CHAPTER 9 POLAR COORDINATES AND COMPLEX NUMBERS

9.1 Polar Coordinates (page 350)

Circles around the origin are so important that they have their own coordinate system – polar coordinates. The center at the origin is sometimes called the "pole." A circle has an equation like r=3. Each point on that circle has two coordinates, say r=3 and $\theta=\frac{\pi}{2}$. This angle locates the point 90° around from the x axis, so it is on the y axis at distance 3.

The connection to x and y is by the equations $x = r\cos\theta$ and $y = r\sin\theta$. Substituting r = 3 and $\theta = \frac{\pi}{2}$ as in our example, the point has $x = 3\cos\frac{\pi}{2} = 0$ and $y = 3\sin\frac{\pi}{2} = 3$. The polar coordinates are $(r, \theta) = (3, \frac{\pi}{2})$ and the rectangular coordinates are (x, y) = (0, 3).

1. Find polar coordinates for these points – first with $r \ge 0$ and $0 \le \theta < 2\pi$, then three other pairs (r, θ) that give the same point:

(a) $(x,y)=(\sqrt{3},1)$ (b) (x,y)=(-1,1) (c) (x,y)=(-3,-4)

- (a) $r^2 = x^2 + y^2 = 4$ yields r = 2 and $\frac{y}{x} = \frac{1}{\sqrt{3}} = \tan \theta$ leads to $\theta = \frac{\pi}{6}$. The polar coordinates are $(2, \frac{\pi}{6})$. Other representations of the same point are $(2, \frac{\pi}{6} + 2\pi)$ and $(2, \frac{\pi}{6} 2\pi)$. Allowing r < 0 we have $(-2, -\frac{5\pi}{6})$ and $(-2, \frac{7\pi}{6})$. There are an infinite number of possibilities.
- (b) $r^2 = x^2 + y^2$ yields $r = \sqrt{2}$ and $\frac{y}{x} = \frac{1}{-1} = \tan \theta$. Normally the arctan function gives $\tan^{-1}(-1) = -\frac{\pi}{4}$. But that is a fourth quadrant angle, while the point (-1,1) is in the second quadrant. The choice $\theta = \frac{3\pi}{4}$ gives the "standard" polar coordinates $(\sqrt{2}, \frac{3\pi}{4})$. Other representations are $(\sqrt{2}, \frac{11\pi}{4})$ and $(\sqrt{2}, -\frac{5\pi}{4})$. Allowing negative r we have $(-\sqrt{2}, -\frac{\pi}{4})$ and $(-\sqrt{2}, \frac{7\pi}{4})$.
- (c) The point (-3, -4) is in the third quadrant with $r = \sqrt{9 + 16} = 5$. Choose $\theta = \pi + \tan^{-1}(\frac{-4}{-3}) \approx \pi + 0.9 \approx 4$ radians. Other representations of this point are $(5, 2\pi + 4)$ and $(5, 4\pi + 4)$, and (-5, 0.9).
- 2. Convert $(r, \theta) = (6, -\frac{\pi}{2})$ to rectangular coordinates by $x = r \cos \theta$ and $y = r \sin \theta$.
 - The x coordinate is $6\cos(-\frac{\pi}{2}) = 0$. The y coordinate is $6\sin(-\frac{\pi}{2}) = -6$.
- 3. The Law of Cosines in trigonometry states that $c^2 = a^2 + b^2 2ab\cos C$. Here a, b and c are the side lengths of the triangle and C is the angle opposite side c. Use the Law of Cosines to find the distance between the points with polar coordinates (r, θ) and (R, φ) .

Does it ever happen that c^2 is larger than $a^2 + b^2$?

• In the figure, the desired distance is labeled d. The other sides of the triangle have lengths R and r. The angle opposite d is $(\varphi - \theta)$. The Law of Cosines gives $d = \sqrt{R^2 + r^2 - 2Rr\cos(\varphi - \theta)}$.

Yes, c^2 is larger than $a^2 + b^2$ when the angle $C = \varphi - \theta$ is larger than 90°. Its cosine is negative. The next problem is an example. When the angle C is acute (smaller than 90°) then the term $-2ab\cos C$ reduces c^2 below $a^2 + b^2$.

3'. Use the formula in Problem 3 to find the distance between the polar points $(3, \frac{5\pi}{6})$ and $(2, -\frac{\pi}{3})$.

•
$$d = \sqrt{3^2 + 2^2 - 2 \cdot 3 \cdot 2\cos(\frac{5\pi}{6} - (-\frac{\pi}{3}))} = \sqrt{13 - 12\cos\frac{7\pi}{6}} = \sqrt{13 + 6\sqrt{3}} \approx 4.8.$$

- 4. Sketch the regions that are described in polar coordinates by
 - (a) $r \ge 0$ and $\frac{\pi}{3} < \theta < \frac{2\pi}{3}$
- (b) $1 \le r \le 2$
- (c) $0 \le \theta < \frac{\pi}{3}$ and $0 \le r < 3$.
- The three regions are drawn. For (a), the dotted lines mean that $\theta = \frac{\pi}{3}$ and $\theta = \frac{2\pi}{3}$ are not included. If r < 0 were also allowed, there would be a symmetric region below the axis a shaded X instead of a shaded V.

- 5. Write the polar equation for the circle centered at (x, y) = (1, 1) with radius $\sqrt{2}$.
 - The rectangular equation is $(x-1)^2 + (y-1)^2 = 2$ or $x^2 2x + y^2 2y = 0$. Replace x with $r\cos\theta$ and y with $r\sin\theta$. Always replace $x^2 + y^2$ with r^2 . The equation becomes $r^2 = 2r\cos\theta + 2r\sin\theta$. Divide by r to get $r = 2(\cos\theta + \sin\theta)$.

Note that r=0 when $\theta=-\frac{\pi}{4}$. The circle goes through the origin.

- 6. Write the polar equations for these lines: (a) x = 3 (b) y = -1 (c) x + 2y = 5.
 - (a) x = 3 becomes $r \cos \theta = 3$ or $r = 3 \sec \theta$. Remember: $r = 3 \cos \theta$ is a circle.
 - (b) y = -1 becomes $r \sin \theta = -1$ or $r = -\csc \theta$. But $r = -\sin \theta$ is a circle.
 - (c) x + 2y = 5 becomes $r \cos \theta + 2r \sin \theta = 5$. Again $r = \cos \theta + 2 \sin \theta$ is a circle.

Read-throughs and selected even-numbered solutions:

Polar coordinates r and θ correspond to $x = r \cos \theta$ and $y = r \sin \theta$. The points with r > 0 and $\theta = \pi$ are located on the negative x axis. The points with r = 1 and $0 \le \theta \le \pi$ are located on a semicircle. Reversing the sign of θ moves the point (x, y) to (x, -y).

