CHAPTER 6 EXPONENTIALS AND LOGARITHMS

6.1 An Overview

(page 234)

The laws of logarithms which are highlighted on pages 229 and 230 apply just as well to "natural logs." Thus $\ln y z=\ln y+\ln z$ and $b=e^{\ln b}$. Also important :

$$
b^{x}=e^{x \ln b} \quad \text { and } \quad \ln x^{a}=a \ln x \quad \text { and } \quad \ln 1=0
$$

Problems 1-4 review the rules for logarithms. Don't use your calculator. Find the exponent or power.

1. $\log _{7} \frac{1}{49}$
2. $\log _{12} 72+\log _{12} 2$
3. $\log _{10} 6 \cdot \log _{6} x$
4. $\log _{0.5} 8$

- To find $\log _{7} \frac{1}{49}$, ask yourself "seven to what power is $\frac{1}{49}$?" Since $\frac{1}{49}=7^{-2}$, the power is $\log _{7} \frac{1}{49}=-2$.
- $\log _{12} 72+\log _{12} 2=\log _{12}(72 \cdot 2)=\log _{12} 144$. Since the bases are the same (everything is base 12), the \log of the product equals the sum of the logs. To find $\log _{12} 144$, ask $12^{\text {what power }}=144$. The power is 2 , so $\log _{12} 144=2$.
- Follow the change of base formula $\log _{a} x=\left(\log _{a} b\right)\left(\log _{b} x\right)$. Here $a=10$ and $b=6$. The answer is $\log _{10} x$.
- To find $\log _{0.5} 8$, ask $\frac{1}{2}^{\text {what power }}=8$. Since $\frac{1}{2}=2^{-1}$ and $8=2^{3}$, the power is -3 . Therefore $\log _{0.5} 8=-3$.

5. Solve $\log _{x} 10=2$. (This is Problem 6.1.6c) The unknown is the base x.

- The statement $\log _{x} 10=2$ means exactly the same as $x^{2}=10$. Therefore $x=\sqrt{10}$. We can't choose $x=-\sqrt{10}$ since bases must be positive.

6. Draw the graphs for $y=6^{x}$ and $y=5 \cdot 6^{x}$ on semilog paper (preferably homemade).

- The x axis is scaled normally. The y axis is scaled so that $6^{0}=1,6^{1}=6,6^{2}=36$, and $6^{3}=216$ are one unit apart. The axes cross at (0,1), not at (0,0) as on regular paper. Both graphs are straight lines. The line $y=10 \cdot 6^{x}$ crosses the vertical axis when $x=0$ and $y=10$.

7. What are the equations of the functions represented in the right graph?

- This is base 10 semilog paper, so both lines graph functions $y=A \cdot 10^{x \log b}$, where A is the intercept on the vertical axis and $\log b$ is the slope. One graph has $A=1$ and the slope is $\frac{1}{4}$, so $y=10^{x / 4}$. The intercept on the second graph is 300 and the slope is $\frac{2}{3}$, so $y=300 \cdot 10^{-2 x / 3}$.

Read-throughs and selected even-numbered solutions :

In $10^{4}=10,000$, the exponent 4 is the logarithm of 10,000 . The base is $b=10$. The logarithm of 10^{m} times 10^{n} is $\mathbf{m}+\mathbf{n}$. The logarithm of $10^{m} / 10^{n}$ is $\mathbf{m}-\mathbf{n}$. The logarithm of $10,000^{x}$ is $4 x$. If $y=b^{x}$ then $x=\log _{b} y$. Here x is any number, and y is always positive.

A base change gives $b=a^{\log _{a} b}$ and $b^{x}=a^{x \log _{a} b}$. Then 8^{5} is 2^{15}. In other words $\log _{2} y$ is $\log _{2} 8$ times $\log _{8} y$. When $y=2$ it follows that $\log _{2} 8$ times $\log _{8} 2$ equals 1.

On ordinary paper the graph of $y=\mathbf{m x}+\mathbf{b}$ is a straight line. Its slope is \mathbf{m}. On semilog paper the graph of $y=A b^{\mathbf{x}}$ is a straight line. Its slope is $\log \mathbf{b}$. On log-log paper the graph of $y=A x^{k}$ is a straight line. Its slope is \mathbf{k}.

The slope of $y=b^{x}$ is $d y / d x=\mathbf{c b}^{\mathbf{x}}$, where c depends on b. The number c is the limit as $h \rightarrow 0$ of $\frac{\mathbf{b}^{\mathbf{h}}-1}{\mathbf{h}}$. Since $x=\log _{b} y$ is the inverse, $(d x / d y)(d y / d x)=1$. Knowing $d y / d x=c b^{x}$ yields $d x / d y=1 / \mathbf{c b}^{\mathbf{x}}$. Substituting b^{x} for y, the slope of $\log _{b} y$ is $1 / c y$. With a change of letters, the slope of $\log _{b} x$ is $1 / c x$.
6 (a) 7
(b) 3
(c) $\sqrt{10}$
(d) $\frac{1}{4}$
(e) $\sqrt{8}$
(f) 5
$12 y=\log _{10} x$ is a straight line on "inverse" semilog paper: y axis normal, x axis scaled logarithmically
(so $x=1,10,100$ are equally spaced). Any equation $y=\log _{b} x+C$ will have a straight line graph.
$14 y=10^{1-x}$ drops from 10 to 1 to .1 with slope -1 on semilog paper; $y=\frac{1}{2} \sqrt{10}$ increases with slope $\frac{1}{2}$
from $y=\frac{1}{2}$ at $x=0$ to $y=5$ at $x=2$.
16 If 440 /second is the frequency of middle A, then the next A is $880 /$ second. The 12 steps from A to A are approximately multiples of $2^{1 / 12}$. So 7 steps multiplies by $2^{7 / 12} \approx 1.5$ to give (1.5) (440) $=660$. The seventh note from A is \mathbf{E}.
22 The slope of $y=10^{x}$ is $\frac{d y}{d x}=c 10^{x}$ (later we find that $c=\ln 10$). At $x=0$ and $x=1$ the slope is c and $10 c$. So the tangent lines are $y-1=c(x-0)$ and $y-10=10 c(x-1)$.

6.2 The Exponential e^{x}

(page 241)

Problems $1-8$ use the facts that $\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}$ and $\frac{d}{d x} \ln u=\frac{1}{u} \cdot \frac{d u}{d x}$. If the base in the problem is not e, convert to base e. Use the change of base formulas $b^{u}=e^{(\ln b) u}$ and $\log _{b} u=\frac{\ln u}{\ln b}$. (And remember that $\ln b$ is just a constant.) In each problem, find $d y / d x$:

1. $y=\ln 3 x \quad$ - Take $u=3 x$ to get $\frac{d y}{d x}=\frac{1}{u} \cdot \frac{d u}{d x}=\frac{1}{3 x} \cdot 3=\frac{1}{x}$. This is the same derivative as for $y=\ln x$. Why? The answer lies in the laws of logarithms: $\ln 3 x=\ln 3+\ln x$. Since $\ln 3$ is a constant, its derivative is zero. Because $\ln 3 x$ and $\ln x$ differ only by a constant, they have the same derivative.
2. $y=\ln \cos 3 x$. Assume $\cos 3 x$ is positive so $\ln \cos 3 x$ is defined.

- Take $u=\cos 3 x$. Then $\frac{d u}{d x}=-3 \sin 3 x$. The answer is $\frac{d y}{d x}=\frac{1}{\cos 3 x}(-3 \sin 3 x)=-3 \tan 3 x$. When we find a derivative we also find an integral: $-\int 3 \tan 3 x=\ln \cos 3 x+C$.

3. $y=\ln \left(\ln x^{2}\right)$.

- Take $u=\ln x^{2}$. Then $\frac{d u}{d x}=\frac{1}{x^{2}} \cdot 2 x=\frac{2}{x}$. This means

$$
\frac{d y}{d x}=\left(\frac{1}{\ln x^{2}}\right)\left(\frac{2}{x}\right)=\frac{2}{x \ln x^{2}}=\frac{1}{x \ln x} .
$$

Surprise to the author: This is also the derivative of $\ln (\ln x)$. Why does $\ln \left(\ln x^{2}\right)$ have the same derivative?
3. $y=\log _{10} \sqrt{x^{2}+5}$ - First change the base from 10 to e, by dividing by $\ln 10$. Now you are differentiating $\ln u$ instead of $\log u: y=\frac{1}{\ln 10} \ln \sqrt{x^{2}+5}$. For square roots, it is worthwhile to use the law that $\ln u^{1 / 2}=\frac{1}{2} \ln u$. Then $\ln \sqrt{x^{2}+5}=\frac{1}{2} \ln \left(x^{2}+5\right)$. [THIS IS NOT $\left.\frac{1}{2}\left(\ln x^{2}+\ln 5\right)\right]$ This function is now

$$
y=\frac{\ln \left(x^{2}+5\right)}{2 \ln 10} \quad \text { and } \quad \frac{d y}{d x}=\left(\frac{1}{2 \ln 10}\right)\left(\frac{1}{x^{2}+5}\right)(2 x)=\frac{1}{\ln 10} \frac{x}{x^{2}+5} .
$$

4. $y=\ln \frac{\left(x^{4}-8\right)^{5}}{\left(x^{0}+5 x\right) \cos x}$ - Here again the laws of logarithms allow you to make things easier. Multiplication of numbers is addition of logs. Division is subtraction. Powers of u become multiples of $\ln u: y=$ $5 \ln \left(x^{4}-8\right)-\ln \left(x^{6}+5 x\right)-\ln \cos x$. Now $d y / d x$ is long but easy:

$$
\frac{d y}{d x}=\frac{5}{x^{4}-8}\left(4 x^{3}\right)-\frac{6 x^{5}+5}{x^{6}+5 x}-\frac{(-\sin x)}{\cos x}=\frac{20 x^{3}}{x^{4}-8}-\frac{6 x^{5}+5}{x^{6}+5 x}+\tan x .
$$

5. $y=e^{\tan x} \quad \bullet d y / d x$ is $e^{u} d u / d x=e^{\tan x}\left(\sec ^{2} x\right)$.
6. $y=\sin \left(e^{2 x}\right) \bullet$ Set $u=e^{2 x}$. Then $d u / d x=2 e^{2 x}$. Using the chain rule,

$$
\frac{d}{d x}(\sin u)=(\cos u)\left(\frac{d u}{d x}\right)=\left(\cos e^{2 x}\right)\left(2 e^{2 x}\right) .
$$

7. $y=10^{x^{2}} \quad$ - First change the base from 10 to $e: y=\left(e^{\ln 10}\right)^{x^{2}}=e^{x^{2} \ln 10}$. Let $u=x^{2} \ln 10$. Then $\frac{d u}{d x}=2 x \ln 10$. (Remember $\ln 10$ is a constant, you don't need the product rule.) We have

$$
\frac{d y}{d x}=e^{u} \frac{d u}{d x}=e^{x^{2} \ln 10}(2 x \ln 10) .
$$

8. $y=x^{-1 / x}$ (This is Problem 6.2.18)

- First change to base $e: y=\left(e^{\ln x}\right)^{-1 / x}$. Since the exponent is $u=-\frac{1}{x} \ln x$, we need the product rule to get $d u / d x=-\frac{1}{x}\left(\frac{1}{x}\right)+\frac{1}{x^{2}} \ln x$. Therefore

$$
\frac{d y}{d x}=e^{u} \frac{d u}{d x}=x^{-1 / x} \cdot \frac{1}{x^{2}}(\ln x-1) .
$$

