CHAPTER 11 VECTORS AND MATRICES

11.1 Vectors and Dot Products

(page 405)

A vector has length and direction. If \mathbf{v} has components 6 and $-\mathbf{8}$, its length is $|\mathbf{v}|=\mathbf{1 0}$ and its direction vector is $\mathbf{u}=.6 \mathrm{i}-.8 \mathrm{j}$. The product of $|\mathbf{v}|$ with \mathbf{u} is \mathbf{v}. This vector goes from $(0,0)$ to the point $x=6, y=-8$. A combination of the coordinate vectors $\mathbf{i}=(\mathbf{1}, \mathbf{0})$ and $\mathbf{j}=(\mathbf{0}, \mathbf{1})$ produces $\mathbf{v}=\mathbf{x} \mathbf{i}+\mathbf{y} \mathbf{j}$.

To add vectors we add their components. The sum of $(6,-8)$ and $(1,0)$ is $(7,-8)$. To see $\mathbf{v}+\mathbf{i}$ geometrically, put the tail of i at the head of v. The vectors form a parallelogram with diagonal $v+i$. (The other diagonal is $v-i$). The vectors $2 v$ and $-v$ are $(12,-16)$ and $(-6,8)$. Their lengths are 20 and 10.

In a space without axes and coordinates, the tail of \mathbf{V} can be placed anywhere. Two vectors with the same components or the same length and direction are the same. If a triangle starts with \mathbf{V} and continues with \mathbf{W}, the third side is $V+W$. The vector connecting the midpoint of V to the midpoint of W is $\frac{1}{2}(V+W)$. That vector is half of the third side. In this coordinate-free form the dot product is $\mathbf{V} \cdot \mathbf{W}=|\mathbf{V} \| \mathbf{W}| \cos \theta$.

Using components, $\mathbf{V} \cdot \mathbf{W}=\mathbf{V}_{1} \mathbf{W}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}} \mathbf{W}_{\mathbf{2}}+\mathbf{V}_{\mathbf{3}} \mathbf{W}_{\mathbf{3}}$ and $(1,2,1) \cdot(2,-3,7)=\mathbf{3}$. The vectors are perpendicular if $\mathbf{V} \cdot \mathbf{W}=\mathbf{0}$. The vectors are parallel if \mathbf{V} is a multiple of $\mathbf{W} . \mathbf{V} \cdot \mathbf{V}$ is the same as $|\mathbf{V}|^{\mathbf{2}}$. The dot product of $\mathbf{U}+\mathbf{V}$ with \mathbf{W} equals $\mathbf{U} \cdot \mathbf{W}+\mathbf{V} \cdot \mathbf{W}$. The angle between \mathbf{V} and \mathbf{W} has $\cos \theta=\mathbf{V} \cdot \mathbf{W} /|\mathbf{V} \| \mathbf{W}|$. When $V \cdot W$ is negative then θ is greater than 90°. The angle between $i+j$ and $i+k$ is $\pi / 3$ with cosine $\frac{1}{2}$. The Cauchy-Schwarz inequality is $|\mathbf{V} \cdot \mathbf{W}| \leq|\mathbf{V} \| \mathbf{W}|$, and for $\mathbf{V}=\mathbf{i}+\mathbf{j}$ and $\mathbf{W}=\mathbf{i}+\mathbf{k}$ it becomes $\mathbf{1} \leq \mathbf{2}$.