Given x and y, the polar distance is $r = \sqrt{x^2 + y^2}$. The tangent of θ is y/x. The point (6,8) has r = 10 and $\theta = \tan^{-1}\frac{8}{6}$. Another point with the same θ is (3,4). Another point with the same r is (10,0). Another point with the same r and $\tan \theta$ is (-6, -8).

The polar equation $r = \cos \theta$ produces a shifted circle. The top point is at $\theta = \pi/4$, which gives $r = \sqrt{2}/2$. When θ goes from 0 to 2π , we go two times around the graph. Rewriting as $r^2 = r \cos \theta$ leads to the xy equation $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{x}$. Substituting $r = \cos \theta$ into $x = r \cos \theta$ yields $x = \cos^2 \theta$ and similarly $y = \cos \theta \sin \theta$. In this form x and y are functions of the parameter θ .

10 $r = 3\pi$, $\theta = 3\pi$ has rectangular coordinates $\mathbf{x} = -3\pi$, $\mathbf{y} = \mathbf{0}$

16 (a) $\left(-1, \frac{\pi}{2}\right)$ is the same point as $\left(1, \frac{3\pi}{2}\right)$ or $\left(-1, \frac{5\pi}{2}\right)$ or \cdots (b) $\left(-1, \frac{3\pi}{4}\right)$ is the same point as $\left(1, \frac{7\pi}{4}\right)$ or $\left(-1, -\frac{\pi}{4}\right)$ or \cdots (c) $\left(1, -\frac{\pi}{2}\right)$ is the same point as $\left(-1, \frac{\pi}{2}\right)$ or $\left(1, \frac{3\pi}{2}\right)$ or \cdots (d) $r = 0, \theta = 0$ is the same

point as r = 0, $\theta =$ any angle.

- 18 (a) False $(r = 1, \theta = \frac{\pi}{4} \text{ is a different point from } r = -1, \theta = -\frac{\pi}{4})$ (b) False (for fixed r we can add any multiple of 2π to θ) (c) True $(r \sin \theta = 1 \text{ is the horizontal line } y = 1)$.
- 22 Take the line from (0,0) to (r_1, θ_1) as the base (its length is r_1). The height of the third point (r_2, θ_2) , measured perpendicular to this base, is r_2 times $\sin(\theta_2 \theta_1)$.
- 26 From $x = \cos^2 \theta$ and $y = \sin \theta \cos \theta$, square and add to find $\mathbf{x^2} + \mathbf{y^2} = \cos^2 \theta (\cos^2 \theta + \sin^2 \theta) = \cos^2 \theta = \mathbf{x}$.
- 28 Multiply $r = a\cos\theta + b\sin\theta$ by r to find $x^2 + y^2 = ax + by$. Complete squares in $x^2 ax = (x \frac{a}{2})^2 (\frac{a}{2})^2$ and similarly in $y^2 by$ to find $(x \frac{a}{2})^2 + (y \frac{b}{2})^2 = (\frac{a}{2})^2 + (\frac{b}{2})^2$. This is a circle centered at $(\frac{a}{2}, \frac{b}{2})$ with radius $r = \sqrt{(\frac{a}{2})^2 + (\frac{b}{2})^2} = \frac{1}{2}\sqrt{a^2 + b^2}$.

9.2 Polar Equations and Graphs (page 355)

The polar equation $r = F(\theta)$ is like y = f(x). For each angle θ the equation tells us the distance r (which is now allowed to be negative). By connecting those points we get a polar curve. Examples are r = 1 and $r \cos \theta$ (circles) and $r = 1 + \cos \theta$ (cardioid) and $r = 1/(1 + e \cos \theta)$ (parabola, hyperbola, or ellipse, depending on e). These have nice-looking polar equations – because the origin is a special point for those curves.

Note $y = \sin x$ would be a disaster in polar coordinates. Literally it becomes $r \sin \theta = \sin(r \cos \theta)$. This mixes r and θ together. It is comparable to $x^3 + xy^2 = 1$, which mixes x and y. (For mixed equations we need implicit differentiation.) Equations in this section are not mixed, they are $r = F(\theta)$ and sometimes $r^2 = F(\theta)$.

Part of drawing the picture is recognizing the symmetry. One symmetry is "through the pole." If r changes to -r, the equation $r^2 = F(\theta)$ stays the same – this curve has polar symmetry. But $r = \tan \theta$ also has polar symmetry, because $\tan \theta = \tan(\theta + \pi)$. If we go around by 180° , or π radians, we get the same result as changing r to -r.

The three basic symmetries are across the x axis, across the y axis, and through the pole. Each symmetry has two main tests. (This is not clear in some texts I consulted.) Since one test could be passed without the other, I think you need to try both tests:

- x axis symmetry: θ to $-\theta$ (test 1) or θ to $\pi \theta$ and r to -r (test 2)
- y axis symmetry: θ to $\pi \theta$ (test 1) or θ to $-\theta$ and r to -r (test 2)
- polar symmetry: θ to $\pi + \theta$ (test 1) or r to -r (test 2).
- 1. Sketch the polar curve $r^2 = 4 \sin \theta$ after a check for symmetry.
 - When r is replaced by -r, the equation $(-r)^2 = 4\sin\theta$ is the same. This means polar symmetry (through the origin). If θ is replaced by $(\pi \theta)$, the equation $r^2 = 4\sin(\pi \theta) = 4\sin\theta$ is still the same. There is symmetry about the y axis. Any two symmetries (out of three) imply the third. This graph must be symmetric across the x axis. (θ to $-\theta$ doesn't show it, because $\sin\theta$ changes. But r to -r and θ to $\pi \theta$ leaves $r^2 = 4\sin\theta$ the same.) We can plot the curve in the first quadrant and reflect it to get the complete graph. Here is a table of values for the first quadrant and a sketch of the curve. The two closed parts (not circles) meet at r = 0.

- 2. (This is Problem 9.2.9) Check $r = \cos 3\theta$ for symmetry and sketch its graph.
 - The cosine is even, $\cos(-3\theta) = \cos 3\theta$, so this curve is symmetric across the x axis (where θ goes to $-\theta$). The other symmetry tests fail. For θ up to $\frac{\pi}{2}$ we get a loop and a half in the figure. Reflection across the x axis yields the rest. The curve has three petals.

$$\theta \qquad 0 \quad \frac{\pi}{12} \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} \quad \frac{5\pi}{12} \quad \frac{\pi}{2}$$

$$r\cos 3\theta \qquad 1 \quad \frac{\sqrt{2}}{2} \quad 0 \quad -\frac{\sqrt{2}}{2} \quad -1 \quad -\frac{\sqrt{2}}{2} \quad 0$$

- 3. Find the eight points where the four petals of $r = 2\cos 2\theta$ cross the circle r = 1.
 - Setting $2\cos 2\theta = 1$ leads to four crossing points $(1, \frac{\pi}{6})$, $(1, \frac{7\pi}{6})$, $(1, -\frac{\pi}{6})$, and $(1, -\frac{7\pi}{6})$. The sketch shows four other crossing points: $(1, \frac{\pi}{3})$, $(1, \frac{2\pi}{3})$, $(1, \frac{4\pi}{3})$ and $(1, \frac{5\pi}{3})$. These coordinates do not satisfy $r = 2\cos 2\theta$. But r < 0 yields other names $(-1, \frac{4\pi}{3})$, $(-1, \frac{5\pi}{3})$, $(-1, \frac{\pi}{3})$ and $(-1, \frac{2\pi}{3})$ for these points, that do satisfy the equation.