Problems 9-14 use the definition $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$. By substituting $h=\frac{1}{n}$ this becomes $e=$ $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$. Evaluate these limits as $n \rightarrow \infty$:
9. $\lim \left(1+\frac{1}{n}\right)^{6 n}$
10. $\lim \left(1+\frac{1}{6 n}\right)^{6 n}$
11. $\lim \left(1+\frac{1}{2 n}\right)^{3 n}$
12. $\lim \left(1+\frac{r}{n}\right)^{n}$ (r is constant)
13. $\lim \left(\frac{n+8}{n}\right)^{n}$

- Rewrite Problem 9 as $\lim \left(\left(1+\frac{1}{n}\right)^{n}\right)^{6}$. Since $\left(1+\frac{1}{n}\right)^{n}$ goes to e the answer is $e^{6} \approx 403$. The calculator shows $\left(1+\frac{1}{1000}\right)^{6000} \approx 402$.
- Problem 10 is different because $6 n$ is both inside and outside the parentheses. If you let $k=6 n$, and note $k \rightarrow \infty$ as $n \rightarrow \infty$, this becomes $\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}=e$. The idea here is: If we have $\lim _{\square \rightarrow \infty}\left(1+\frac{1}{\square}\right)^{\square}$ and all the boxes are the same, the limit is e.
- Question 11 can be rewritten as $\lim \left(1+\frac{1}{2 n}\right)^{2 n \cdot \frac{3}{2}}=e^{3 / 2}$. (The box is $\square=2 n$).
- In Question 12 write $n=m r$. Then $\frac{r}{n}=\frac{1}{m}$ and we have $\lim \left(1+\frac{1}{m}\right)^{m r}=e^{r}$.
- In 13 write $\left(\frac{n+8}{n}\right)=1+\frac{8}{n}$. This is Problem 12 with $r=8: \lim _{n \rightarrow \infty}\left(1+\frac{8}{n}\right)^{n}=e^{8}$.

14. (This is 6.2.21) Find the limit of $\left(\frac{11}{10}\right)^{10},\left(\frac{101}{100}\right)^{100},\left(\frac{1001}{1000}\right)^{1000}, \cdots$. Then find the limit of $\left(\frac{10}{11}\right)^{10},\left(\frac{100}{101}\right)^{100}$, $\left(\frac{1000}{1001}\right)^{1000}, \cdots$ and the limit of $\left(\frac{10}{11}\right)^{11},\left(\frac{100}{101}\right)^{101},\left(\frac{1000}{1001}\right)^{1001}, \cdots$.

- The terms of the first sequence are $\left(\frac{n+1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n}$ where $n=10,100,1000, \cdots$. The limit is e. The terms of the second sequence are the reciprocals of those of the first. So the second limit is $\frac{1}{e}$. The terms of the third are each $\left(\frac{n}{n+1}\right)$ times those of the second. Since $\frac{n}{n+1} \rightarrow 1$ as $n \rightarrow \infty$, the third limit is again $\frac{1}{e}$.

The third sequence can also be written $\left(\frac{n-1}{n}\right)^{n}$ or $\left(1-\frac{1}{n}\right)^{n}$. Its limit is e^{-1}. See Problem 12 with $r=-1$. Exercises 6.2 .27 and $6.2 .45-6.2 .54$ give plenty of practice in integrating exponential functions. Usually the trick is to locate $e^{u} d u$. Problems 15-17 are three models.
15. (This is 6.2.32) Find an antiderivative for $v(x)=\frac{1}{e^{x}}+\frac{1}{x^{e}}$.

- The first term is e^{-x}. Its antiderivative is $-e^{-x}$. The second term is just x^{n} with $n=-e$. Its antiderivative is $\frac{1}{1-e} x^{1-e}$. The answer is $f(x)=-e^{-x}+\frac{1}{1-e} x^{1-e}+C$.

16. Find an antiderivative for $v(x)=3^{-2 x}$. You may change to base e.

- The change produces $e^{-2 x \ln 3}$. The coefficient of x in the exponent is $-2 \ln 3$. An antiderivative is $f(x)=\frac{-1}{2 \ln 3} e^{-2 x \ln 3}$ or $\frac{-1}{2 \ln 3} 3^{-2 x}$.
We need -2 and $\ln 3$ in the denominator, the same way that we needed $n+1$ when integrating x^{n}.

17. (This is 6.2.52) Find $\int_{0}^{3} e^{\left(1+x^{2}\right)} x d x$. Set $u=1+x^{2}$ and $d u=2 x d x$. The integral is $\frac{1}{2} \int_{u(0)}^{u(3)} e^{u} d u$. The new limits of integration are $u(0)=1+0^{2}=1$ and $u(3)=1+3^{2}=10$. Now $\frac{1}{2} \int_{1}^{10} e^{u} d u=\frac{1}{2} e^{u} \int_{1}^{10}=\frac{1}{2}\left(e^{10}-e\right)$. This is not the same as $\frac{1}{2} e^{9}$!

Read-throughs and selected even-numbered solutions :

The number e is approximately 2.78 . It is the limit of $(1+h)$ to the power $1 / \mathrm{h}$. This gives 1.01^{100} when $h=$.01. An equivalent form is $e=\lim \left(1+\frac{1}{\mathbf{n}}\right)^{\mathbf{n}}$.

When the base is $b=e$, the constant c in Section 6.1 is 1 . Therefore the derivative of $y=e^{x}$ is $d y / d x=\mathbf{e}^{\mathbf{x}}$. The derivative of $x=\log _{e} y$ is $d x / d y=1 / y$. The slopes at $x=0$ and $y=1$ are both 1 . The notation for $\log _{e} y$ is $\ln y$, which is the natural logarithm of y.

The constant c in the slope of b^{x} is $c=\ln \mathbf{b}$. The function b^{x} can be rewritten as $\mathbf{e}^{\mathbf{x}} \ln \mathbf{b}$. Its derivative is $(\ln b) \mathbf{e}^{x \ln b}=(\ln b) b^{x}$. The derivative of $e^{u(x)}$ is $e^{u(x)} \frac{d u}{d x}$. The derivative of $e^{\sin x}$ is $e^{\sin x} \cos x$. The derivative of $e^{c x}$ brings down a factor c.

The integral of e^{x} is $\mathbf{e}^{\mathbf{x}}+\mathbf{C}$. The integral of $e^{c x}$ is $\frac{\mathbf{1}}{\mathbf{c}} \mathbf{e}^{\mathbf{c x}}+\mathbf{C}$. The integral of $e^{u(x)} d u / d x$ is $\mathbf{e}^{\mathbf{u}(\mathbf{x})}+\mathbf{C}$. In general the integral of $e^{u(x)}$ by itself is impossible to find.
$18 x^{-1 / x}=e^{-(\ln x) / x}$ has derivative $\left(-\frac{1}{x^{2}}+\frac{\ln x}{x^{2}}\right) e^{-(\ln x) / x}=\left(\frac{\ln x-1}{x^{2}}\right) x^{-1 / x}$
$20\left(1+\frac{1}{n}\right)^{2 n} \rightarrow \mathbf{e}^{2} \approx 7.7$ and $\left(1+\frac{1}{n}\right)^{\sqrt{n}} \rightarrow \mathbf{1}$. Note that $\left(1+\frac{1}{n}\right)^{\sqrt{n}}$ is squeezed between 1 and $e^{1 / \sqrt{n}}$ which approaches 1 .
$28\left(e^{3 x}\right)\left(e^{7 x}\right)=e^{10 x}$ which is the derivative of $\frac{1}{10} \mathrm{e}^{10 x}$
$42 x^{1 / x}=e^{(\ln x) / x}$ has slope $e^{(\ln x) / x}\left(\frac{1}{x^{2}}-\frac{\ln x}{x^{2}}\right)=\mathbf{x}^{1 / x}\left(\frac{1-\ln x}{x^{2}}\right)$. This slope is zero at $\mathbf{x}=\mathbf{e}$, when $\ln x=1$.
The second derivative is negative so the maximum of $x^{1 / x}$ is $e^{1 / e}$. Check: $\frac{d}{d x} e^{(\ln x) / x}\left(\frac{1-\ln x}{x^{2}}\right)=$ $e^{(\ln x) / x}\left[\left(\frac{1-\ln x}{x^{2}}\right)^{2}+\frac{(-2-1+2 \ln x)}{x^{3}}\right]=-\frac{1}{e^{3}} e^{1 / e}$ at $x=e$.
$44 x^{e}=e^{x}$ at $x=e$. This is the only point where $x^{e} e^{-x}=1$ because the derivative is $x^{e}\left(-e^{-x}\right)+e x^{e-1} e^{-x}=$ $\left(\frac{e}{x}-1\right) x^{e} e^{-x}$. This derivative is positive for $x<e$ and negative for $x>e$. So the function $x^{e} e^{-x}$ increases to 1 at $x=e$ and then decreases: it never equals 1 again.
58 The asymptotes of $\left(1+\frac{1}{x}\right)^{x}=\left(\frac{x+1}{x}\right)^{x}=\left(\frac{x}{x+1}\right)^{-x}$ are $x=-1$ (from the last formula) and $y=e$ (from the first formula).
$62 \lim \frac{x^{6}}{e^{x}}=\lim \frac{6 x^{3}}{e^{x}}=\lim \frac{30 x^{4}}{e^{x}}=\lim \frac{120 x^{3}}{e^{x}}=\lim \frac{360 x^{2}}{e^{x}}=\lim \frac{720 x}{e^{x}}=\lim \frac{720}{e^{x}}=0$.

6.3 Growth and Decay in Science and Economics

The applications in this section begin to suggest the power of the mathematics you are learning. Concentrate on understanding how to use $y=y_{0} e^{c t}$ and $y=y_{0} e^{c t}+\frac{\partial}{c}\left(e^{c t}-1\right)$ as you work the examples.

In Problems 1 and 2, solve the differential equations starting from $y_{0}=1$ and $y_{0}=-1$. Draw both solutions on the same graph.

1. $\frac{d y}{d t}=\frac{1}{3} y$ (pure exponential)
2. $\frac{d y}{d t}=\frac{1}{3} y+0.8$ (exponential with source term)

- Problem 1 says that the rate of change is proportional to y. There are no other complicating terms. Use the exponential law $y_{0} e^{c t}$ with $c=\frac{1}{3}$ and $y_{0}= \pm 1$. The graphs of $y= \pm e^{t / 3}$ are at left below.
- Problem 2 changes Problem 1 into $\frac{d y}{d t}=c y+s$. We have $c=\frac{1}{3}$ and $s=0.8$. Its solution is $y=y_{0} e^{t / 3}+\frac{0.8}{\frac{1}{3}}\left(e^{t / 3}-1\right)=y_{0} e^{t / 3}+2.4\left(e^{t / 3}-1\right)$. Study the graphs to see the effect of y_{0} and s. With a graphing calculator you can carry these studies further. See what happens if s is very large, or if s is negative. Exercise 6.3 .36 is also good for comparing the effects of various c 's and s 's.

3. (This is 6.3.5) Start from $y_{0}=10$. If $\frac{d y}{d t}=4 y$, at what time does y increase to 100 ?