$$
\begin{aligned}
& \mathbf{1}(0,0,0) ;(5,5,5) ; 3 ;-3 ; \cos \theta=-1 \quad \mathbf{3} \mathbf{2 i}-\mathbf{j}-\mathbf{k} ;-\mathbf{i}-7 \mathbf{j}+7 \mathbf{k} ; 6 ; 1 ; \cos \theta=\frac{1}{6} \\
& 5\left(v_{2},-v_{1}\right) ;\left(v_{2},-v_{1}, 0\right),\left(v_{3}, 0,-v_{1}\right) \quad \boldsymbol{T}(0,0) ;(0,0,0) \quad 9 \text { Cosine of } \theta \text {; projection of } w \text { on } v \\
& 11 \mathrm{~F} ; \mathrm{T} ; \mathrm{F} \quad 13 \text { Zero; sum }=10 \text { o'clock vector; sum }=8 \text { o'clock vector times } \frac{1+\sqrt{3}}{2} \\
& 1545^{\circ} \quad 17 \text { Circle } x^{2}+y^{2}=4 ;(x-1)^{2}+y^{2}=4 \text {; vertical line } x=2 \text {; half-line } x \geq 0 \\
& 19 \mathbf{v}=-3 \mathbf{i}+2 \mathbf{j}, \mathbf{w}=2 \mathbf{i}-\mathbf{j} ; \mathbf{i}=4 \mathbf{v}-\mathbf{w} \quad 21 d=-6 ; C=\mathbf{i}-2 \mathbf{j}+\mathbf{k} \\
& 23 \cos \theta=\frac{1}{\sqrt{3}} ; \cos \theta=\frac{2}{\sqrt{6}} ; \cos \theta=\frac{1}{3} \quad 25 \mathbf{A} \cdot(\mathbf{A}+\mathbf{B})=1+\mathbf{A} \cdot \mathbf{B}=1+\mathbf{B} \cdot \mathbf{A}=\mathbf{B} \cdot(\mathbf{A}+\mathbf{B}) ; \text { equilateral, } 60^{\circ} \\
& 27 a=\mathbf{A} \cdot \mathrm{I}, b=\mathbf{A} \cdot \mathrm{J} \quad 29(\cos t, \sin t) \text { and }(-\sin t, \cos t) ;(\cos 2 t, \sin 2 t) \text { and }(-2 \sin 2 t, 2 \cos 2 t) \\
& \mathbf{s 1} \mathbf{C}=\mathbf{A}+\mathbf{B}, \mathbf{D}=\mathbf{A}-\mathbf{B} ; \mathbf{C} \cdot \mathbf{D}=\mathbf{A} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{A}-\mathbf{A} \cdot \mathbf{B}-\mathbf{B} \cdot \mathbf{B}=\boldsymbol{r}^{2}-\boldsymbol{r}^{2}=\mathbf{0} \\
& 33 \mathbf{U}+\mathbf{V}-\mathbf{W}=(2,5,8), \mathbf{U}-\mathbf{V}+\mathbf{W}=(0,-1,-2),-\mathbf{U}+\mathbf{V}+\mathbf{W}=(4,3,6) \\
& 35 c \text { and } \sqrt{a^{2}+b^{2}} ; b / a \text { and } \sqrt{a^{2}+b^{2}+c^{2}} \\
& \mathbf{3 7} \mathbf{M}_{1}=\frac{1}{2} \mathbf{A}+\mathbf{C}, \mathbf{M}_{\mathbf{2}}=\mathbf{A}+\frac{1}{2} \mathbf{B}, \mathbf{M}_{\mathbf{3}}=\mathbf{B}+\frac{1}{2} \mathbf{C} ; \mathbf{M}_{1}+\mathbf{M}_{\mathbf{2}}+\mathbf{M}_{3}=\frac{3}{2}(\mathbf{A}+\mathbf{B}+\mathbf{C})=\mathbf{0} \\
& 398 \leq 3 \cdot 3 ; 2 \sqrt{x y} \leq x+y \quad 41 \text { Cancel } a^{2} c^{2} \text { and } b^{2} d^{2} \text {; then } b^{2} c^{2}+a^{2} d^{2} \geq 2 a b c d \text { because }(b c-a d)^{2} \geq 0 \\
& 43 \mathrm{~F} ; \mathrm{T} ; \mathrm{T} ; \mathrm{F} \quad 45 \text { all } 2 \sqrt{2} ; \cos \theta=-\frac{1}{3}
\end{aligned}
$$