In general, you need a sketch to find all intersections.

4. Identify these five curves:

(a)
$$r = 5 \csc \theta$$
 (b) $r = 6 \sin \theta + 4 \cos \theta$ (c) $r = \frac{9}{1 + 6 \cos \theta}$ (d) $r = \frac{4}{2 + \cos \theta}$ (e) $r = \frac{1}{3 - 3 \sin \theta}$

- (a) $r = \frac{5}{\sin \theta}$ is $r \sin \theta = 5$. This is the horizontal line y = 5.
- Multiply equation (b) by r to get $r^2 = 6r \sin \theta + 4r \cos \theta$, or $x^2 + y^2 = 6y + 4x$. Complete squares to $(x-2)^2 + (y-3)^2 = 2^2 + 3^2 = 13$. This is a circle centered at (2,3) with radius $\sqrt{13}$.
- (c) The pattern for conic sections (ellipse, parabola, and hyperbola) is $r = \frac{A}{1 + e \cos \theta}$. Our equation has A = 9 and e = 6. The graph is a hyperbola with one focus at (0,0). The directrix is the line $x = \frac{9}{6} = \frac{3}{2}$.
- (d) $r = \frac{4}{2 + \cos \theta}$ doesn't exactly fit $\frac{A}{1 + e \cos \theta}$ because of the 2 in the denominator. Factor it out: $\frac{2}{1 + \frac{1}{2} \cos \theta}$ is an ellipse with $e = \frac{1}{2}$.
- (e) $r = \frac{1}{3-3\sin\theta}$ is actually a parabola. To recognize the standard form, remember that $-\sin\theta = \cos(\frac{\pi}{2} + \theta)$. So $r = \frac{\frac{1}{3}}{1+\cos(\frac{\pi}{2} + \theta)}$. Since θ is replaced by $(\frac{\pi}{2} + \theta)$, the standard parabola has been rotated.

- 5. Find the length of the major axis (the distance between vertices) of the hyperbola $r = \frac{A}{1+e\cos\theta}$
 - Figure 9.5c in the text shows the vertices on the x axis: $\theta = 0$ gives $r = \frac{A}{1+e}$ and $\theta = \pi$ gives $r = \frac{A}{1-e}$. (The hyperbola has A > 0 and e > 1.) Notice that $(\frac{A}{1-e}, \pi)$ is on the right of the origin because $r = \frac{A}{1-e}$ is negative. The distance between the vertices is $\frac{A}{e-1} \frac{A}{e+1} = \frac{2A}{e^2-1}$.

Compare with exercise 9.2.35 for the ellipse. The distance between its vertices is $2a = \frac{2A}{1-e^2}$. The distance between vertices of a parabola (e=1) is $\frac{2A}{0}$ = infinity! One vertex of the parabla is out at infinity.

Read-throughs and selected even-numbered solutions:

The circle of radius 3 around the origin has polar equation r = 3. The 45° line has polar equation $\theta = \pi/4$. Those graphs meet at an angle of 90°. Multiplying $r = 4\cos\theta$ by r yields the xy equation $x^2 + y^2 = 4x$. Its graph is a circle with center at (2,0). The graph of $r = 4/\cos\theta$ is the line x = 4. The equation $r^2 = \cos 2\theta$ is not changed when $\theta \to -\theta$ (symmetric across the x axis) and when $\theta \to \pi + \theta$ (or $r \to -r$). The graph of $r = 1 + \cos\theta$ is a cardioid.

The graph of $r = A/(1 + e\cos\theta)$ is a conic section with one focus at (0,0). It is an ellipse if e < 1 and a hyperbola if e > 1. The equation $r = 1/(1 + \cos\theta)$ leads to r + x = 1 which gives a parabola. Then r = distance from origin equals 1 - x = distance from directrix y = 1. The equations r = 3(1 - x) and $r = \frac{1}{3}(1 - x)$ represent a hyperbola and an ellipse. Including a shift and rotation, conics are determined by five numbers.

- 6 $r = \frac{1}{1+2\cos\theta}$ is the hyperbola of Example 7 and Figure 9.5c: $r+2r\cos\theta = 1$ is r = 1-2x or $x^2+y^2 = 1-4x+4x^2$. The figure should show r = -1 and $\theta = \pi$ on the right branch.
- 14 $r = 1 2\sin 3\theta$ has y axis symmetry: change θ to $\pi \theta$, then $\sin 3(\pi \theta) = \sin(\pi 3\theta) = \sin 3\theta$.
- 22 If $\cos \theta = \frac{r^2}{4}$ and $\cos \theta = 1 r$ then $\frac{r^2}{4} = 1 r$ and $r^2 + 4r 4 = 0$. This gives $r = -2 \sqrt{8}$ and $\mathbf{r} = -2 + \sqrt{8}$. The first r is negative and cannot equal $1 \cos \theta$. The second gives $\cos \theta = 1 r = 3 \sqrt{8}$ and $\theta \approx 80^\circ$ or $\theta \approx -80^\circ$. The curves also meet at the origin $\mathbf{r} = \mathbf{0}$ and at the point $\mathbf{r} = -2$, $\theta = \mathbf{0}$ which is also $\mathbf{r} = +2$, $\theta = \pi$.
- 26 The other 101 petals in $r = \cos 101\theta$ are duplicates of the first 101. For example $\theta = \pi$ gives $r = \cos 101\pi = -1$ which is also $\theta = 0, r = +1$. (Note that $\cos 100\pi = +1$ gives a new point.)
- 28 (a) Yes, x and y symmetry imply r symmetry. Reflections across the x axis and then the y axis take (x,y) to (x,-y) to (-x,-y) which is reflection through the origin. (b) The point r=-1, $\theta=\frac{3\pi}{2}$ satisfies the equation $r=\cos 2\theta$ and it is the same point as r=1, $\theta=\frac{\pi}{2}$.
- 32 (a) $\theta = \frac{\pi}{2}$ gives r = 1; this is x = 0, y = 1 (b) The graph crosses the x axis at $\theta = 0$ and π where $x = \frac{1}{1+e}$ and $x = \frac{-1}{1-e}$. The center of the graph is halfway between at $x = \frac{1}{2}(\frac{1}{1+e} \frac{1}{1-e}) = \frac{-e}{1-e^2}$. The second focus is twice as far from the origin at $\frac{-2e}{1-e^2}$. (Check: e = 0 gives center of circle, e = 1 gives second focus of parabola at infinity.)