- The solution is $y=y_{0} e^{c t}=10 e^{4 t}$. Set $y=100$ and solve for t :

$$
100=10 e^{4 t} \text { gives } 10=e^{4 t} \quad \text { and } \quad \ln 10=4 t . \quad \text { Then } t=\frac{1}{4} \ln 10
$$

4. Problem 6.3.6 looks the same as the last question, but the right side is $4 t$ instead of $4 y$. Note that $\frac{d y}{d t}=4 t$ is not exponential growth. The slope $\frac{d y}{d t}$ is proportional to t and the solution is simply $y=2 t^{2}+C$. Start at $y_{0}=C=10$. Setting $y=100$ gives $100=2 t^{2}+10$ and $t=\sqrt{45}$.

Problems 5-10 involve $y=y_{0} e^{c t}$.
5. Write the equation describing a bacterial colony growing exponentially. Start with 100 bacteria and end with 10^{6} after 30 hours.

- Right away we know $y_{0}=100$ and $y=100 e^{c t}$. We don't yet know c, but at $t=30$ we have $y=10^{6}=100 e^{30 c}$. Taking logarithms of $10^{4}=e^{30 c}$ gives $4 \ln 10=30 c$ or $\frac{4 \ln 10}{30}=c$. The equation is $y=100 e^{\left(\frac{\operatorname{lin} 10}{30} t\right)}$. More concisely, since $e^{\ln 10}=10$ this is $y=100 \cdot 10^{4 t / 30}$.

6. The number of cases of a disease increases by 2% a year. If there were 10,000 cases in 1992 , how many will there be in 1995?

- The direct approach is to multiply by 1.02 after every year. After three years $(1.02)^{3} 10,000 \approx 10,612$.
- We can also use $y=10^{4} e^{c t}$. The 2% increase means $c=\ln (1.02)$. After three years (1992 to 1995) we set $t=3: y=10^{4} e^{3(\ln 1.02)}=10,612$.
This is not the same as $y=10^{4} e^{.02 t}$. That is continuous growth at 2%. It is continuous compounding, and $e^{.02}=1.0202 \cdots$ is a little different from 1.02 .

7. How would Problem 6 change if the number of cases decreases by 2% ?

- A 2% decrease changes the multiplier to .98 . Then $c=\ln (.98)$. In 3 years there would be 9,411 cases.

8. (This is 6.3.15) The population of Cairo grew exponentially from 5 million to 10 million in 20 years. Find the equation for Cairo's population. When was $y=8$ million?

- Starting from $y_{0}=5$ million $=5 \cdot 10^{6}$ the population is $y=5 \cdot 10^{6} e^{c t}$. The doubling time $\frac{\ln 2}{c}$ is 20 years. We deduce that $c=\frac{\ln 2}{20}=.035$ and $y=5 \cdot 10^{6} e^{.035 t}$. This reaches 8 million $=8 \cdot 10^{6}$ when $\frac{8}{5}=e^{.035 t}$. Then $t=\frac{\ln \frac{8}{5}}{.035} \approx 13.6$ years.

9. If $y=4500$ at $t=4$ and $y=90$ at $t=10$, what was y at $t=0$? (We are assuming exponential decay.)

- The first part says that $y=4500 e^{c(t-4)}$. The t in the basic formula is replaced by $(t-4)$. [The "shifted" formula is $y=y_{T} e^{c(t-T)}$.] Note that $y=4500$ when $t=4$, as required. Since $y=90$ when $t=10$, we have $90=4500 e^{6 c}$ and $e^{6 c}=\frac{90}{4500}=.02$. This means $6 c=\ln .02$ and $c=\frac{1}{6} \ln .02$. Finally, set $t=0$ to get the amount at that time: $y=4500 e^{\left(\frac{1}{6} \ln .02\right)(0-4)} \approx 61074$.

10. (Problem 6.3.13) How old is a skull containing $\frac{1}{5}$ as much radiocarbon as a modern skull?

- Information about radioactive dating is on pages 243-245. Since the half-life of carbon 14 is 5568 years, the amount left at time t is $y_{0} e^{c t}$ with exponent $c=\frac{\ln 1 / 2}{5568}=\frac{-\ln 2}{5568}$. We do not know the initial amount y_{0}. But we can use $y_{0}=1(100 \%$ at the start $)$ and $y=\frac{1}{5}=0.2$ at the unknown age t. Then

$$
0.2=e^{\frac{-\ln 2}{5368} t} \text { yields } t=\frac{(\ln 0.2) 5568}{-\ln 2}=31,425 \text { years }
$$

11. (Problem 6.3.37) What value $y=$ constant solves $\frac{d y}{d t}=4-y$? Show that $y(t)=A e^{-t}+4$ is also a solution. Find $y(1)$ and y_{∞} if $y_{0}=3$.

- If y is constant, then $\frac{d y}{d t}=0$. Therefore $y-4=0$. The steady state y_{∞} is the constant $y=4$.
- A non-constant solution is $y(t)=A e^{-t}+4$. Check: $\frac{d y}{d t}=-A e^{-t}$ equals $4-y=4-\left(A e^{-t}+4\right)$.
- If we know $y(0)=A+4=3$, then $A=-1$. In this case $y(t)=-1 e^{-t}+4$ gives $y(1)=4-\frac{1}{e}$.
- To find y_{∞}, let $t \rightarrow \infty$. Then $y=-e^{-t}+4$ goes to $y_{\infty}=4$, the expected steady state.

12. (Problem 6.3.46) (a) To have $\$ 50,000$ for college tuition in 20 years, what gift y_{0} should a grandparent make now? Assume $c=10 \%$. (b) What continuous deposit should a parent make during 20 years to save $\$ 50,000$? (c) If the parent saves $s=\$ 1000$ per year, when does the account reach $\$ 50,000$?

- Part (a) is a question about the present value y_{0}, if the gift is worth $\$ 50,000$ in 20 years. The formula $y=y_{0} e^{c t}$ turns into $y_{0}=y e^{-c t}=(50,000) e^{-0.1(20)}=\$ 6767$.
- Part (b) is different because there is a continuous deposit instead of one lump sum. In the formula $y_{0} e^{c t}+\frac{s}{c}\left(e^{c t}-1\right)$ we know $y_{0}=0$ and $c=10 \%=0.1$. We want to choose s so that $y=50,000$ when $t=20$. Therefore $50,000=\frac{s}{0.1}\left(e^{(0.1) 20}-1\right)$. This gives $s=782.59$. The parents should continuously deposit $\$ 782.59$ per year for 20 years.
- Part (c) asks how long it would take to accumulate $\$ 50,000$ if the deposit is $s=\$ 1000$ per year.

$$
50,000=\frac{1000}{0.1}\left(e^{0.1 t}-1\right) \text { leads to } 5=e^{0.1 t}-1 \text { and } t=\frac{\ln 6}{0.1}=17.9 \text { years }
$$

This method takes 17.9 years to accumulate the tuition. The smaller deposit $s=\$ 782.59$ took 20 years.
13. (Problem 6.3.50) For how long can you withdraw $\$ 500 /$ year after depositing $\$ 5000$ at a continuous rate of 8% ? At time t you run dry: and $y(t)=0$.

- This situation uses both terms of the formula $y=y_{0} e^{c t}+\frac{s}{c}\left(e^{c t}-1\right)$. There is an initial value $y_{0}=5000$ and a sink (negative source) of $s=-500 /$ year. With $c=.08$ we find the time t when $y=0$:

$$
\text { Multiply } 0=5000 e^{.08 t}-\frac{500}{.08}\left(e^{.08 t}-1\right) \text { by } .08 \text { to get } 0=400 e^{.08 t}-500\left(e^{.08 t}-1\right)
$$

Then $e^{.08 t}=\frac{500}{100}=5$ and $t=\frac{\ln 5}{.08}=20.1$. You have 20 years of income.
14. Your Thanksgiving turkey is at $40^{\circ} \mathrm{F}$ when it goes into a 350° oven at 10 o'clock. At noon the meat thermometer reads 110°. When will the turkey be done (195°)?

- Newton's law of cooling applies even though the turkey is warming. Its temperature is approaching $y_{\infty}=350^{\circ}$ from $y_{0}=40^{\circ}$. Using method 3 (page 250) we have $(y-350)=(40-350) e^{c t}$. The value of c varies from turkey to turkey. To find c for your particular turkey, substitute $y=110$ when $t=2$:

$$
110-350=-310 e^{2 c} \Rightarrow \frac{-240}{-310}=e^{2 c} \Rightarrow \ln \frac{24}{31}=2 c \Rightarrow c=\frac{1}{2} \ln \frac{24}{31}=-.128
$$

The equation for y is $350-310 e^{-.128 t}$. The turkey is done when $y=195$:

$$
195=350-310 e^{-.128 t} \text { or } \frac{195-350}{-310}=e^{-.128 t} \text { or }-.128 t=\ln \frac{-155}{-310}=\ln \frac{1}{2}
$$

This gives $t=5.4$ hours. You can start making gravy at $3: 24$.

Read-throughs and selected even-numbered solutions :

If $y^{\prime}=c y$ then $y(t)=\mathbf{y}_{0} \mathbf{e}^{\mathbf{c t}}$. If $d y / d t=7 y$ and $y_{0}=4$ then $y(t)=4 \mathbf{e}^{7 \mathbf{t}}$. This solution reaches 8 at $t=\frac{\ln 2}{7}$. If the doubling time is T then $c=\frac{\ln 2}{T}$. If $y^{\prime}=3 y$ and $y(1)=9$ then y_{0} was $9 \mathbf{e}^{-3}$. When c is negative, the solution approaches zero as $t \rightarrow \infty$.

The constant solution to $d y / d t=y+6$ is $y=-6$. The general solution is $y=A e^{t}-6$. If $y_{0}=4$ then $A=10$. The solution of $d y / d t=c y+s$ starting from y_{0} is $y=A e^{c t}+B=\left(y_{0}+\frac{\mathbf{s}}{\mathbf{c}}\right) \mathbf{e}^{\mathbf{c t}}-\frac{\mathbf{s}}{\mathbf{c}}$. The output from the source is $\frac{\mathbf{g}}{\mathbf{c}}\left(\mathbf{e}^{\mathbf{c t}}-1\right)$. An input at time T grows by the factor $\mathbf{e}^{\mathbf{c}(\mathbf{t}-\mathbf{T})}$ at time t.

At $c=10 \%$, the interest in time $d t$ is $d y=.01 \mathrm{y} \mathrm{dt}$. This equation yields $y(t)=y_{0} \mathbf{e}^{.01} \mathrm{t}$. With a source term instead of y_{0}, a continuous deposit of $s=4000 /$ year yields $y=40,000(e-1)$ after ten years. The deposit required to produce 10,000 in 10 years is $s=\mathbf{y c} /\left(\mathbf{e}^{\mathbf{c t}}-\mathbf{1}\right)=\mathbf{1 0 0 0} /(\mathbf{e}-\mathbf{1})$. An income of $4000 /$ year forever (!) comes from $y_{0}=40,000$. The deposit to give $4000 /$ year for 20 years is $y_{0}=40,000\left(1-e^{-2}\right)$. The payment rate s to clear a loan of 10,000 in 10 years is $1000 e /(\mathbf{e}-\mathbf{1})$ per year.

The solution to $y^{\prime}=-3 y+s$ approaches $y_{\infty}=\mathbf{s} / \mathbf{3}$.