$2 \mathbf{V}+\mathbf{W}=\mathbf{i}+2 \mathbf{j}-\mathbf{k} ; 2 \mathbf{V}-3 \mathbf{W}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k} ;|\mathbf{V}|^{2}=2 ; \mathbf{V} \cdot \mathbf{W}=1 ; \cos \theta=\frac{1}{2}$
$4 V+W=(2,3,4,5) ; 2 V-3 W=(-1,-4,-7,-10) ;|V|^{2}=4 ; V \cdot W=10 ; \cos \theta=\frac{10}{2 \sqrt{30}}$
$6(0,0,1)$ and $(1,-1,0)$
8 Unit vectors $\frac{1}{\sqrt{3}}(1,1,1) ; \frac{1}{\sqrt{2}}(\mathbf{i}+\mathbf{j}) ; \frac{1}{\sqrt{6}}(\mathbf{i}-2 \mathbf{j}+\mathbf{k}) ;\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.
$10(\cos \theta, \sin \theta)$ and $(\cos \theta,-\sin \theta) ;(r \cos \theta, r \sin \theta)$ and $(r \cos \theta,-r \sin \theta)$.
12 We want $\mathbf{V} \cdot(\mathbf{W}-c \mathbf{V})=0$ or $\mathbf{V} \cdot \mathbf{W}=c \mathbf{V} \cdot \mathbf{V}$. Then $c=\frac{6}{3}=2$ and $\mathbf{W}-c \mathbf{V}=(-1,0,1)$.
14 (a) Try two possibilities: keep clock vectors 1 through 5 or 1 through 6 . The five add to $1+2 \cos 30^{\circ}+$ $2 \cos 60^{\circ}=2 \sqrt{3}=3.73$ (in the direction of 3:00). The six add to $2 \cos 15^{\circ}+2 \cos 45^{\circ}+2 \cos 75^{\circ}=\mathbf{3 . 8 6}$ which is longer (in the direction of $3: 30$). (b) The 12 o'clock vector (call it \mathbf{j} because it is vertical) is subtracted from all twelve clock vectors. So the sum changes from $\mathbf{V}=\mathbf{0}$ to $\mathbf{V}^{*}=\mathbf{- 1 2 j}$.
16 (a) The angle between these unit vectors is $\theta-\phi\left(\right.$ or $\phi-\theta$), and the cosine is $\frac{\mathbf{u}_{1} \cdot \mathbf{u}_{2}}{1 \cdot 1}=\cos \theta \cos \phi+\sin \theta \sin \phi$. (b) $\mathbf{u}_{3}=(-\sin \phi, \cos \phi)$ is perpendicular to u_{2}. Its angle with u_{1} is $\frac{\pi}{2}+\phi-\theta$, whose cosine is $-\sin (\theta-\phi)$. The cosine is also $\frac{\mathbf{u}_{1} \cdot \mathbf{u}_{\mathbf{s}}}{1 \cdot 1}=-\cos \theta \sin \phi+\sin \theta \cos \phi$. To get the formula $\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$, take the further step of changing θ to $-\theta$.
18 (a) The points $t B$ form a line from the origin in the direction of B. (b) $A+t B$ forms a line from A in the direction of B. (c) $s A+t B$ forms a plane containing A and B. (d) $v \cdot A=v \cdot B$ means $\frac{\cos \theta_{1}}{\cos \theta_{2}}=$ fixed number $\frac{|\mathbf{B}|}{|\mathbf{A}|}$ where θ_{1} and θ_{2} are the angles from v to A and B. Then v is on the plane through the origin that gives this fixed number. (If $|\mathbf{A}|=|\mathbf{B}|$ the plane bisects the angle between those vectors.)
20 The choice $Q=\left(\frac{1}{2}, \frac{1}{2}\right)$ makes $P Q R$ a right angle because $Q-P=\left(\frac{1}{2}, \frac{1}{2}\right)$ is perpendicular to $R-Q=\left(-\frac{1}{2}, \frac{1}{2}\right)$. The other choices for Q lie on a circle whose diameter is $P R$. (From geometry: the diameter subtends a right angle from any point on the circle.) This circle has radius $\frac{1}{2}$ and center $\frac{1}{2}$; in Section 9.1 it was the circle $r=\sin \theta$.