9.3 Slope, Length, and Area for Polar Curves (page 359)

This section does calculus in polar coordinates. All the calculations for y = f(x) – its slope $\frac{dy}{dx}$ and area

 $\int y \ dx$ and arc length $\int \sqrt{1+(\frac{dy}{dx})^2} \ dx$ – can also be done for polar curves $r=F(\theta)$. But the formulas are a little more complicated! The slope is not $\frac{dF}{d\theta}$ and the area is not $\int F(\theta)d\theta$. These problems give practice with the polar formulas for slope, area, arc length, and surface area of revolution.

- 1. (This is 9.3.5) Draw the 4-petaled flower $r = \cos 2\theta$ and find the area inside. The petals are along the axes.
 - We compute the area of one petal and multiply by 4. The right-hand petal lies between the lines $\theta = -\frac{\pi}{4}$ and $\theta = \frac{\pi}{4}$. Those are the limits of integration:

Area =
$$4 \int_{-\pi/4}^{\pi/4} \frac{1}{2} (\cos 2\theta)^2 d\theta = \int_{-\pi/4}^{\pi/4} (1 + \cos 4\theta) d\theta = \frac{\pi}{2}$$
.

- 2. Find the area inside $r = 2(1 + \cos \theta)$ and outside $r = 2(1 \cos \theta)$. Sketch those cardioids.
 - In the figure, half the required area is shaded. Take advantage of symmetries! A typical line through the origin is also sketched. Imagine this line sweeping from $\theta = 0$ to $\theta = \frac{\pi}{2}$ the whole shaded area is covered. The outer radius is $2(1 + \cos \theta)$, the inner radius is $2(1 \cos \theta)$. The shaded area is

$$\int_0^{\pi/2} \frac{1}{2} [4(1+\cos\theta)^2 - 4(1-\cos\theta)^2] d\theta = 8 \int_0^{\pi/2} \cos\theta \ d\theta = 8.$$
 Total area 16.

- 3. Set up the area integral(s) between the parabola $r = \frac{2}{1-\cos\theta}$ and the hyperbola $r = \frac{6}{1+2\cos\theta}$.
 - The curves are shown in the sketch. We need to find where they cross. Solving $\frac{6}{1+2\cos\theta} = \frac{2}{1-\cos\theta}$ yields $6(1-\cos\theta) = 2(1+2\cos\theta)$ or $\cos\theta = \frac{2}{5} = .4$. At that angle $r = \frac{6}{1+2(\frac{2}{5})} = \frac{6}{1.8}$.

Imagine a ray sweeping around the origin from $\theta = 0$ to $\theta = \pi$. From $\theta = 0$ to $\theta = \cos^{-1} .4$, the ray crosses the *hyperbola*. Then it crosses the *parabola*. That is why the area must be computed in two parts. Using symmetry we find only the top half:

$$\text{Half-area} \ = \int_0^{\cos^{-1}.4} \quad \frac{1}{2} (\frac{6}{1 + 2\cos\theta})^2 d\theta \quad + \quad \int_{\cos^{-1}.4}^{\pi} \quad \frac{1}{2} (\frac{2}{1 - \cos\theta})^2 d\theta.$$

Simpson's rule gives the total area (top half doubled) as approximately 12.1.

Problems 4 and 5 are about lengths of curves.

- 4. Find the distance around the cardioid $r = 1 + \cos \theta$.
 - Length in polar coordinates is $ds = \sqrt{(\frac{dr}{d\theta})^2 + r^2} d\theta$. For the cardioid this square root is

$$\sqrt{(-\sin\theta)^2 + (1+\cos\theta)^2} = \sqrt{\sin^2\theta + \cos^2\theta + 1 + 2\cos\theta} = \sqrt{2+2\cos\theta}$$

Half the curve is traced as θ goes from 0 to π . The total length is $\int ds = 2 \int_0^{\pi} \sqrt{2 + 2 \cos \theta} \ d\theta$. Evaluating this integral uses the trick $1 + \cos \theta = 2 \cos^2 \frac{\theta}{2}$. Thus the cardioid length is

$$2\int_0^{\pi} \sqrt{4\cos^2\frac{\theta}{2}} \ d\theta = 4\int_0^{\pi} \cos\frac{\theta}{2} \ d\theta = 8\sin\frac{\theta}{2}\Big|_0^{\pi} = 8.$$

- 5. Find the length of the spiral $r = e^{\theta/2}$ as θ goes from 0 to 2π .
 - For this curve $ds = \sqrt{(\frac{dr}{d\theta})^2 + r^2} \ d\theta$ is equal to $\sqrt{\frac{1}{4}e^{\theta} + e^{\theta}} \ d\theta = \sqrt{\frac{5}{4}e^{\theta}} \ d\theta = \frac{\sqrt{5}}{2}e^{\theta/2}d\theta$:

Length
$$=\int_0^{2\pi} \frac{\sqrt{5}}{2} e^{\theta/2} d\theta = \sqrt{5} e^{\theta/2} \Big|_0^{2\pi} = \sqrt{5} (e^{\pi} - 1) \approx 49.5.$$

Problems 6 and 7 ask for the areas of surfaces of revolution.

- 6. Find the surface area when the spiral $r = e^{\theta/2}$ between $\theta = 0$ and $\theta = \pi$ is revolved about the horizontal axis.
 - From Section 8.3 we know that the area is $\int 2\pi y \ ds$. For this curve the previous problem found $ds = \frac{\sqrt{5}}{2}e^{\theta/2}d\theta$. The factor y in the area integral is $r\sin\theta = e^{\theta/2}\sin\theta$. The area is

$$\int_0^{\pi} 2\pi (e^{\theta/2} \sin \theta) \frac{\sqrt{5}}{2} e^{\theta/2} d\theta = \sqrt{5}\pi \int_0^{\pi} e^{\theta} \sin \theta d\theta$$
$$= \frac{\sqrt{5}\pi}{2} e^{\theta} (\sin \theta - \cos \theta) \Big|_0^{\pi} = \frac{\sqrt{5}\pi}{2} (e^{\pi} + 1) \approx 84.8.$$