12 To multiply again by 10 takes ten more hours, a total of 20 hours. If $e^{10 c}=10$ (and $e^{20 c}=100$) then $10 c=\ln 10$ and $\mathbf{c}=\frac{\ln 10}{10} \approx .23$.
$168 e^{.01 t}=6 e^{.014 t}$ gives $\frac{8}{6}=e^{.004 t}$ and $t=\frac{1}{.004} \ln \frac{8}{6}=250 \ln \frac{4}{3}=72$ years.
24 Go from 4 mg back down to 1 mg in T hours. Then $e^{-.01 T}=\frac{1}{4}$ and $-.01 T=\ln \frac{1}{4}$ and $T=\frac{\ln \frac{1}{4}}{-.01}=139$ hours (not so realistic).
28 Given $m v=m v-v \Delta m+m \Delta v-(\Delta m) \Delta v+\Delta m(v-7)$; cancel terms to leave $m \Delta v-(\Delta m) \Delta v=7 \Delta m$; divide by Δm and approach the limit $m \frac{d \mathbf{v}}{\mathrm{dm}}=\mathbf{7}$. Then $v=7 \ln m+C$. At $t=0$ this is $20=7 \ln 4+C$ so that $v=7 \ln m+20-7 \ln 4=7 \ln \frac{m}{4}+20$.
36 (a) $\frac{d y}{d t}=3 y+6$ gives $y \rightarrow \infty$
(b) $\frac{d y}{d t}=-3 y+6$ gives $y \rightarrow 2$
(c) $\frac{d y}{d t}=-3 y-6$ gives $y \rightarrow-2$
(d) $\frac{d y}{d t}=3 y-6$ gives $y \rightarrow-\infty$.
$42 \$ 1000$ changes by $(\$ 1000)(-.04 d t)$, a decrease of $40 d t$ dollars in time $d t$. The printing rate should be $s=40$.
48 The deposit of $4 d T$ grows with factor c from time T to time t, and reaches $e^{c(t-T)} 4 d T$. With $t=2$ add deposits from $T=0$ to $T=1: \int_{0}^{1} e^{c(2-T)} 4 d T=\left[\frac{4 e^{c(2-T)}}{-c}\right]_{0}^{1}=\frac{4 \mathrm{e}^{\mathrm{c}}-4 \mathrm{e}^{2 \mathrm{c}}}{-\mathrm{c}}$.
58 If $\frac{d y}{d t}=-y+7$ then $\frac{d y}{d t}$ is zero at $y_{\infty}=7$ (this is $-\frac{s}{c}=\frac{7}{1}$). The derivative of $y-y_{\infty}$ is $\frac{d y}{d t}$, so the derivative of $y-7$ is $-(y-7)$. The decay rate is $c=-1$, and $\mathbf{y}-\mathbf{7}=\mathbf{e}^{-\mathbf{t}}\left(\mathbf{y}_{\mathbf{0}}-\mathbf{7}\right)$.
60 All solutions to $\frac{d y}{d t}=c(y-12)$ converge to $y=12$ provided c is negative.
66 (a) The white coffee cools to $y_{\infty}+\left(y_{0}-y_{\infty}\right) e^{c t}=20+40 e^{c t}$. (b) The black coffee cools to $20+50 e^{c t}$. The milk warms to $20-10 \mathbf{e}^{\mathbf{c t}}$. The mixture $\frac{5 \text { (black coffee) }+1(\text { milk })}{6}$ has $20+\frac{250-10}{6} e^{c t}=\mathbf{2 0}+\mathbf{4 0} \mathbf{e}^{\mathbf{c t}}$. So it doesn't matter when you add the milk!

6.4 Logarithms (page 258)

This short section is packed with important information and techniques - how to differentiate and integrate logarithms, logarithms as areas, approximation of logarithms, and logarithmic differentiation (LD). The examples cover each of these topics:

Derivatives The rule for $y=\ln u$ is $\frac{d y}{d x}=\frac{1}{u} \frac{d u}{d x}$. With a different base b, the rule for $y=\log _{b} u=\frac{\ln u}{\ln b}$ is $\frac{d y}{d x}=\frac{1}{u \ln b} \frac{d u}{d x}$. Find $\frac{d y}{d x}$ in Problems 1-4.

1. $y=\ln (5-x)$. $\quad \bullet u=5-x$ so $\frac{d y}{d x}=\left(\frac{1}{5-x}\right)(-1)=\frac{1}{x-5}$.
2. $y=\log _{10}(\sin x)$. - Change to base e with $y=\frac{\ln (\sin x)}{\ln 10}$. Now $\frac{d y}{d x}=\frac{1}{\ln 10} \cdot \frac{1}{\sin x} \cdot \cos x$.
3. $y=(\ln x)^{3}$. - This is $y=u^{3}$, so $\frac{d y}{d x}=3 u^{2} \frac{d u}{d x}=3(\ln x)^{2} \frac{1}{x}$.
4. $y=\tan x \ln \sin x$. © The product rule gives

$$
\frac{d y}{d x}=\tan x \cdot \frac{1}{\sin x} \cdot \cos x+\sec ^{2} x(\ln \sin x)=1+\sec ^{2} x(\ln \sin x) .
$$

5. (This is 6.4.53) Find $\lim _{x \rightarrow 0} \frac{\log _{b}(1+x)}{x}$.

- This limit takes the form $\frac{0}{0}$, so turn to l'Hôpital's rule (Section 3.8). The derivative of $\log _{b}(1+x)$ is $\left(\frac{1}{\ln b}\right)\left(\frac{1}{1+x}\right)$. The derivative of x is 1 . The ratio is $\frac{1}{(\ln b)(1+x)}$ which approaches $\frac{1}{\ln b}$.

Logarithms as areas

6. (This is 6.4.56) Estimate the area under $y=\frac{1}{x}$ for $4 \leq x \leq 8$ by four trapezoids. What is the exact area?

- Each trapezoid has base $\Delta x=1$, so four trapezoids take us from $x=4$ to $x=8$. With $y=\frac{1}{x}$ the sides of the trapezoids are the heights $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}=\frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}$. The total trapezoidal area is

$$
\Delta x\left(\frac{1}{2} y_{0}+y_{1}+y_{2}+y_{3}+\frac{1}{2} y_{4}\right)=1\left(\frac{1}{8}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{16}\right)=0.6970 .
$$

To get the exact area we integrate $\int_{4}^{8} \frac{1}{x} d x=\ln 8-\ln 4=\ln \frac{8}{4}=\ln 2 \approx 0.6931$. It is interesting to compare with the trapezoidal area from $x=1$ to $x=2$. The exact area $\int_{1}^{2} \frac{1}{x} d x$ is still $\ln 2$. Now $\Delta x=\frac{1}{4}$ and the heights are $\frac{1}{1}, \frac{1}{\frac{3}{4}}, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}$. The total trapezoidal area comes from the same rule:

$$
\frac{1}{4}\left(\frac{1}{2} \cdot \frac{1}{1}+\frac{4}{5}+\frac{4}{6}+\frac{4}{7}+\frac{1}{2} \cdot \frac{1}{2}\right)=\left(\frac{1}{8}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{16}\right)=0.6970 \text { as before. }
$$

The sum is not changed! This is another way to see why $\ln 8-\ln 4$ is equal to $\ln 2-\ln 1$. The area stays the same when we integrate $\frac{1}{x}$ from any a to $2 a$.
Questions 7 and 8 are about approximations going as far as the x^{3} term:

$$
\ln (1+x) \approx x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \quad \text { and } \quad e^{x} \approx 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6} .
$$

7. Approximate $\ln (.98)$ by choosing $x=-.02$. Then $1+x=.98$.

- $\ln (1-.02) \approx(-.02)-\frac{(-.02)^{2}}{2}+\frac{(-.02)^{3}}{3}=-.0202026667$.

The calculator gives $\ln .98=-.0202027073$. Somebody is wrong by $4 \cdot 10^{-8}$.
8. Find a quadratic approximation (this means x^{2} terms) near $x=0$ for $y=2^{x}$.

- 2^{x} is the same as $e^{x \ln 2}$. Put $x \ln 2$ into the series. The approximation is $1+x \ln 2+\frac{(\ln 2)^{2}}{2} x^{2}$.

Integration The basic rule is $\int \frac{d u}{u}=\ln |u|+C$. Why not just $\ln u+C$? Go back to the definition of $\ln u$ $=$ area under the curve $y=\frac{1}{x}$ from $x=1$ to $x=u$. Here u must be positive since we cannot cross $x=0$, where $\frac{1}{x}$ blows up. However if u stays negative, there is something we can do. Write $\int \frac{d u}{u}=\int \frac{-d u}{-u}$. The denominator $-u$ is positive and the numerator is its derivative! In that case, $\int \frac{-d u}{-u}=\ln (-u)+C$. The expression $\int \frac{d u}{u}=\ln |u|+C$ covers both cases. When you know u is positive, as in $\ln \left(x^{2}+1\right)$, leave off the absolute value sign.

For definite integrals, the limits of integration should tell you whether u is negative or positive. Here are two examples with $u=\sin x$:

$$
\left.\int_{\pi / 4}^{\pi / 2} \frac{\cos x}{\sin x} d x=\left.\ln (\sin x)\right|_{\pi / 4} ^{\pi / 2} \quad \int_{\pi / 2}^{3 \pi / 4} \frac{\cos x}{\sin x} d x=\ln |\sin x|\right]_{\pi / 2}^{3 \pi / 4}
$$

The integral $\int_{0}^{\pi} \frac{\cos x}{\sin x} d x$ is illegal. It starts and ends with $u=\sin x=0$
9. Integrate $\int \frac{x d x}{1-x^{2}}$.

- Let $1-x^{2}$ equal u. Then $d u=-2 x d x$. The integral becomes $-\frac{1}{2} \int \frac{d u}{u}=-\frac{1}{2} \ln |u|+C$. This is $-\frac{1}{2} \ln \left|1-x^{2}\right|+C$. Avoid $x= \pm 1$ where $u=0$.

10. Integrate $\int \frac{x d x}{1-x}$. This is not $\int \frac{d u}{u}$. But we can write $\frac{x}{1-x}$ as $-1+\frac{1}{1-x}$:

- $\int \frac{x d x}{1-x}=\int\left(-1+\frac{1}{1-x}\right) d x=-x-\ln |1-x|+C$.

11. (This is 6.4.18) Integrate $\int_{2}^{e} \frac{d x}{x(\ln x)^{2}}$.

- A sneaky one, not $\frac{d u}{u}$. Set $u=\ln x$ and $d u=\frac{d x}{x}$:

$$
\int_{\ln 2}^{1} \frac{d u}{u^{2}}=-\frac{1}{u} \ln ^{1} 2=-1+\frac{1}{\ln 2} .
$$

Logarithmic differentiation (LD) greatly simplifies derivatives of powers and products, and quotients. To find the derivative of $x^{1 / x}, \mathbf{L D}$ is the best way to go. (Exponential differentiation in Problem 6.5.70 amounts to the same thing.) The secret is in decomposing the original expression. Here are examples:
12. $y=\frac{\left(x^{2}+7\right)^{3}}{\sqrt{x^{3}-9}}\left(4 x^{8}\right)$ leads to $\ln y=3 \ln \left(x^{2}+7\right)+\ln 4+8 \ln x-\frac{1}{2} \ln \left(x^{3}-9\right)$.