22 If a boat has velocity V with respect to the water and the water has velocity W with respect to the land, then the boat has velocity $V+W$ with respect to the land. The speed is not $|V|+|W|$ but $|\mathbf{V}+\mathbf{W}|$.
24. For any triangle $P Q R$ the side $P R$ is twice as long as the line $A B$ connecting midpoints in Figure 11.4. (The triangle $P Q R$ is twice as big as the triangle $A Q B$.) Similarly $|P R|=2|W|$ based on the triangle $P S R$. Since \mathbf{V} and \mathbf{W} have equal length and are both parallel to $P R$, they are equal.
26 (a) $I=(\cos \theta, \sin \theta)$ and $J=(-\sin \theta, \cos \theta)$. (b) One answer is $I=(\cos \theta, \sin \theta, 0), J=(-\sin \theta, \cos \theta, 0)$ and $\mathbf{K}=\mathbf{k}$. A more general answer is $I=\sin \phi(\cos \theta, \sin \theta, 0), J=\sin \phi(-\sin \theta, \cos \theta, 0)$ and $K=\cos \phi(0,0,1)$.
$28 I \cdot J=\frac{i+j}{\sqrt{2}} \cdot \frac{i-j}{\sqrt{2}}=\frac{1-1}{2}=0$. Add $i+j=\sqrt{2} I$ to $i-j=\sqrt{2} J$ to find $i=\frac{\sqrt{2}}{2}(I+J)$. Substitute back to find $j=\frac{\sqrt{2}}{2}(I-J)$. Then $A=2 i+3 j=\sqrt{2}(I+J)+\frac{3 \sqrt{2}}{2}(I-J)=a I+b J$ with $a=\sqrt{2}+\frac{3 \sqrt{2}}{2}$ and $b=\sqrt{2}-\frac{3 \sqrt{2}}{2}$.
$30|\mathbf{A} \cdot \mathbf{i}|^{2}+|\mathbf{A} \cdot \mathbf{j}|^{2}+|\mathbf{A} \cdot \mathbf{k}|^{2}=|\mathbf{A}|^{2}$. Check for $\mathbf{A}=(x, y, z): x^{2}+y^{2}+z^{2}=|\mathbf{A}|^{2}$.
$\mathbf{3 2}$ The third figure has $P R=\mathbf{A}+\mathbf{B}$ and $Q S=\mathbf{B}-\mathbf{A}$. Then $|P R|^{2}+|Q S|^{2}=(\mathbf{A} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{B}+\mathbf{B} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B})+$ $(B \cdot B-B \cdot A-A \cdot B+A \cdot A)$ which equals $2 A \cdot A+2 B \cdot B=$ sum of squares of the four side lengths.
34 The diagonals are $\mathbf{A}+\mathbf{B}$ and $\mathbf{B}-\mathbf{A}$. Suppose $|\mathbf{A}+\mathbf{B}|^{2}=\mathbf{A} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{B}+\mathbf{B} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}$ equals $|\mathbf{B}-\mathbf{A}|^{2}$ $=\mathbf{B} \cdot \mathbf{B}-\mathbf{A} \cdot \mathbf{B}-\mathbf{B} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}$. After cancelling this is $4 \mathbf{A} \cdot \mathbf{B}=0$ (note that $\mathbf{A} \cdot \mathbf{B}$ is the same as $\mathbf{B} \cdot \mathbf{A}$). The region is a rectangle.
$\mathbf{3 6}|\mathbf{A}+\mathbf{B}|^{2}=\mathbf{A} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{B}+\mathbf{B} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}$. If this equals $\mathbf{A} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}$ (and always $\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}$), then $2 A \cdot B=0$. So \mathbf{A} is perpendicular to \mathbf{B}.
38 In Figure 11.4, the point P is $\frac{2}{3}$ of the way along all medians. For the vectors, this statement means $\mathbf{A}+\frac{2}{3} \mathbf{M}_{3}=\frac{2}{3} \mathbf{M}_{2}=-\mathbf{C}+\frac{2}{3} \mathbf{M}_{1}$. To prove this, substitute $-\mathbf{A}-\frac{1}{2} \mathbf{C}$ for \mathbf{M}_{3} and $\mathbf{A}+\frac{1}{2} \mathbf{B}$ for \mathbf{M}_{2} and $\mathbf{C}+\frac{1}{2} \mathbf{A}$ for \mathbf{M}_{1}. Then the statement becomes $\frac{1}{3} \mathbf{A}=\frac{1}{3} \mathbf{C}=\frac{2}{3} \mathbf{A}+\frac{1}{3} \mathbf{B}=-\frac{1}{3} \mathbf{C}+\frac{1}{3} \mathbf{A}$. This is true because