- 7. Find the surface area when the curve $r^2 = 4 \sin \theta$ is revolved around the y axis.
 - The curve is drawn in Section 9.2 of this guide (Problem 1).
 - If we revolve the piece from $\theta=0$ to $\theta=\pi/2$, and double that area, we get the total surface area. In the integral $\int_{\theta=0}^{\pi/2} 2\pi x \ ds$ we replace x by $r\cos\theta=2\sqrt{\sin\theta}\cos\theta$. Also $ds=\sqrt{(\frac{dr}{d\theta})^2+r^2}\ d\theta=\sqrt{\frac{\cos^2\theta}{\sin\theta}+4\sin\theta}\ d\theta$. The integral for surface area is not too easy:

$$4\pi \int_0^{\pi/2} 2\sqrt{\sin\theta} \cos\theta \sqrt{\frac{\cos^2\theta}{\sin\theta} + 4\sin\theta} \ d\theta = 8\pi \int_0^{\pi/2} \cos\theta \sqrt{\cos^2\theta + 4\sin^2\theta} \ d\theta$$

$$= 8\pi \int_0^{\pi/2} \cos \theta \sqrt{1 + 3\sin^2 \theta} \ d\theta = 8\pi \int_0^1 \sqrt{1 + 3u^2} \ du \ (\text{where } u = \sin \theta).$$

A table of integrals gives $8\pi\sqrt{3}(\frac{u}{2}\sqrt{\frac{1}{3}+u^2}+\frac{1}{6}\ln(u+\sqrt{\frac{1}{3}+u^2})]_0^1=8\pi\sqrt{3}(\frac{1}{\sqrt{3}}+\frac{1}{6}\ln(2+\sqrt{3}))\approx 34.1.$

- 8. Find the slope of the three-petal flower $r = \cos 3\theta$ at the tips of the petals.
 - The flower is drawn in Section 9.2. The tips are at (1,0), $(-1,\frac{\pi}{3})$, and $(-1,-\frac{\pi}{3})$. Clearly the tangent line at (1,0) is vertical (infinite slope). For the other two slopes, find $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$. From $y = r \sin \theta$ we get $\frac{dy}{d\theta} = r \cos \theta + \sin \theta \frac{dr}{d\theta}$. Similarly $x = r \cos \theta$ gives $\frac{dx}{d\theta} = -r \sin \theta + \cos \theta \frac{dr}{d\theta}$. Substitute $\frac{dr}{d\theta} = -3 \sin 3\theta$ for this flower, and set r=-1, $\theta=\frac{\pi}{3}$:

$$\frac{dy}{dx} = \frac{r\cos\theta - 3\sin3\theta\sin\theta}{-r\sin\theta - 3\sin3\theta\cos\theta} = \frac{(-1)\cos\pi/3 - 3\sin\pi\sin\pi/3}{\sin\pi/3 - 3\sin\pi\cos\pi/3} = \frac{-1/2}{\sqrt{3}/2} = -\frac{1}{\sqrt{3}}.$$

- 9. If F(3) = 0, show that the graph of $r = F(\theta)$ at r = 0, $\theta = 3$ has slope tan 3.
 - As an example of this idea, look at the graph of $r = \cos 3\theta$ (Section 9.1 of this guide). At $\theta = \pi/6$, $\theta = \pi/2$, and $\theta = -\pi/6$ we find r = 0. The rays out from the origin at those three angles are tangent to the graph. In other words the slope of $r = \cos 3\theta$ at $(0, \pi/6)$ is $\tan(\pi/6)$, the slope at $(0, \pi/2)$ is $\tan(\pi/2)$ and the slope at $(0, -\pi/6)$ is $\tan(-\pi/6)$.
 - To prove the general statement, write $\frac{dy}{dx} = \frac{r\cos\theta + \sin\theta dr/d\theta}{-r\sin\theta + \cos\theta dr/d\theta}$ as in Problem 8. With $r = F(\theta)$ and F(3) = 0, substitute $\theta = 3$, r = 0, and $dr/d\theta = F'(3)$. The slope at $\theta = 3$ is $\frac{dy}{dx} = \frac{\sin(3)F'(3)}{\cos(3)F'(3)} = \tan(3)$.

Read-throughs and selected even-numbered solutions:

A circular wedge with angle $\Delta\theta$ is a fraction $\Delta\theta/2\pi$ of a whole circle. If the radius is r, the wedge area is $\frac{1}{2}\mathbf{r}^2\Delta\theta$. Then the area inside $r=F(\theta)$ is $\int \frac{1}{2}\mathbf{r}^2d\theta = \int \frac{1}{2}(\mathbf{F}(\theta))^2d\theta$. The area inside $r=\theta^2$ from 0 to π is $\pi^{5}/10$. That spiral meets the circle r=1 at $\theta=1$. The area inside the circle and outside the spiral is $\frac{1}{2}-\frac{1}{10}$. A chopped wedge of angle $\Delta\theta$ between r_1 and r_2 has area $\frac{1}{2}\mathbf{r}_2^2\Delta\theta - \frac{1}{2}\mathbf{r}_1^2\Delta\theta$.

The curve $r = F(\theta)$ has $x = r\cos\theta = F(\theta)\cos\theta$ and $y = F(\theta)\sin\theta$. The slope dy/dx is $dy/d\theta$ divided by $dx/d\theta$. For length $(ds)^2 = (dx)^2 + (dy)^2 = (dr)^2 + (rd\theta)^2$. The length of the spiral $r = \theta$ to $\theta = \pi$ is $\int \sqrt{1+\theta^2} d\theta$. The surface area when $r=\theta$ is revolved around the x axis is $\int 2\pi y \, ds = \int 2\pi \theta \sin \theta \sqrt{1+\theta^2} d\theta$. The volume of that solid is $\int \pi y^2 dx = \int \pi \theta^2 \sin^2 \theta (\cos \theta - \theta \sin \theta) d\theta$.

- 4 The inner loop is where r < 0 or $\cos \theta < -\frac{1}{2}$ or $\frac{2\pi}{3} < \theta < \frac{4\pi}{3}$. Its area is $\int \frac{r^2}{2} d\theta = \int \frac{1}{2} (1 + 4\cos\theta + 4\cos^2\theta) d\theta = \left[\frac{\theta}{2} + 2\sin\theta + \theta + \cos\theta \sin\theta\right]_{2\pi/3}^{4\pi/3} = \frac{\pi}{3} 2(\sqrt{3}) + \frac{2\pi}{3} + \frac{1}{2}\sqrt{3} = \pi \frac{3}{2}\sqrt{3}$.
- 16 The spiral $r = e^{-\theta}$ starts at r = 1 and returns to the x axis at $r = e^{-2\pi}$. Then it goes inside itself (no new area). So area $= \int_0^{2\pi} \frac{1}{2} e^{-2\theta} d\theta = [-\frac{1}{4}e^{-2\theta}]_0^{2\pi} = \frac{1}{4}(1 e^{-4\pi})$.

 20 Simplify $\frac{\tan \phi \tan \theta}{1 + \tan \phi \tan \theta} = \frac{F + \tan \theta F' \tan \theta}{1 + F + \tan \theta F' + \cot \theta} = \frac{F + \tan \theta F' \tan \theta F + F'}{1 + F + \tan \theta F' + F'} = \frac{(1 + \tan^2 \theta)F}{(1 + \tan^2 \theta)F'} = \frac{F}{F'}$.