Multiplication has become addition. Division has become subtraction. The powers 3, 8, $\frac{1}{2}$ now multiply. This is as far as logarithms can go. Do not try to separate $\ln x^{2}$ and $\ln 7$. Take the derivative of $\ln y$:

- $\frac{1}{y} \frac{d y}{d x}=3 \frac{2 x}{x^{2}+7}+0+\frac{8}{x}-\frac{3 x^{2}}{2\left(x^{3}-9\right)}$.

If you substitute back for y then $\frac{d y}{d x}=\frac{\left(x^{2}+7\right)^{3} \cdot 4 x^{8}}{\sqrt{x^{3}-9}}\left[\frac{6 x}{x^{2}+7}+\frac{8}{x}-\frac{3 x^{2}}{2\left(x^{3}-9\right)}\right]$.
13. $y=(\sin x)^{x^{2}}$ has a function $\sin x$ raised to a functional power x^{2}. LD is necessary.

- First take logarithms: $\ln y=x^{2} \ln \sin x$. Now take the derivative of both sides. Notice especially the left side: $\frac{1}{y} \frac{d y}{d x}=x^{2} \frac{\cos x}{\sin x}+2 x \ln \sin x$. Multiply by y to find $\frac{d y}{d x}$.

14. Find the tangent line $y^{2}(2-x)=x^{3}$ at the point $(1,1)$. ID and LD are useful but not necessary.

- We need to know the slope $d y / d x$ at $(1,1)$. Taking logarithms gives

$$
\ln y^{2}+\ln (2-x)=\ln x^{3} \text { or } 2 \ln y+\ln (2-x)=3 \ln x .
$$

Now take the x derivative of both sides: $\frac{2}{y} \frac{d y}{d x}+\frac{-1}{2-x}=\frac{3}{x}$. Plug in $x=1, y=1$ to get $2 \frac{d y}{d x}+\frac{-1}{1}=3$ or $\frac{d y}{d x}=2$. The tangent line through $(1,1)$ with slope 2 is $y-1=2(x-1)$.

Read-throughs and selected even-numbered solutions :

The natural logarithm of x is $\int_{1}^{x} \frac{d t}{t}\left(\right.$ or $\left.\int_{1}^{x} \frac{d x}{x}\right)$. This definition leads to $\ln x y=\ln x+\ln y$ and $\ln x^{n}=$ $n \ln \mathbf{x}$. Then e is the number whose logarithm (area under $1 / x$ curve) is 1 . Similarly e^{x} is now defined as the number whose natural logarithm is \mathbf{x}. As $x \rightarrow \infty, \ln x$ approaches infinity. But the ratio $(\ln x) / \sqrt{x}$ approaches zero. The domain and range of $\ln x$ are $\mathbf{0}<\mathbf{x}<\infty,-\infty<\ln \mathbf{x}<\infty$.

The derivative of $\ln x$ is $\frac{\mathbf{1}}{\mathbf{x}}$. The derivative of $\ln (1+x)$ is $\frac{\mathbf{1}}{\mathbf{1 + x}}$. The tangent approximation to $\ln (1+x)$ at $x=0$ is \mathbf{x}. The quadratic approximation is $\mathbf{x}-\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}^{\mathbf{2}}$. The quadratic approximation to e^{x} is $\mathbf{1}+\mathbf{x}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{x}^{\mathbf{2}}$.

The derivative of $\ln u(x)$ by the chain rule is $\frac{1}{\mathbf{u}(\mathbf{x})} \frac{\mathrm{du}}{\mathrm{dx}}$. Thus $(\ln \cos x)^{\prime}=-\frac{\sin x}{\cos \mathbf{x}}=-\tan x$. An antiderivative of $\tan x$ is $-\ln \cos \mathbf{x}$. The product $p=x e^{5 x}$ has $\ln p=\mathbf{5 x}+\ln \mathbf{x}$. The derivative of this equation is $\mathbf{p}^{\prime} / \mathbf{p}=\mathbf{5}+\frac{\mathbf{1}}{\mathbf{x}}$. Multiplying by p gives $p^{\prime}=x \mathbf{e}^{5 x}\left(5+\frac{1}{x}\right)=5 x \mathbf{e}^{5 x}+\mathbf{e}^{5 x}$, which is LD or logarithmic differentiation.

The integral of $u^{\prime}(x) / u(x)$ is $\ln u(x)$. The integral of $2 x /\left(x^{2}+4\right)$ is $\ln \left(x^{2}+4\right)$. The integral of $1 / c x$ is $\frac{\ln x}{c}$. The integral of $1 /(c t+s)$ is $\frac{\ln (\mathbf{c t}+\mathbf{s})}{\mathbf{c}}$. The integral of $1 / \cos x$, after a trick, is $\ln (\sec \mathbf{x}+\tan \mathbf{x})$. We should write $\ln |x|$ for the antiderivative of $1 / x$, since this allows $\mathbf{x}<0$. Similarly $\int d u / u$ should be written $\ln |u|$.
$4 \frac{x\left(\frac{1}{x}\right)-(\ln x)}{x^{2}}=\frac{1-\ln \mathbf{x}}{\mathbf{x}^{2}} 6$ Use $\left(\log _{e} 10\right)\left(\log _{10} x\right)=\log _{e} x$. Then $\frac{d}{d x}\left(\log _{10} x\right)=\frac{1}{\log _{e} 10} \cdot \frac{1}{x}=\frac{1}{\mathrm{x} \ln 10}$.
$16 y=\frac{x^{3}}{x^{2}+1}$ equals $x-\frac{x}{x^{2}+1}$. Its integral is $\left[\frac{1}{2} x^{2}-\left.\frac{1}{2} \ln \left(x^{2}+1\right)\right|_{0} ^{2}=\mathbf{2}-\frac{\mathbf{1}}{\mathbf{2}} \ln 5\right.$.
$20 \int \frac{\sin x}{\cos x} d x=\int \frac{-d u}{u}=-\ln u=-\ln (\cos x) \int_{0}^{\pi / 4}=-\ln \frac{1}{\sqrt{2}}+0=\frac{\mathbf{1}}{\mathbf{2}} \ln 2$.
24 Set $u=\ln \ln x$. By the chain rule $\frac{d u}{d x}=\frac{1}{\ln x} \frac{1}{x}$. Our integral is $\int \frac{d u}{u}=\ln u=\ln (\ln (\ln x))+C$.
$28 \ln y=\frac{1}{2} \ln \left(x^{2}+1\right)+\frac{1}{2} \ln \left(x^{2}-1\right)$. Then $\frac{1}{y} \frac{d y}{d x}=\frac{x}{x^{2}+1}+\frac{x}{x^{2}-1}=\frac{2 x^{3}}{x^{4}-1}$. Then $\frac{d y}{d x}=\frac{2 x^{3} y}{x^{4}-1}=\frac{2 x^{3}}{\sqrt{x^{4}-1}}$.
$36 \ln y=-\ln x$ so $\frac{1}{y} \frac{d y}{d x}=\frac{-1}{x}$ and $\frac{d y}{d x}=-\frac{e^{-\ln x}}{x}$. Alternatively we have $y=\frac{1}{x}$ and $\frac{d y}{d x}=-\frac{1}{\mathbf{x}^{2}}$.
$40 \frac{d}{d x} \ln x=\frac{1}{\mathrm{X}}$. Alternatively use $\frac{1}{x^{2}} \frac{d}{d x}\left(x^{2}\right)-\frac{1}{x} \frac{d}{d x}(x)=\frac{1}{x}$.
54 Use l'Hôpital's Rule: $\lim _{x \rightarrow 0} \frac{b^{x} \ln b}{1}=\ln \mathbf{b}$. We have redone the derivative of b^{x} at $x=0$.
$62 \frac{1}{x} \ln \frac{1}{x}=-\frac{\ln x}{x} \rightarrow 0$ as $x \rightarrow \infty$. This means $y \ln y \rightarrow 0$ as $y=\frac{1}{x} \rightarrow 0$. (Emphasize: The factor $y \rightarrow 0$ is "stronger" than the factor $\ln y \rightarrow-\infty$.)
70 LD: $\ln p=x \ln x$ so $\frac{1}{p} \frac{d p}{d x}=1+\ln x$ and $\frac{d p}{d x}=p(1+\ln x)=x^{x}(1+\ln x)$. Now find the same answer by ED: $\frac{d}{d x}\left(e^{x \ln x}\right)=e^{x \ln x} \frac{d}{d x}(x \ln x)=x^{x}(1+\ln x)$.

6.5 Separable Equations Including the Logistic Equation 266)

Separation of variables works so well (when it works) that there is a big temptation to use it often and wildly. I asked my class to integrate the function $y(x)=\frac{d}{d x}\left(e^{1+x^{2}}\right)$ from $x=0$ to $x=3$. The point of this question is that you don't have to take the derivative of $e^{1+x^{2}}$. When you integrate, that brings back the original function. So the answer is

$$
\int_{0}^{3} y(x) d x=\left[e^{1+x^{2}}\right]_{0}^{3}=e^{10}-e
$$

One mistake was to write that answer as e^{9}. The separation of variables mistake was in $y d y$:
from $y=\frac{d}{d x}\left(e^{1+x^{2}}\right)$ the class wrote $\int y d y=\int \frac{d}{d x}\left(e^{1+x^{2}}\right) d x$.
You can't multiply one side by $d y$ and the other side by $d x$. This mistake leads to $\frac{1}{2} y^{2}$ which shouldn't appear. Separation of variables starts from $\frac{d y}{d x}=u(y) v(x)$ and does the same thing to both sides. Divide by $u(y)$, multiply by $d x$, and integrate. Then $\int d y / u(y)=\int v(x) d x$. Now a y-integral equals an x-integral.
Solve the differential equations in Problems 1 and 2 by separating variables.

1. $\frac{d y}{d x}=\sqrt{x y}$ with $y_{0}=4$ (which means $y(0)=4$.)

- First, move $d x$ to the right side and \sqrt{y} to the left: $\frac{d y}{y^{1 / 2}}=x^{1 / 2} d x$. Second, integrate both sides: $2 y^{1 / 2}=\frac{2}{3} x^{3 / 2}+C$. (This constant C combines the constants for each integral.) Third, solve for $y=$ $\left(\frac{1}{3} x^{3 / 2}+C\right)^{2}$. Here $C / 2$ became C. Half a constant is another constant. This is the general solution. Fourth, use the starting value $y_{0}=4$ to find C :

$$
4=\left(\frac{1}{3}(0)^{3 / 2}+C\right)^{2} \text { yields } C= \pm 2 . \text { Then } y=\left(\frac{1}{3} x^{3 / 2} \pm 2\right)^{2}
$$

2. Solve $(x-3) t d t+\left(t^{2}+1\right) d x=0$ with $x=5$ when $t=0$.

- Divide both sides by $(x-3)\left(t^{2}+1\right)$ to separate t from x :

$$
\frac{t d t}{t^{2}+1}+\frac{d x}{x-3}=0 \text { or }-\int \frac{t d t}{t^{2}+1}=\int \frac{d x}{x-3}
$$

Integrating gives $-\frac{1}{2} \ln \left(t^{2}+1\right)=\ln (x-3)+C$ or $\left(t^{2}+1\right)^{-1 / 2}=e^{C}(x-3)$. Since $x=5$ when $t=0$ we have $1=2 e^{C}$. Put $e^{C}=\frac{1}{2}$ into the solution to find $x-3=2\left(t^{2}+1\right)^{-1 / 2}$ or $x=3+2\left(t^{2}+1\right)^{-1 / 2}$. Problems 3-5 deal with the logistic equation $y^{\prime}=c y-b y^{2}$.
3. (This is 6.5.15.) Solve $\frac{d z}{d t}=-z+1$ with $z_{0}=2$. Turned upside down, what is $y=\frac{1}{z}$? Graph y and z.