$$
\mathbf{B}=-\mathbf{A}-\mathbf{C} .
$$

40 Choose $\mathbf{W}=(\mathbf{1}, \mathbf{1}, \mathbf{1})$. Then $\mathbf{V} \cdot \mathbf{W}=V_{1}+V_{2}+V_{3}$. The Schwarz inequality $|\mathbf{V} \cdot \mathbf{W}|^{2} \leq|\mathbf{V}|^{2}|\mathbf{W}|^{2}$ is $\left(V_{1}+V_{2}+V_{3}\right)^{2} \leq 3\left(V_{1}^{2}+V_{2}^{2}+V_{3}^{2}\right)$.
$42|\mathbf{A}+\mathbf{B}| \leq|\mathbf{A}|+|\mathbf{B}|$ or $|\mathbf{C}| \leq|\mathbf{A}|+|\mathbf{B}|$ says that any side length is less than the sum of the other two side lengths. Proof: $|A+B|^{2} \leq$ (using Schwars for $\left.A \cdot B\right)|A|^{2}+2|A||B|+|B|^{2}=(|A|+|B|)^{2}$.
$44|\mathbf{V}+\mathbf{W}|=|\mathbf{V}|+|\mathbf{W}|$ only if \mathbf{V} and \mathbf{W} are in the same direction: \mathbf{W} is a multiple $c \mathbf{V}$ with $c \geq 0$. Given $\mathbf{V}=\mathbf{i}+2 \mathbf{k}$ this leads to $\mathbf{W}=\mathbf{c}(\mathbf{i}+2 \mathbf{k})$ (for example $\mathbf{W}=2 \mathbf{i}+\mathbf{4} \mathbf{k}$).
46 (a) $\mathbf{V}=\mathbf{i}+\mathbf{j}$ has $\cos \theta=\frac{\mathbf{V} \cdot \mathbf{i}}{|\mathbf{V}| \mathbf{i i |}}=\frac{1}{\sqrt{2}}$ (45° angle also with \mathbf{j}). (b) $\mathbf{V}=\mathbf{i}+\mathbf{j}+\sqrt{2} \mathbf{k}$ has $\cos \theta=\frac{1}{2}$ (60° angle with \mathbf{i} and \mathbf{j}) (c) $\mathbf{V}=\mathbf{i}+\mathbf{j}+\mathbf{c k}$ has $\cos \theta=\frac{1}{\sqrt{2+c^{2}}}$ which cannot be larger than $\frac{1}{\sqrt{2}}$ so an angle below 45° is impossible. (Alternative: If the angle from i to V is 30° and the angle from \mathbf{V} to j is 30° then the angle from i to j will be $\leq 60^{\circ}$ which is false.)

11.2 Planes and Projections

(page 414)

A plane in space is determined by a point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and a normal vector \mathbf{N} with components (a, b, c). The point $P=(x, y, z)$ is on the plane if the dot product of \mathbf{N} with $\mathbf{P}-\mathbf{P}_{\mathbf{0}}$ is zero. (That answer was not P) The equation of this plane is $a\left(\mathbf{x}-\mathbf{x}_{0}\right)+b\left(\mathbf{y}-\mathbf{y}_{0}\right)+c\left(\mathbf{z}-\mathbf{z}_{0}\right)=0$. The equation is also written as $a x+b y+c z=d$, where d equals $\mathrm{ax}_{\mathbf{0}}+\mathrm{by}_{\mathbf{0}}+\mathrm{Cz}_{\mathbf{0}}$ or $\mathbf{N} \cdot \mathbf{P}_{\mathbf{0}}$. A parallel plane has the same \mathbf{N} and a different d. A plane through the origin has $d=0$.