 22 $r = 1 \cos \theta$ is the mirror image of Figure 9.4c across the y axis. By Problem 20, $\tan \psi = \frac{F}{F'} = \frac{1 \cos \theta}{\sin \theta}$.

- This is $\frac{\frac{1}{2}\sin^2\frac{\theta}{2}}{\frac{1}{2}\sin\frac{\theta}{2}\cos\frac{\theta}{2}} = \tan\frac{\theta}{2}$. So $\psi = \frac{\theta}{2}$ (check at $\theta = \pi$ where $\psi = \frac{\pi}{2}$).

 24 By Problem 18 $\frac{dy}{dx} = \frac{\cos\theta + \tan\theta(-\sin\theta)}{-\cos\theta} = \frac{\cos^2\theta \sin^2\theta}{\cos\theta(-2\sin\theta)} = -\frac{\cos2\theta}{\sin2\theta} = -\frac{1}{\sqrt{3}}$ at $\theta = \frac{\pi}{6}$. At that point $x = r \cos\theta = \frac{\pi}{6}$. $\cos^2 \frac{\pi}{6} = (\frac{\sqrt{3}}{2})^2$ and $y = r \sin \theta = \cos \frac{\pi}{6} \sin \frac{\pi}{6} = \frac{1}{2}(\frac{\sqrt{3}}{2})$. The tangent line is $y - \frac{\sqrt{3}}{4} = -\frac{1}{\sqrt{3}}(x - \frac{3}{4})$.
- **26** $r = \sec \theta$ has $\frac{dr}{d\theta} = \sec \theta \tan \theta$ and $\frac{ds}{d\theta} = \sqrt{\sec^2 \theta + \sec^2 \theta \tan^2 \theta} = \sqrt{\sec^4 \theta} = \sec^2 \theta$. Then arc length $= \int_0^{\pi/4} \sec^2 \theta \ d\theta = \tan \frac{\pi}{4} = 1. \text{ Note: } r = \sec \theta \text{ is the line } r \cos \theta = 1 \text{ or } x = 1 \text{ from } y = 0 \text{ up to } y = 1.$
- **32** $r = 1 + \cos \theta \text{ has } \frac{ds}{d\theta} = \sqrt{(1 + 2 \cos \theta + \cos^2 \theta) + \sin^2 \theta} = \sqrt{2 + 2 \cos \theta}$. Also $y = r \sin \theta = (1 + \cos \theta) \sin \theta$. Surface area $\int 2\pi \ y \ ds = 2\pi\sqrt{2} \int_0^{\pi} (1+\cos \ \theta)^{3/2} \sin \ \theta \ d\theta = [2\pi\sqrt{2}(-\frac{2}{5})(1+\cos \ \theta)^{5/2}]_0^{\pi} = \frac{32\pi}{5}$
- **40** The parameter θ along the ellipse $x = 4 \cos \theta$, $y = 3 \sin \theta$ is not the angle from the origin. For example

at $\theta = \frac{\pi}{4}$ the point (x, y) is not on the 45° line. So the area formula $\int \frac{1}{2}r^2d\theta$ does not apply. The correct area is 12π .

9.4 Complex Numbers (page 364)

There are two important forms for every complex number: the rectangular form x+iy and the polar form $re^{i\theta}$. Converting from one to the other is like changing between rectangular and polar coordinates. In one direction use $r = \sqrt{x^2 + y^2}$ and $\tan \theta = \frac{y}{x}$. In the other direction (definitely easier) use $x = r\cos\theta$ and $y = r\sin\theta$. Problem 1 goes to polar and Problem 2 goes to rectangular.

- 1. Convert these complex numbers to polar form: (a) 3+4i (b) -5-12i (c) $i\sqrt{3}-1$.
 - (a) $r = \sqrt{3^2 + 4^2} = 5$ and $\theta = \tan^{-1} \frac{4}{3} \approx .93$. Therefore $3 + 4i \approx 5e^{.93i}$.
 - (b) -5-12i lies in the third quadrant of the complex plane, so $\theta = \pi + \arctan^{-1} \frac{-12}{-5} \approx \pi + 1.17 \approx 4.3$. The distance from the crigin is $r = \sqrt{(-5)^2 + (-12)^2} = 13$. Thus $-5 - 12i \approx 13e^{4.3i}$.
 - (c) $i\sqrt{3}-1$ is not exactly in standard form: rewrite as $-1+i\sqrt{3}$. Then x=-1 and $y=\sqrt{3}$ and $r=\sqrt{1+3}=2$. This complex number is in the second quadrant of the complex plane, since x<0 and y>0. The angle is $\theta=\frac{2\pi}{3}$. Then $-1+i\sqrt{3}=2e^{2\pi/3}$.

We chose the standard polar form, with r > 0 and $0 \le \theta < 2\pi$. Other polar forms are allowed. The answer for (c) could also be $2e^{(2\pi + 2\pi/3)i}$ or $2e^{-4\pi i/3}$.

- 2. Convert these complex numbers to rectangular form: (a) $6e^{i\pi/4}$ (b) $e^{-7\pi/6}$ (c) $3e^{\pi/3}$
 - (a) The point $z = 6e^{i\pi/4}$ is 6 units out along the ray $\theta = \pi/4$. Since $x = 6\cos\frac{\pi}{4} = 3\sqrt{2}$ and $y = 6\sin\frac{\pi}{4} = 3\sqrt{2}$, the rectangular form is $3\sqrt{2} + 3\sqrt{2}i$.
 - (b) We have r = 1. The number is $\cos(-\frac{7\pi}{6}) + i\sin(-\frac{7\pi}{6}) = -\frac{\sqrt{3}}{2} + \frac{i}{2}$.
 - (c) There is no i in the exponent! $3e^{\pi/3}$ is just a plain real number (approximately 8.5). Its rectangular form is $3e^{\pi/3} + 0i$.
- 3. For each pair of numbers find $z_1 + z_2$ and $z_1 z_2$ and $z_1 z_2$ and z_1/z_2 :
 - (a) $z_1 = 4 3i$ and $z_2 = 12 + 5i$ (b) $z_1 = 3e^{i\pi/6}$ and $z_2 = 2e^{i7\pi/4}$.
 - (a) Add $z_1 + z_2 = 4 3i + 12 + 5i = 16 + 2i$. Subtract (4 3i) (12 + 5i) = -8 8i. Multiply:

$$(4-3i)(12+5i) = 48-36i+20i-15i^2 = 63-16i$$

To divide by 12 + 5i, multiply top and bottom by its complex conjugate 12 - 5i.