- Separation of variables gives $\frac{d z}{-z+1}=d t$ or $-\ln |-z+1|=t+C$. Put in $z=2$ when $t=0$ to find $C=0$. Also notice that $-2+1$ is negative. The absolute value is reversing the sign. So we have

$$
-\ln (z-1)=t \quad \text { or } \quad z-1=e^{-t} \quad \text { or } \quad z=e^{-t}+1
$$

Now $y=\frac{1}{z}=\frac{1}{1+e^{-t}}$. According to Problem 6.3.15, this y solves the logistic equation $y^{\prime}=y-y^{2}$.

4. Each graph above is an S-curve that solves a logistic equation $y^{\prime}= \pm y \pm b y^{2}$ with $c=1$ or $c=-1$. Each has an inflection point at $(2.2,50)$. Find the differential equations and the solutions.

- The first graph shows $y_{0}=10$. The inflection point is at height $\frac{c}{2 b}=50$. Then $c=1$ and $b=\frac{c}{100}=.01$. The limiting value $y_{\infty}=\frac{c}{b}$ is twice as high at $y_{\infty}=100$. The differential equation is $d y / d t=y-.01 y^{2}$. The solution is given by equation (12) on page 263:

$$
y=\frac{c}{b+d e^{-c t}} \text { where } d=\frac{c-b y_{0}}{y_{0}}=\frac{1-(.01)(10)}{10}=.09 . \text { Then } y=\frac{1}{.01-.09 e^{-t}}
$$

The second graph must solve the differential equation $\frac{d y}{d t}=-y+b y^{2}$. Its slope is just the opposite of the first. Again we have $\frac{c}{2 b}=50$ and $b=0.01$. Substitute $c=-1$ and $y_{0}=90$:

$$
d=\frac{c-b y_{0}}{y_{0}}=\frac{-1+.01(90)}{90}=\frac{-1}{900} \text { and } y(t)=\frac{-1}{-.01-\frac{e^{t}}{900}}=\frac{900}{9+e^{t}}
$$

This is a case where death wins. Since $y_{0}<\frac{c}{b}=100$ the population dies out before the cooperation term $+b y^{2}$ is strong enough to save it. See Example 6 on page 264 of the text.
5. Change y_{0} in Problem 4 to 110. Then $y_{0}>\frac{c}{b}=100$. Find the solution $y(t)$ and graph it.

- As in $4(\mathrm{~b})$ the equation is $\frac{d y}{d t}=-y+.01 y^{2}$. Since y_{0} is now 110 , the solution has

$$
d=\frac{-1+.01(110)}{110}=\frac{1}{1100} \text { and } y(t)=\frac{-1}{-.01+\frac{e^{t}}{1100}}=\frac{1100}{11-e^{t}}
$$

The graph is sketched below. After a sluggish start, the population blows up at $t=\ln 11$.

6. Draw a y-line for $y^{\prime}=y-y^{3}$. Which steady states are approached from which initial values y_{0} ?

- Factor $y-y^{3}$ to get $y^{\prime}=y(1-y)(1+y)$. A steady state has $y^{\prime}=0$. This occurs at $y=0,1$, and -1 . Plot those points on the straight line. They are not all attracting.
Now consider the sign of $y(1-y)(1+y)=y^{\prime}$. If y is below $-1, y^{\prime}$ is positive. (Two factors y and $1+y$ are negative but their product is positive.) If y is between -1 and $0, y^{\prime}$ is negative and y decreases. If y is between 0 and 1 , all factors are positive and so is y^{\prime}. Finally, if $y>1$ then y^{\prime} is negative.

The signs of y^{\prime} are +-+- . The curved line $f(y)$ is sketched to show those signs. A positive y^{\prime} means an increasing y. So the solution moves toward -1 and also toward +1 . It moves away from $y=0$, because y is increasing on the right of zero and decreasing on the left of zero.
The arrows in the y-line point to the left when y^{\prime} is negative. The sketch shows that $y=-1$ and $y=+1$ are stable steady states. They are attracting, while $y=0$ is an unstable (or repelling) stationary point. The solution approaches -1 from $y_{0}<0$, and it approaches +1 from $y_{0}>0$.

Read-throughs and selected even-numbered solutions :

The equations $d y / d t=c y$ and $d y / d t=c y+s$ and $d y / d t=u(y) v(t)$ are called separable because we can separate y from t. Integration of $\int d y / y=\int c d t$ gives $\ln y=c t+$ constant. Integration of $\int d y /(y+s / c)=$ $\int c d t \operatorname{gives} \ln \left(\mathbf{y}+\frac{\mathbf{s}}{\mathbf{c}}\right)=\mathbf{c t}+\mathbf{C}$. The equation $d y / d x=-x / y$ leads to $\int \mathbf{y d y}=-\int \mathbf{x} d \mathbf{x}$. Then $y^{2}+x^{2}=$ constant and the solution stays on a circle.

The logistic equation is $d y / d t=c y-b y^{2}$. The new term $-b y^{2}$ represents competition when $c y$ represents growth. Separation gives $\int d y /\left(c y-b y^{2}\right)=\int d t$, and the y-integral is $1 / c$ times $\ln \frac{\mathbf{y}}{\mathbf{c}-\mathrm{by}}$. Substituting y_{0} at $t=0$ and taking exponentials produces $y /(c-b y)=e^{c t} \mathbf{y}_{0} /\left(c-b y_{0}\right)$. As $t \rightarrow \infty$, y approaches $\frac{\mathrm{c}}{\mathrm{b}}$. That is the steady state where $c y-b y^{2}=\mathbf{0}$. The graph of y looks like an \mathbf{S}, because it has an inflection point at $\frac{1}{2} \frac{c}{b}$.

In biology and chemistry, concentrations y and z react at a rate proportional to y times z. This is the Law of Mass Action. In a model equation $d y / d t=c(y) y$, the rate c depends on \mathbf{y}. The MM equation is
$d y / d t=-\mathbf{c y} /(\mathbf{y}+\mathbf{K})$. Separating variables yields $\int \frac{\mathbf{y}+\mathbf{K}}{\mathbf{y}} d y=\int-\mathbf{c} \mathbf{d t}=-c t+C$.
$6 \frac{d y}{\tan y}=\cos x d x$ gives $\ln (\sin y)=\sin x+C$. Then $C=\ln (\sin 1)$ at $x=0$. After taking exponentials $\sin y=(\sin 1) \mathrm{e}^{\sin x}$. No solution after $\sin y$ reaches 1 (at the point where $(\sin 1) e^{\sin x}=1$).
$8 e^{y} d y=e^{t} d t$ so $e^{y}=e^{t}+C$. Then $C=e^{e}-1$ at $t=0$. After taking logarithms $y=\ln \left(\mathbf{e}^{\mathbf{t}}+\mathbf{e}^{\mathbf{e}}-\mathbf{1}\right)$.
$10 \frac{d(\ln y)}{d(\ln x)}=\frac{d y y}{d x / x}=n$. Therefore $\ln y=n \ln x+C$. Therefore $y=\left(x^{n}\right)\left(e^{C}\right)=$ constant times $\mathbf{x}^{\mathbf{n}}$.
16 Equation (14) is $z=\frac{1}{c}\left(b+\frac{c-b y_{0}}{y_{0}} e^{-c t}\right)$. Turned upside down this is $y=\frac{c}{b+d e^{-c t}}$ with $d=\frac{c-b y_{0}}{y_{0}}$.
$20 y^{\prime}=y+y^{2}$ has $c=1$ and $b=-1$ with $y_{0}=1$. Then $y(t)=\frac{1}{-1+2 e-t}$ by formula (12). The denominator is zero and y blows up when $2 e^{-t}=1$ or $t=\ln 2$.
26 At the middle of the S-curve $y=\frac{c}{2 b}$ and $\frac{d y}{d t}=c\left(\frac{c}{2 b}\right)-b\left(\frac{c}{2 b}\right)^{2}=\frac{c^{2}}{4 b}$. If b and c are multiplied by 10 then so is this slope $\frac{c^{2}}{4 b}$, which becomes steeper.
28 If $\frac{c y}{y+K}=d$ then $c y=d y+d K$ and $\mathbf{y}=\frac{\mathbf{d} K}{\mathbf{c}-\mathbf{d}}$. At this steady state the maintenance dose replaces the aspirin being eliminated.
30 The rate $R=\frac{c y}{y+K}$ is a decreasing function of K because $\frac{d R}{d K}=\frac{-c y}{(y+K)^{2}}$.
$34 \frac{d[A]}{d t}=-r[A][B]=-r[A]\left(b_{0}-\frac{n}{m}\left(a_{0}-[A]\right)\right)$. The changes $a_{0}-[A]$ and $b_{0}-[B]$ are in the proportion m to n; we solved for $[B]$.

6.6 Powers Instead of Exponentials

1. Write down a power series for $y(x)$ whose derivative is $\frac{1}{2} y(x)$. Assume that $y(0)=1$.

- First method: Look for $y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$, and choose the a 's so that $y^{\prime}=\frac{1}{2} y$. Start with $a_{0}=1$ so that $y(0)=1$. Then take the derivative of each term:

$$
y^{\prime}=0+a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots+n a_{n} x^{n-1}+\cdots
$$

Matching this series with $\frac{1}{2} y$ gives $a_{1}=\frac{1}{2} a_{0}$ and $2 a_{2}=\frac{1}{2} a_{1}$. Therefore $a_{1}=\frac{1}{2}$ and $a_{2}=\frac{1}{8}$. Similarly $3 a_{3}$ matches $\frac{1}{2} a_{2}$ and $n a_{n}$ matches $\frac{1}{2} a_{n-1}$. The pattern continues with $a_{3}=\frac{1}{3} \cdot \frac{1}{2} \cdot a_{2}$ and $a_{4}=\frac{1}{4} \cdot \frac{1}{2} \cdot a_{3}$. The typical term is $a_{n}=\frac{1}{n!2^{n}}$:

$$
\text { The series is } y(x)=1+\frac{x}{1 \cdot 2}+\frac{x^{2}}{2 \cdot 2^{2}}+\frac{x^{3}}{3!2^{3}}+\cdots+\frac{x^{n}}{n!2^{n}}+\cdots .
$$

- Second method: We already know the solution to $y^{\prime}=\frac{1}{2} y$. It is $y_{0} e^{\frac{1}{2} x}$. Starting from $y_{0}=1$, the solution is $y=e^{\frac{1}{2} x}$. We also know the exponential series $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots$. So just substitute the new exponent $\frac{1}{2} x$ in place of x :

$$
y=e^{\frac{1}{2} x}=1+\frac{1}{2} x+\frac{1}{2!}\left(\frac{x}{2}\right)^{2}+\frac{1}{3!}\left(\frac{x}{2}\right)^{3}+\cdots+\frac{1}{n!}\left(\frac{x}{2}\right)^{n}+\cdots=\text { same answer. }
$$

2. (This is 6.6.19) Solve the difference equation $y(t+1)=3 y(t)+1$ with $y_{0}=0$.