The equation of the plane through $P_{0}=(2,1,0)$ perpendicular to $N=(3,4,5)$ is $\mathbf{3 x}+4 y+5 z=10$. A second point in the plane is $P=(0,0,2)$. The vector from P_{0} to P is $(-2,-1,2)$, and it is
perpendicular to N. (Check by dot product). The plane through $P_{0}=(2,1,0)$ perpendicular to the z axis has $N=(0,0,1)$ and equation $z=0$.

The component of \mathbf{B} in the direction of \mathbf{A} is $|\mathbf{B}| \cos \theta$, where θ is the angle between the vectors. This is $\mathbf{A} \cdot \mathbf{B}$ divided by $|\mathbf{A}|$. The projection vector \mathbf{P} is $|\mathbf{B}| \cos \theta$ times a unit vector in the direction of \mathbf{A}. Then $\mathbf{P}=(|\mathbf{B}| \cos \theta)(\mathbf{A} /|\mathbf{A}|)$ simplifies to $(\mathbf{A} \cdot \mathbf{B}) \mathbf{A} /|\mathbf{A}|^{2}$. When \mathbf{B} is doubled, \mathbf{P} is doubled. When \mathbf{A} is doubled, \mathbf{P} is not changed. If \mathbf{B} reverses direction, then \mathbf{P} reverses direction. If \mathbf{A} reverses direction, then \mathbf{P} stays the same.

When B is a velocity vector, \mathbf{P} represents the velocity in the \mathbf{A} direction. When \mathbf{B} is a force vector, \mathbf{P} is the force component along \mathbf{A}. The component of \mathbf{B} perpendicular to \mathbf{A} equals $\mathbf{B}-\mathbf{P}$. The shortest distance from ($0,0,0$) to the plane $a x+b y+c z=d$ is along the normal vector. The distance from the origin is $|d| / \sqrt{\mathbf{a}^{2}+b^{2}+c^{2}}$ and the point on the plane closest to the origin is $P=(d a, d b, d c) /\left(a^{2}+b^{2}+c^{2}\right)$. The distance from $\mathbf{Q}=\left(x_{1}, y_{1}, z_{1}\right)$ to the plane is $\left|\mathbf{d}-\mathbf{a x}_{1}-\mathrm{by}_{1}-\mathbf{c z}\right| / \sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{c}^{2}}$.

$$
\begin{array}{lcc}
1(0,0,0) \text { and }(2,-1,0) ; N=(1,2,3) & s(0,5,6) \text { and }(0,6,7) ; N=(1,0,0) \\
5(1,1,1) \text { and }(1,2,2) ; \mathbf{N}=(1,1,-1) & 7 x+y=3 & 9 x+2 y+z=2
\end{array}
$$