Then the bottom is real:

$$\frac{4-3i}{12+5i} \cdot \frac{12-5i}{12-5i} = \frac{33-56i}{12^2+5^2} = \frac{33}{169} - \frac{56}{169}i.$$

• You could choose to multiply in polar form. First convert 4-3i to $re^{i\theta}$ with r=5 and $\tan\theta=-\frac{3}{4}$. Also 12+5i has r=13 and $\tan\theta=\frac{5}{12}$. Multiply the r's to get $5\cdot 13=65$. Add the θ 's. This is hard without a calculator that knows $\tan^{-1}(-\frac{3}{4})$ and $\tan^{-1}(\frac{5}{12})$. Our answer is $\theta_1+\theta_2\approx-.249$.

So multiplication gives $65e^{-.249i}$ which is close to the first answer 63 - 16i. Probably a trig identity would give $\tan^{-1}(-\frac{3}{4}) + \tan^{-1}(\frac{5}{12}) = \tan^{-1}(-\frac{16}{63})$.

For division in polar form, divide r's and subtract angles: $\frac{5}{13}e^{i(\theta_1-\theta_2)} \approx \frac{5}{13}e^{-i}$. This is $\frac{z_1}{z_2} = \frac{5}{13}\cos(-1) + \frac{5}{13}i\sin(-1) \approx .2 - .3i \approx \frac{33}{169} - \frac{56}{169}i$.

• (b) Numbers in polar form are not easy to add. Convert to rectangular form:

$$3e^{i\pi/6}$$
 equals $3\cos\frac{\pi}{6} + 3i\sin\frac{\pi}{6} = \frac{3\sqrt{3}}{2} + \frac{3i}{2}$. Also $2e^{i7\pi/4}$ equals $2\cos\frac{7\pi}{4} + 2i\sin\frac{7\pi}{4} = \sqrt{2} - i\sqrt{2}$.

The sum is $(\frac{3\sqrt{3}}{2} + \sqrt{2}) + (\frac{3}{2} - \sqrt{2})i$. The difference is $(\frac{3\sqrt{3}}{2} - \sqrt{2}) + (\frac{3}{2} + \sqrt{2})i$.

Multiply and divide in polar form whenever possible. Multiply r's and add θ 's:

$$z_1 z_2 = (3 \cdot 2)e^{i(\frac{\pi}{6} + \frac{7\pi}{4})} = 6e^{\frac{23\pi i}{12}} \text{ and } \frac{z_1}{z_2} = \frac{3}{2}e^{i(\frac{\pi}{6} - \frac{7\pi}{4})} = \frac{3}{2}e^{-19\pi i/24}.$$

3. Find $(2-2\sqrt{3}i)^{10}$ in polar and rectangular form.

• DeMoivre's Theorem is based on the polar form: $2-2\sqrt{3}i=4e^{-i\pi/3}$. The tenth power is $(4e^{-i\pi/3})^{10}=4^{10}e^{-10\pi/3}$. In rectangular form this is

$$4^{10}\left(\cos\frac{-10\pi}{3}+i\sin\frac{-10\pi}{3}\right)=4^{10}\left(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\right)=2^{20}-\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)=-2^{19}+2^{19}i\sqrt{3}.$$

4. (This is 9.4.3) Plot $z=2e^{i\pi/6}$ and its reciprocal $\frac{1}{z}=\frac{1}{2}e^{-i\pi/6}$ and their squares.

• The squares are $(2e^{i\pi/6})^2 = 4e^{i\pi/3}$ and $(\frac{1}{2}e^{-i\pi/6})^2 = \frac{1}{4}e^{-i\pi/3}$. The points $z, \frac{1}{z}, z^2, \frac{1}{z^2}$ are plotted.

5. (This is 9.4.25) For c = 1 - i, sketch the path of $y = e^{ct}$ as t increases from 0.

• The moving point e^{ct} is $e^{(1-i)t} = e^t e^{-it} = e^t (\cos(-t) + i\sin(-t))$. The table gives x and y:

The sketch shows how e^{ct} spirals rapidly outwards from $e^0 = 1$.

- 6. For the differential equation y'' + 4y' + 3y = 0, find all solutions of the form $y = e^{ct}$.
 - The derivatives of $y = e^{ct}$ are $y' = ce^{ct}$ and $y'' = c^2 e^{ct}$. The equation asks for $c^2 e^{ct} + 4ce^{ct} + 3e^{ct} = 0$. This means that $e^{ct}(c^2 + 4c + 3) = 0$. Factor $c^2 + 4c + 3$ into (c+3)(c+1). This is zero for c = -3 and c = -1. The pure exponential solutions are $y = e^{-3t}$ and $y = e^{-t}$. Any combination like $2e^{-3t} + 7e^{-t}$ also solves the differential equation.
- 7. Construct two real solutions of y'' + 2y' + 5y = 0. Start with solutions of the form $y = e^{ct}$.
 - Substitute $y'' = c^2 e^{ct}$ and $y' = ce^{ct}$ and $y = e^{ct}$. This leads to $c^2 + 2c + 5 = 0$ or $c = -1 \pm 2i$. The pure (but complex) exponential solutions are $y = e^{(-1+2i)t}$ and $y = e^{(-1-2i)t}$. The first one is $y = e^{-t}(\cos 2t + i \sin 2t)$. The real part is $x = e^{-t}\cos 2t$; the imaginary part is $y = e^{-t}\sin 2t$. (Note: The imaginary part is without the i.) Each of these is a real solution, as may be checked by substitution into y'' + 2y' + 5y = 0.

The other exponential is $y = e^{(-1-2i)t} = e^{-t}(\cos(-2t) + i\sin(-2t))$. Its real and imaginary parts are the same real solutions – except for the minus sign in $\sin(-2t) = -\sin 2t$.

Read-throughs and selected even-numbered solutions:

The complex number 3+4i has real part 3 and imaginary part 4. Its absolute value is r=5 and its complex conjugate is 3-4i. Its position in the complex plane is at (3,4). Its polar form is $r\cos\theta+ir\sin\theta=\mathbf{re}^{\mathbf{i}\theta}$ (or $5\mathbf{e}^{\mathbf{i}\theta}$). Its square is -7-14i. Its *n*th power is $\mathbf{r}^{\mathbf{n}}e^{in\theta}$.

The sum of 1+i and 1-i is 2. The product of 1+i and 1-i is 2. In polar form this is $\sqrt{2}e^{i\pi/4}$ times $\sqrt{2}e^{-i\pi/4}$. The quotient (1+i)/(1-i) equals the imaginary number i. The number $(1+i)^8$ equals 16. An eighth root of 1 is $w = (1+i)/\sqrt{2}$. The other eighth roots are $w^2, w^3, \dots, w^7, w^8 = 1$.

To solve $d^8y/dt^8=y$, look for a solution of the form $y=e^{ct}$. Substituting and canceling e^{ct} leads to the equation $c^8=1$. There are eight choices for c, one of which is $(-1+i)/\sqrt{2}$. With that choice $|e^{ct}|=e^{-t/\sqrt{2}}$. The real solutions are Re $e^{ct}=e^{-t/\sqrt{2}}\cos\frac{t}{\sqrt{2}}$ and Im $e^{ct}=e^{-t/\sqrt{2}}\sin\frac{t}{\sqrt{2}}$.