- Follow equations 8 and 9 on page 271. In this problem $a=3$ and $s=1$. Each step multiplies the previous y by 3 and adds 1 . From $y_{0}=0$ we have $y_{1}=1$ and $y_{2}=4$. Then $y_{3}=13$ and $y_{4}=40$. The solution is

$$
y(t)=3^{t} \cdot 0+1 \frac{\left(3^{t}-1\right)}{3-1} \quad \text { or } \quad y(t)=\frac{3^{t}-1}{2}
$$

3. If prices rose $\frac{3}{10} \%$ in the last month, what is the equivalent annual rate of inflation?

- The answer is not 12 times $\frac{3}{10}=3.6 \%$. The monthly increases are compounded. A $\$ 1$ price at the beginning of the year would be $(1+.003)^{12} \approx 1.0366$ at the end of the year. The annual rate of inflation is .0366 or 3.66%.

4. If inflation stays at 4% a year, find the present value that yields a dollar after 10 years.

- Use equation 2 on page 273 with $n=1$ and $y=1$. The rate is .04 instead of .05 , for 10 years instead of 20 . We get $y_{0}=\left(1+\frac{.04}{1}\right)^{-10} 1=0.6755$. In a decade a dollar will be worth what 67.55 cents is worth today.

5. Write the difference equation and find the steady state for this situation: Every week 80% of the cereal is sold and 400 more boxes are delivered to the supermarket.

- If $C(t)$ represents the number of cereal boxes after t weeks, the problem states that $C(t+1)=$ $0.2 C(t)+400$. The reason for 0.2 is that 80% are sold and 20% are left. The difference equation has $a=0.2$ and $s=400$. Since $|a|<1$, a steady state is approached: $C_{\infty}=\frac{s}{1-a}=\frac{400}{.8}=500$. At that steady state, 80% of 500 boxes are sold (that means 400) and they are replaced by 400 new boxes.

Read-throughs and selected even-numbered solutions :

The infinite series for e^{x} is $1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots \cdots$. Its derivative is $\mathbf{e}^{\mathbf{x}}$. The denominator n ! is called " n factorial" and is equal to $n(n-1) \cdots(1)$. At $x=1$ the series for e is $\mathbf{1}+\mathbf{1}+\frac{1}{2}+\frac{1}{6}+\cdots$.

To match the original definition of e, multiply out $(1+1 / n)^{n}=1+\mathbf{n}\left(\frac{1}{n}\right)+\frac{\mathbf{n}(\mathbf{n}-1)}{2}\left(\frac{1}{n}\right)^{2}$ (first three terms). As $n \rightarrow \infty$ those terms approach $1+1+\frac{1}{2}$ in agreement with e. The first three terms of $(1+x / n)^{n}$ are $\mathbf{1}+\mathbf{n}\left(\frac{x}{n}\right)+\frac{\mathbf{n}(\mathbf{n}-1)}{2}\left(\frac{x}{n}\right)^{2}$. As $n \rightarrow \infty$ they approach $1+x+\frac{1}{2} x^{2}$ in agreement with e^{x}. Thus $(1+x / n)^{n}$ approaches e^{x}. A quicker method computes $\ln (1+x / n)^{n} \approx \mathrm{x}$ (first term only) and takes the exponential.

Compound interest (n times in one year at annual rate x) multiplies by $\left(1+\frac{X}{n}\right)^{n}$. As $n \rightarrow \infty$, continuous compounding multiplies by $\mathrm{e}^{\mathbf{x}}$. At $x=10 \%$ with continuous compounding, $\$ 1$ grows to $\mathrm{e}^{1} \approx \$ 1.105$ in a year.

The difference equation $y(t+1)=a y(t)$ yields $y(t)=\mathbf{a}^{\mathbf{t}}$ times y_{0}. The equation $y(t+1)=a y(t)+s$ is solved by $y=a^{t} y_{0}+s\left[1+a+\cdots+a^{t-1}\right]$. The sum in brackets is $\frac{1-\mathbf{a}^{\mathrm{t}}}{1-\mathrm{a}}$ or $\frac{\mathbf{a}^{\mathbf{t}}-1}{\mathrm{a}-1}$. When $a=1.08$ and $y_{0}=0$, annual deposits of $s=1$ produce $y=\frac{1.08^{\mathrm{t}}-1}{.08}$ after t years. If $a=\frac{1}{2}$ and $y_{0}=0$, annual deposits of $s=6$ leave $\mathbf{1 2}\left(\mathbf{1}-\frac{1}{2}\right.$ t after t years, approaching $y_{\infty}=12$. The steady equation $y_{\infty}=a y_{\infty}+s$ gives $y_{\infty}=\mathbf{s} /(\mathbf{1}-\mathbf{a})$.

When $i=$ interest rate per period, the value of $y_{0}=\$ 1$ after N periods is $y(N)=(1+\mathrm{i})^{\mathrm{N}}$. The deposit to produce $y(N)=1$ is $y_{0}=(1+\mathbf{i})^{-N}$. The value of $s=\$ 1$ deposited after each period grows to $y(N)=$
$\frac{1}{\mathbf{i}}\left((1+\mathrm{i})^{N}-1\right)$. The deposit to reach $y(N)=1$ is $s=\frac{1}{\mathbf{i}}\left(\mathbf{1}-(1+\mathrm{i})^{-N}\right)$.
Euler's method replaces $y^{\prime}=c y$ by $\Delta y=c y \Delta t$. Each step multiplies y by $\mathbf{1}+\mathbf{c} \Delta t$. Therefore y at $t=1$ is $(1+c \Delta t)^{1 / \Delta t} y_{0}$, which converges to $y_{0} e^{c}$ as $\Delta t \rightarrow 0$. The error is proportional to Δt, which is too large for scientific computing.

4 A larger series is $1+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=3$. This is greater than $1+1+\frac{1}{2}+\frac{1}{6}+\cdots=e$.
8 The exact sum is $e^{-1} \approx .37$ (Problem 6). After five terms $1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}=\frac{9}{24}=.375$.
$14 y(0)=0, y(1)=1, y(2)=3, y(3)=7$ (and $y(n)=2^{\text {n }}-1$). 24 Ask for $\frac{1}{2} y(0)-6=y(0)$. Then $y(0)=-12$.
30 The equation $-d P(t+1)+b=c P(t)$ becomes $-2 P(t+1)+8=P(t)$ or $P(t+1)=-\frac{1}{2} P(t)+4$. Starting from $P(0)=0$ the solution is $P(t)=4\left[\frac{\left(-\frac{1}{2}\right)^{t}-1}{-\frac{1}{2}-1}\right]=\frac{8}{3}\left(1-\left(-\frac{1}{2}\right)^{t}\right) \rightarrow \frac{8}{3}$.
38 Solve $\$ 1000=\$ 8000\left[\frac{1}{1-(1.1)^{-n}}\right]$ for n. Then $1-(1.1)^{-n}=.8$ or $(1.1)^{-n}=.2$. Thus $1.1^{n}=5$ and $n=\frac{\ln 5}{\ln 1.1} \approx 17$ years.
40 The interest is (.05) $1000=\$ 50$ in the first month. You pay $\$ 60$. So your debt is now
$\$ 1000-\$ 10=\$ 990$. Suppose you owe $y(t)$ after month t, so $y(0)=\$ 1000$. The next month's
interest is $.05 y(t)$. You pay $\$ 60$. So $y(t+1)=1.05 y(t)-60$. After 12 months
$y(12)=(1.05)^{12} 1000-60\left[\frac{(1.05)^{12}-1}{1.05-1}\right]$. This is also $\frac{60}{.05}+\left(1000-\frac{60}{.05}\right)(1.05)^{12} \approx \$ 841$.
44 Use the loan formula with $.09 / n$ not $.09 n$: payments $s=80,000 \frac{.09 / 12}{\left[1-\left(1+\frac{009}{19}\right)^{-360}\right]} \approx \$ 643.70$.
Then 360 payments equal $\$ 231,732$.

6.7 Hyperbolic Functions

(page 280)

1. Given $\sinh x=\frac{5}{12}$, find the values of $\cosh x, \tanh x, \operatorname{coth} x, \operatorname{sech} x$ and $\operatorname{csch} x$.

- Use the identities on page 278. The one to remember is similar to $\cos ^{2} x+\sin ^{2} x=1$:

$$
\cosh ^{2} x-\sinh ^{2} x=1 \text { gives } \cosh ^{2} x=1+\frac{25}{144}=\frac{169}{144} \text { and } \cosh x=\frac{13}{12} .
$$

Note that $\cosh x$ is always positive. Then $\tanh x=\frac{\sinh x}{\cosh x}$ is $\frac{\frac{3}{13}}{12}=\frac{5}{13}$. The others are upside down:

$$
\operatorname{coth} x=\frac{1}{\tanh x}=\frac{13}{5} \text { and } \operatorname{sech} x=\frac{1}{\cosh x}=\frac{12}{13} \text { and } \operatorname{csch} x=\frac{1}{\sinh x}=\frac{12}{5} .
$$

2. Find $\cosh (2 \ln 10)$. Substitute $x=2 \ln 10=\ln 100$ into the definition of $\cosh x$:

- $\cosh (2 \ln 10)=\frac{e^{\ln 100}+e^{-\ln 100}}{2}=\frac{100+\frac{1}{100}}{2}=\frac{100.01}{2}=50.005$.

3. Find $\frac{d y}{d x}$ when $y=\sinh \left(4 x^{3}\right)$. Use the chain rule with $u=4 x^{3}$ and $\frac{d u}{d x}=12 x^{2}$

- The derivative of $\sinh u(x)$ is $(\cosh u) \frac{d u}{d x}=12 x^{2} \cosh \left(4 x^{3}\right)$.

4. Find $\frac{d y}{d x}$ when $y=\ln \tanh 2 x$. - Let $y=\ln u$, where $u=\tanh 2 x$. Then

$$
\frac{d y}{d x}=\frac{1}{u} \frac{d u}{d x}=\frac{2 \operatorname{sech}^{2} 2 x}{\tanh 2 x}=\frac{2}{\sinh 2 x \cosh 2 x} .
$$

5. Find $\frac{d y}{d x}$ when $y=\operatorname{sech}^{-1} 6 x$. - See equation (3) on page 279. If $u=6 x$ then

$$
\frac{d y}{d x}=\frac{-1}{u \sqrt{1-u^{2}}} \frac{d u}{d x}=\frac{-6}{6 x \sqrt{1-36 x^{2}}}=\frac{-1}{x \sqrt{1-36 x^{2}}}
$$

6. Find $\int \frac{d x}{\sqrt{x^{2}+9}}$. Except for the 9, this looks like $\int \frac{d x}{\sqrt{x^{2}+1}}=\sinh ^{-1} x+C$ on page 279. Factoring out $\sqrt{9}$ leaves $\sqrt{x^{2}+9}=\sqrt{9} \sqrt{\frac{x^{2}}{9}+1}$. So the problem has $u=\frac{x}{3}$ and $d u=\frac{1}{3} d x$:

$$
\int \frac{d x}{3 \sqrt{\left(\frac{x}{3}\right)^{2}+1}}=\int \frac{d u}{\sqrt{u^{2}+1}}=\sinh ^{-1} u+C=\sinh ^{-1}\left(\frac{x}{3}+C\right)
$$

7. Find $\int \cosh ^{2} x \sinh x d x$ (This is 6.7.53.) Remember that $u=\cosh x$ has $\frac{d u}{d x}=+\sinh x$:

- The problem is really $\int u^{2} d u$ with $u=\cosh x$. The answer is $\frac{1}{3} u^{3}+C=\frac{1}{3} \cosh ^{3} x+C$.