11 Parallel if $\mathbf{N} \cdot \mathbf{V}=\mathbf{0}$; perpendicular if $\mathbf{V}=$ multiple of \mathbf{N}
$13 \mathbf{i}+\mathbf{j}+\mathbf{k}$ (vector between points) is not perpendicular to $\mathbf{N} ; \mathbf{V} \cdot \mathbf{N}$ is not zero; plane through first three is $x+y+z=1 ; x+y-z=3$ succeeds; right side must be zero
$15 a x+b y+c z=0 ; a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 \quad 17 \cos \theta=\frac{\sqrt{5}}{3}, \frac{\sqrt{5}}{3}, \frac{1}{3}$
$19 \frac{2}{36} A$ has length $\frac{1}{3} \quad 21 P=\frac{1}{2} A$ has length $\frac{1}{2}|A| \quad 23 P=-A$ has length $|A| \quad 25 P=0$
27 Projection on $\mathbf{A}=(1,2,2)$ has length $\frac{5}{3}$; force down is 4 ; mass moves in the direction of \mathbf{F}
$29|\mathbf{P}|_{\min }=\frac{5}{|\mathbf{N}|}=$ distance from plane to origin $\quad 81$ Distances $\frac{1}{\sqrt{3}}$ and $\frac{2}{\sqrt{3}}$ both reached at $\left(\frac{1}{3}, \frac{1}{3},-\frac{1}{3}\right)$
$\mathbf{3 3} \mathbf{i}+\mathbf{j}+\mathbf{k} ; t=-\frac{4}{3} ;\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right) ; \frac{4}{\sqrt{3}}$
35 Same $\mathbf{N}=(2,-2,1)$; for example $\mathbf{Q}=(0,0,1)$; then $\mathbf{Q}+\frac{2}{9} \mathbf{N}=\left(\frac{4}{9},-\frac{4}{9}, \frac{11}{9}\right)$ is on second plane; $\frac{2}{9}|\mathbf{N}|=\frac{2}{3}$
$373 \mathbf{i}+4 \mathbf{j} ;(3 t, 4 t)$ is on the line if $3(3 t)+4(4 t)=10$ or $t=\frac{10}{25} ; P=\left(\frac{30}{25}, \frac{40}{25}\right),|P|=2$
$392 x+2\left(\frac{10}{4}-\frac{3}{4} x\right)\left(-\frac{3}{4}\right)=0$ so $x=\frac{30}{25}=\frac{6}{5} ; 3 x+4 y=10$ gives $y=\frac{8}{5}$
41 Use equations (8) and (9) with $\mathbf{N}=(a, b)$ and $\mathbf{Q}=\left(x_{1}, y_{1}\right) \quad 43 t=\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}|^{2}} ; \mathbf{B}$ onto \mathbf{A}
$45 a V L=\frac{1}{2} L_{I}-\frac{1}{2} L_{I I I} ; a V F=\frac{1}{2} L_{I I}+\frac{1}{2} L_{I I I}$
$47 \mathbf{V} \cdot \mathbf{L}_{I}=2-1 ; \mathbf{V} \cdot \mathbf{L}_{I I}=-3-1, \mathbf{V} \cdot \mathbf{L}_{I I I}=-3-2 ;$ thus $\mathbf{V} \cdot 2 \mathbf{i}=1, \mathbf{V} \cdot(\mathbf{i}-\sqrt{3} \mathbf{j})=-4$, and $\mathbf{V}=\frac{1}{2} \mathbf{i}+\frac{3 \sqrt{3}}{2} \mathbf{j}$
$2 P=(6,0,0)$ and $P_{0}=(0,0,2)$ are on the plane, and $\mathbf{N}=(1,2,3)$ is normal. Check $\mathbf{N} \cdot\left(P-P_{0}\right)=$ $(1,2,3) \cdot(6,0,-2)=0$.
$4 P=(1,1,2)$ and $P_{0}=(0,0,0)$ give $P-P_{0}$ perpendicular to $\mathbf{N}=\mathbf{i}+\mathbf{j}-\mathbf{k}$. (The plane is $x+y-z=0$ and P lies on this plane.)
6 The plane $y-z=0$ contains the given points $(0,0,0)$ and $(1,0,0)$ and $(0,1,1)$. The normal vector is $\mathbf{N}=\mathbf{j}-\mathbf{k}$. (Certainly $P=(0,1,1)$ and $P_{0}=(0,0,0)$ give $\left.\mathbf{N} \cdot\left(P-P_{0}\right)=0.\right)$
$8 P=(x, y, z)$ lies on the plane if $\mathbf{N} \cdot\left(P-P_{0}\right)=1(x-1)+2(y-2)-1(z+1)=0$ or $\mathbf{x}+2 y-z=4$.