- 10 $e^{ix} = i$ yields $\mathbf{x} = \frac{\pi}{2}$ (note that $\frac{i\pi}{2}$ becomes $\ln i$); $e^{ix} = e^{-1}$ yields $\mathbf{x} = \mathbf{i}$, second solutions are $\frac{\pi}{2} + 2\pi$ and $i + 2\pi$.
- 14 The roots of $c^2 4c + 5 = 0$ must multiply to give 5. Check: The roots are $\frac{4 \pm \sqrt{16-20}}{2} = 2 \pm i$. Their product is $(2+i)(2-i) = 4-i^2 = 5$.
- 18 The fourth roots of $re^{i\theta}$ are $r^{1/4}$ times $e^{i\theta/4}$, $e^{i(\theta+2\pi)/4}$, $e^{i(\theta+4\pi)/4}$, $e^{i(\theta+6\pi)/4}$. Multiply $(r^{1/4})^4$ to get r. Add angles to get $(4\theta+12\pi)/4=\theta+3\pi$. The product of the 4 roots is $re^{i(\theta+3\pi)}=-re^{i\theta}$.
- 28 $\frac{dy}{dt} = iy$ leads to $y = e^{it} = \cos t + i \sin t$. Matching real and imaginary parts of $\frac{d}{dt}(\cos t + i \sin t) = i(\cos t + i \sin t)$ yields $\frac{d}{dt}\cos t = -\sin t$ and $\frac{d}{dt}\sin t = \cos t$.
- 34 Problem 30 yields $\cos ix = \frac{1}{2}(e^{i(ix)} + e^{-i(ix)}) = \frac{1}{2}(e^{-x} + e^x) = \cosh x$; similarly $\sin ix = \frac{1}{2i}(e^{i(ix)} e^{-i(ix)}) = \frac{i}{2i}(e^{-x} e^x) = i \sinh x$. With x = 1 the cosine of i equals $\frac{1}{2}(e^{-1} + e^1) = 3.086$. The cosine of i is larger than 1!

9 Chapter Review Problems

Review Problems

- Express the point (r, θ) in rectangular coordinates. Express the point (a, b) in polar coordinates. Express the point (r, θ) with three other pairs of polar coordinates.
- R2 As θ goes from 0 to 2π , how often do you cover the graph of $r = \cos \theta$? $r = \cos 2\theta$? $r = \cos 3\theta$?
- R3 Give an example of a polar equation for each of the conic sections, including circles.
- **R4** How do you find the area between two polar curves $r = F(\theta)$ and $r = G(\theta)$ if 0 < F < G?
- R5 Write the polar form for ds. How is this used for surface areas of revolution?
- **R6** What is the polar formula for slope? Is it $dr/d\theta$ or dy/dx?
- R7 Multiply (a+ib)(c+id) and divide (a+ib)/(c+id).
- **R8** Sketch the eighth roots of 1 in the complex plane. How about the roots of -1?
- R9 Starting with $y = e^{ct}$, find two real solutions to y'' + 25y = 0.
- R10 How do you test the symmetry of a polar graph? Find the symmetries of

(a)
$$r = 2\cos\theta + 1$$
 (b) $= 8\sin\theta$ (c) $r = \frac{6}{1-\cos\theta}$ (d) $r = \sin 2\theta$ (e) $r = 1 + 2\sin\theta$

Drill Problems

- **D1** Show that the area inside $r^2 = \sin 2\theta$ and outside $r = \frac{\sqrt{2}}{2}$ is $\frac{\sqrt{3}}{2} \frac{\pi}{6}$.
- **D2** Find the area inside both curves $r = 2 \cos \theta$ and $r = 3 \cos \theta$.
- **D3** Show that the area enclosed by $r = 2\cos 3\theta$ is π .
- **D4** Show that the length of $r = 4 \sin^3 \frac{\theta}{3}$ between $\theta = 0$ and $\theta = \pi$ is $2\pi \frac{3}{2}\sqrt{3}$.
- **D5** Confirm that the length of the spiral $r = 3\theta^2$ from $\theta = 0$ to $\theta = \frac{5}{3}$ is $\frac{7}{3}$.
- **D6** Find the slope of $r = \sin 3\theta$ at $\theta = \frac{\pi}{6}$.
- **D7** Find the slope of the tangent line to $r = \tan \theta$ at $(1, \frac{\pi}{2})$.

- **D8** Show that the slope of $r = 1 + \sin \theta$ at $\theta = \frac{\pi}{6}$ is $\frac{2}{\sqrt{3}}$.
- The curve $r^2 = \cos 2\theta$ from $(1, -\frac{\pi}{4})$ to $(1, \frac{\pi}{4})$ is revolved around the y axis. Show that the surface area is $2\sqrt{2}\pi$.
- **D10** Sketch the parabola $r = 4/(1 + \cos \theta)$ to see its focus and vertex.
- **D11** Find the center of the ellipse whose polar equation is $r = \frac{6}{2 \cos \theta}$. What is the eccentricity e?
- **D12** The asymptotes of the hyperbola $r = \frac{6}{1+3\cos\theta}$ are the rays where $1+3\cos\theta=0$. Find their slopes.
- D13 Find all the sixth roots (two real, four complex) of 64.
- **D14** Find four roots of the equation $z^4 2z^2 + 4 = 0$.
- **D15** Add, subtract, multiply, and divide $1 + \sqrt{3}i$ and $1 \sqrt{3}i$.
- **D16** Add, subtract, multiply, and divide $e^{i\pi/4}$ and $e^{-i\pi/4}$.
- **D17** Find all solutions of the form $y = e^{ct}$ for y'' y' 2y = 0 and y''' 2y' 3y = 0.
- **D18** Construct real solutions of y'' 4y' + 13y = 0 from the real and imaginary parts of $y = e^{ct}$.
- **D19** Use a calculator or an integral to estimate the length of $r = 1 + \sin \theta$ (near 2.5?).

Graph Problems (intended to be drawn by hand)

$$\mathbf{G1} \qquad r^2 = \sin 2\theta$$

$$\mathbf{G2} \qquad r = 6\sin\theta$$

$$G3 r = \sin 4\theta$$

$$\mathbf{G4} \qquad r = 5\sec\theta$$

$$\mathbf{G5} \qquad r = e^{\theta/2}$$

$$\mathbf{G6} \qquad r = 2 - 3\cos\theta$$

$$G7 r = \frac{6}{1 + 2\cos\theta}$$

$$\mathbf{G8} \qquad \mathbf{r} = \frac{1}{1-\sin\theta}$$

MIT OpenCourseWare https://ocw.mit.edu

Resource: Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.