2u}{dy^2} = \frac{-2y}{(1+y^2)^2}.$ 42 By the product rule $\frac{dx}{dx} = (\cos x)(\sin^{-1}x) + (\sin x)\frac{1}{\sqrt{1-x^2}}$. Note that $z \neq x$ and $\frac{dx}{dx} \neq 1$. $u(x) = \frac{1}{2}\tan^{-1}2x$ (need $\frac{1}{2}$ to cancel 2 from the chain rule). $u(x) = \frac{x-1}{x+1}$ has $\frac{du}{dx} = \frac{(x+1)-(x-1)}{(x+1)^2} = \frac{2}{(x+1)^2}$. Then $\frac{d}{dx}\tan^{-1}u(x) = \frac{1}{1+u^2}\frac{du}{dx} = \frac{1}{1+(\frac{x-1}{x+1})^2}\frac{2}{(x+1)^2} = \frac{2}{(x+1)^2+(x-1)^2} = \frac{1}{x^2+1}$. This is also the derivative of $\tan^{-1}x!$ So $\tan^{-1}u(x) - \tan^{-1}x$ is a constant.

4 Chapter Review Problems

Review Problems

- **R1** Give the domain and range of the six inverse trigonometric functions.
- **R2** Is the derivative of u(v(x)) ever equal to the derivative of u(x)v(x)?
- **R3** Find y' and the second derivative y" by implicit differentiation when $y^2 = x^2 + xy$.
- **R4** Show that y = x + 1 is the tangent line to the graph of $y = x + \cos xy$ through the point (0,1).
- **R5** If the graph of y = f(x) passes through the point (a, b) with slope m, then the graph of $y = f^{-1}(x)$ passes through the point _____ with slope _____.
- **R6** Where does the graph of $y = \cos x$ intersect the graph of $y = \cos^{-1} x$? Give an equation for x and show that x = .7391 in Section 3.6 is a solution.
- **R7** Show that the curves xy = 4 and $x^2 y^2 = 15$ intersect at right angles.
- **R8** "The curve $y^2 + x^2 + 1 = 0$ has $2y\frac{dy}{dx} + 2x = 0$ so its slope is -x/y." What is the problem with that statement?
- **R9** Gas is escaping from a spherical balloon at 2 cubic feet/minute. How fast is the surface area shrinking when the area is 576π square feet?

- **R10** A 50 foot rope goes up over a pulley 18 feet high and diagonally down to a truck. The truck drives away at 9 ft/sec. How fast is the other end of the rope rising from the ground?
- **R11** Two concentric circles are expanding, the outer radius at 2 cm/sec and the inner radius at 5 cm/sec. When the radii are 10 cm and 3 cm, how fast is the area between them increasing (or decreasing)?
- **R12** A swimming pool is 25 feet wide and 100 feet long. The bottom slopes steadily down from a depth of 3 feet to 10 feet. The pool is being filled at 100 cubic feet/minute. How fast is the water level rising when it is 6 feet deep at the deep end?
- **R13** A five-foot woman walks at night toward a 12-foot street lamp. Her speed is 4 ft/sec. Show that her shadow is shortening by $\frac{20}{7}$ ft/sec when she is 3 feet from the lamp.
- R14 A 40 inch string goes around an 8 by 12 rectangle but we are changing its shape (same string). If the 8 inch sides are being lengthened by 1 inch/second, how fast are the 12 inch sides being shortened? Show that the area is increasing at 4 square inches per second. (For some reason it will take *two* seconds before the area increases from 96 to 100.)
- **R15** The volume of a sphere (when we know the radius) is $V(r) = 4\pi r^3/3$. The radius of a sphere (when we know the volume) is $r(V) = (3V/4\pi)^{1/3}$. This is the inverse! The surface area of a sphere is $A(r) = 4\pi r^2$. The radius (when we know the area) is r(A) = --. The chain r(A(r)) equals --.
- **R16** The surface area of a sphere (when we know the volume) is $A(V) = 4\pi (3V/4\pi)^{2/3}$. The volume (when we know the area) is V(A) = ---.

Drill Problems (Find dy/dx in Problems D1 to D6).

- **D1** $y = t^3 t^2 + 2$ with $t = \sqrt{x}$ **D2** $y = \sin^3(2x \pi)$
- **D3** $y = \tan^{-1}(4x^2 + 7x)$ **D4** $y = \csc \sqrt{x}$
- **D5** $y = \sin(\sin^{-1} x)$ for $|x| \le 1$ **D6** $y = \sin u \cos u$ with $u = \cos^{-1} x$

In **D7** to **D10** find y' by implicit differentiation.

- **D7** $x^2 2xy + y^2 = 4$ **D8** $y = \sin(xy) + x$
- **D9** $9x^2 + 16y^2 = 144$ **D10** $9y 6x + y^4 = 0$
- **D11** The area of a circle is $A(r) = \pi r^2$. Find the radius r when you know the area A. (This is the inverse function r(A)!). The derivative of $A = \pi r^2$ is $dA/dr = 2\pi r$. Find dr/dA.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

Resource: Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.