8. Find $\int \frac{\sinh x}{1+\cosh x} d x$. (This is 6.7 .29 .) The top is the derivative of the bottom!
$-\int \frac{d u}{u}=\ln |u|+C=\ln (1+\cosh x)+C$.
The absolute value sign is dropped because $1+\cosh x$ is always positive.
9. (This is Problem 6.7.54) A falling body with friction equal to velocity squared obeys $\frac{d v}{d t}=g-v^{2}$.
(a) Show that $v(t)=\sqrt{g} \tanh \sqrt{g} t$ satisfies the equation. (b) Derive this yourself by integrating $\frac{d v}{g-v^{2}}=d t$.
(c) Integrate $v(t)$ to find the distance $f(t)$.

- (a) The derivative of $\tanh x$ is $\operatorname{sech}^{2} x$. The derivative of $v(t)=\sqrt{g} \tanh \sqrt{g} t$ has $u=\sqrt{g} t$. The chain rule gives $\frac{d v}{d t}=\sqrt{g}\left(\operatorname{sech}^{2} u\right) \frac{d u}{d t}=g \operatorname{sech}^{2} \sqrt{g t}$. Now use the identity $\operatorname{sech}^{2} u=1-\tanh ^{2} u$:

$$
\frac{d v}{d t}=g\left(1-\tanh ^{2} \sqrt{g} t\right)=g-v^{2}
$$

- (b) The differential equation is $\frac{d v}{d t}=g-v^{2}$. Separate variables to find $\frac{d v}{g-v^{2}}=d t$:

$$
\int \frac{d v}{g-v^{2}}=\int \frac{d v}{g\left[1-\left(\frac{v}{\sqrt{g}}\right)^{2}\right]}=\frac{1}{\sqrt{g}} \tanh ^{-1} \frac{v}{\sqrt{g}} \text { by equation (2), on page } 279 .
$$

The integral of $d t$ is $t+C$. Assuming the body falls from rest ($v=0$ at $t=0$), we have $C=0$. Then $t=\frac{1}{\sqrt{g}} \tanh ^{-1} \frac{v}{\sqrt{g}}$ turns into $v=\sqrt{g} \tanh \sqrt{g} t$.
(c) $\int v d t=\int \sqrt{g} \tanh \sqrt{g} t d t=\ln \cosh \sqrt{g} t+C$.

Read-throughs and selected even-numbered solutions:

Cosh $x=\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}\right)$ and $\sinh x=\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right)$ and $\cosh ^{2} x-\sinh ^{2} x=1$. Their derivatives are $\sinh \mathrm{x}$ and $\cosh x$ and zero. The point $(x, y)=(\cosh t, \sinh t)$ travels on the hyperbola $x^{2}-y^{2}=1$. A cable hangs in the shape of a catenary $y=a \cosh \frac{x}{a}$.

The inverse functions $\sinh ^{-1} x$ and $\tanh ^{-1} x$ are equal to $\ln \left[x+\sqrt{x^{2}+1}\right]$ and $\frac{1}{2} \ln \frac{1+x}{1-x}$. Their derivatives are $1 / \sqrt{\mathbf{x}^{2}+1}$ and $\frac{1}{1-x^{2}}$. So we have two ways to write the antiderivative. The parallel to $\cosh x+\sinh x=e^{x}$ is Euler's formula $\cos \mathbf{x}+\mathrm{i} \sin \mathbf{x}=\mathbf{e}^{\mathbf{i x}}$. The formula $\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$ involves imaginary exponents. The parallel formula for $\sin x$ is $\frac{\mathbf{1}}{2 \mathbf{i}}\left(\mathbf{e}^{i x}-e^{-i x}\right)$.
$12 \sinh (\ln x)=\frac{1}{2}\left(e^{\ln x}-e^{-\ln x}\right)=\frac{1}{2}\left(x-\frac{1}{x}\right)$ with derivative $\frac{1}{2}\left(1+\frac{1}{x^{2}}\right)$.
$16 \frac{1+\tanh x}{1-\tanh x}=e^{2 x}$ by the equation following (4). Its derivative is $2 \mathrm{e}^{2 \mathrm{x}}$. More directly the quotient rule gives $\frac{(1-\tanh x) \operatorname{sech}^{2} x+(1+\tanh x) \operatorname{sech}^{2} x}{(1-\tanh x)^{2}}=\frac{2 \operatorname{sech}^{2} x}{(1-\tanh x)^{2}}=\frac{2}{(\cosh x-\sinh x)^{2}}=\frac{2}{e^{-2 x}}=\mathbf{2} \mathrm{e}^{2 \mathrm{x}}$.
$18 \frac{d}{d x} \ln u=\frac{d u / d x}{u}=\frac{\operatorname{sech} x \tanh x-\operatorname{sech}^{2} x}{\operatorname{sech} x+\tanh x}$. Because of the minus sign we do not get sech x. The integral of $\operatorname{sech} x$ is $\sin ^{-1}(\tanh x)+C$.
$\mathbf{3 0} \int \operatorname{coth} x d x=\int \frac{\cosh x}{\sinh x} d x=\ln (\sinh \mathbf{x})+C . \quad \mathbf{3 2} \sinh x+\cosh x=e^{x}$ and $\int e^{n x} d x=\frac{\mathbf{1}}{\mathbf{n}} \mathbf{e}^{\mathbf{n x}}+C$.
$36 y=\operatorname{sech} x$ looks like a bell-shaped curve with $y_{\max }=1$ at $x=0$. The x axis is the asymptote. But note that y decays like $2 e^{-x}$ and not like $e^{-x^{2}}$.
$40 \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$ approaches $+\infty$ as $x \rightarrow 1$ and $-\infty$ as $x \rightarrow-1$. The function is odd (so is the tanh function).
The graph is an \mathbf{S} curve rotated by 90°.
44 The x derivative of $x=\sinh y$ is $1=\cosh y \frac{d y}{d x}$. Then $\frac{d y}{d x}=\frac{1}{\cosh y}=\frac{1}{\sqrt{1+\sinh ^{2} y}}=\frac{1}{\sqrt{1+\mathbf{x}^{2}}}={\operatorname{slope~of~} \sinh ^{-1} x}$.
50 Not hyperbolic! Just $\int\left(x^{2}+1\right)^{-1 / 2} x d x=\left(\mathbf{x}^{\mathbf{2}}+\mathbf{1}\right)^{\mathbf{1 / 2}}+C$.
$58 \cos i x=\frac{1}{2}\left(e^{i(i x)}+e^{-i(i x)}\right)=\frac{1}{2}\left(e^{-x}+e^{x}\right)=\cosh x$. Then $\cos i=\cosh 1=\frac{\mathbf{e}+\mathbf{e}^{-\mathbf{1}}}{2}$ (real!).

6. Chapter Review Problems

Graph Problems (Sketch the graphs and locate maxima, minima, and inflection points)
G1

$$
\begin{aligned}
& y=x \ln x \\
& y=e^{-x^{3}} \\
& y=x^{6} e^{-x}
\end{aligned}
$$

G2

$$
y=e^{-x^{2}}
$$

$$
\text { G3 } \quad y=e^{-x^{3}}
$$

$$
\text { G4 } \quad y=x^{2}-72 \ln x
$$

$$
\text { G6 } \quad y=e^{\ln x} \text { (watch the domain) }
$$

G7 Sketch $\ln 3$ as an area under a curve. Approximate the area using four trapezoids.

G8 Sketch $y=\ln x$ and $y=\ln \frac{1}{x}$. Also sketch $y=e^{x}$ and $y=e^{-1 / x}$.
G9 Sketch $y=2+e^{x}$ and $y=e^{x+2}$ and $y=2 e^{x}$ on the same axes.

Reviev Problems

R1 Give an example of a linear differential equation and a nonlinear differential equation. If possible find their solutions starting from $y(0)=A$.

R2 Give examples of differential equations that can and cannot be solved by separation of variables.

R3 In exponential growth, the rate of change of y is directly proportional to \qquad In exponential decay, $d y / d t$ is proportional to \qquad The difference is that \qquad

R4 What is a steady state? Give an example for $\frac{d y}{d t}=y+3$.

R5 Show from the definition that $d(\cosh x)=\sinh x d x$ and $d(\operatorname{sech} x)=\operatorname{sech} x \tanh x d x$.

R6 A particle moves along the curve $y=\cosh x$ with $d x / d t=2$. Find $d y / d t$ when $x=1$.

R7 A chemical is decomposing with a half-life of 3 hours. Starting with 120 grams how much remains after 3 hours and how much after 9 hours?

R8 A radioactive substance decays with a half-life of 10 hours. Starting with 100 grams, show that the average during the first 10 hours is $100 / \ln 2$ grams.

R9 How much money must be deposited now at 6% interest (compounded continuously) to build a nest egg of $\$ 40,000$ in 15 years?

R10 Show that a continuous deposit of $\$ 1645$ per year at 6% interest yields more than $\$ 40,000$ after 15 years.

Drill Problems (Find $d y / d x$ in D1 to D 12.)

D1 $y=e^{\cos x}$
$\sin x=e^{y}$
$y=\frac{e^{x}}{x}$
$y=\ln \frac{x-2}{x+2}$
D8

D10
$y=x^{\cos x}$

D12 $y=\cosh x \sinh x$

Find the integral in D13 to D20.
$D 13 \int 5^{x} d x$
$\mathbf{D 1 5} \int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
$\mathbf{D 1 4} \int x e^{x^{2}+1} d x$
$\mathbf{D 1 6} \int \frac{e^{x}}{5+e^{x}} d x$
D17 $\int \frac{\cos x}{4+\sin x} d x$
D18 $\int \sinh x \cosh x d x$
D19 $\int \tanh ^{2} x \operatorname{sech}^{2} x d x$
D20

$$
\int \frac{d x}{x \ln \frac{1}{x}}
$$

Solve the differential equations D21 to D26

D21 $y^{\prime}=-4 y$ with $y(0)=2$
D22 $\frac{d y}{d t}=2-3 y$ with $y_{0}=1$
$\mathbf{D 2 3} \frac{d y}{d t}=t^{2} \sqrt{y}$ with $y_{0}=9$
D24 $\frac{d y}{d t}=2 t y^{2}$ with $y_{0}=1$

D25 $\frac{d y}{d x}=e^{x y}$ with $y_{0}=10$
D26 $\frac{d y}{d t}=y-2 y^{2}$ with $y_{0}=100$
Solutions $\quad y=2 e^{-4 t} \quad y=\frac{1}{3} e^{-3 t}+\frac{2}{3} \quad y=\left(\frac{t^{3}}{6}+3\right)^{2} \quad y=\frac{-1}{t^{2}-1} \quad y=-\ln \left|e^{-10}-e^{x}\right| \quad y=\frac{1}{2-1.99 e^{-t}}$

D27 If a population grows continuously at 2% a year, what is its percentage growth after 20 years?

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Calculus

Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