$10 x+y+z=x_{0}+y_{0}+z_{0}$ or $\left(x-x_{0}\right)+\left(y-y_{0}\right)+\left(z-z_{0}\right)=0$.
12 (a) No: the line where the planes (or walls) meet is not perpendicular to itself. (b) A third plane perpendicular to the first plane could make any angle with the second plane.
14 The normal vector to $3 x+4 y+7 z-t=0$ is $\mathbf{N}=(3,4,7,-1)$. The points $P=(1,0,0,3)$ and $Q=(0,1,0,4)$ are on the hyperplane. Check $(P-Q) \cdot \mathbf{N}=(1,-1,0,-1) \cdot(3,4,7,-1)=0$.
16 A curve in 3 D is the intersection of two surfaces. A line in 4 D is the intersection of three hyperplanes.
18 If the vector V makes an angle θ with a plane, it makes an angle $\frac{\pi}{2}-\theta$ with the normal N . Therefore $\frac{\mathbf{V} \cdot \mathbf{N}}{|\mathbf{V} \| \mathbf{N}|}=\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$. The normal to the $x y$ plane is $\mathbf{N}=\mathbf{k}$, so $\sin \theta=\frac{\sqrt{2}}{\sqrt{4}}=\frac{\sqrt{2}}{2}$ and $\theta=\frac{\pi}{4}$.
20 The projection $\mathbf{P}=\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}|^{2}} \mathbf{A}$ is $\frac{2}{2} \mathbf{A}=(1,-1,0)$. Its length is $|\mathbf{P}|=\sqrt{2}$. Here the projection onto \mathbf{A} equals \mathbf{A} !
22 If B makes a 60° angle with A then the length of P is $|B| \cos 60^{\circ}=2 \cdot \frac{1}{2}=1$. Since \mathbf{P} is in the direction of \mathbf{A} it must be $\frac{\mathbf{A}}{|\mathbf{A}|}$.
24 The projection is $\mathbf{P}=\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}|^{2}} A=\frac{1}{2}(\mathbf{i}+\mathbf{j})$. Its length is $|\mathbf{P}|=\frac{\sqrt{2}}{2}$.
$26 \mathbf{A}$ is along $\mathbf{N}=(1,-1,1)$ so the projection of $\mathbf{B}=(1,1,5)$ is $\mathbf{P}=\frac{\mathbf{N} \cdot \mathbf{B}}{|\mathbf{N}|^{2}} \mathbf{N}=\frac{5}{3}(1,-1,1)$.
$28 \mathbf{P}=\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}|^{2}} \mathbf{A}$ and the perpendicular projection is $\mathbf{B}-\mathbf{P}$. The dot product $\mathbf{P} \cdot(\mathbf{B}-\mathbf{P})$ or $\mathbf{P} \cdot \mathbf{B}-\mathbf{P} \cdot \mathbf{P}$ is zero: $\frac{(\mathbf{A} \cdot \mathbf{B})^{2}}{|\mathbf{A}|^{2}}-\frac{(\mathbf{A} \cdot \mathbf{B})^{2}}{|\mathbf{A}|^{4}} \mathbf{A} \cdot \mathbf{A}=0$.
30 We need the angle between the jet's direction and the wind direction. If this angle is θ, the speed over land is $500+50 \cos \theta$.
32 The points at distance 1 from the plane $x+2 y+2 z=3$ fill two parallel planes $\mathbf{x}+2 y+2 z=6$ and
$x+2 y+2 z=0$. Check: The point $(0,0,0)$ on the last plane is a distance $\frac{|d|}{|N|}=\frac{3}{3}=1$ from the plane $x+2 y+2 z=3$.
34 The plane through $(1,1,1)$ perpendicular to $i+2 j+2 k$ is $x+2 y+2 z=5$. Its distance from ($0,0,0$) is $\frac{|d|}{|\mathrm{N}|}=\frac{5}{3}$.
36 The distance is zero because the two planes meet. They are not parallel; their normal vectors $(1,1,5)$ and $(3,2,1)$ are in different directions.
38 The point $P=Q+t \mathbf{N}=(3+t, 3+2 t)$ lies on the line $x+2 y=4$ if $(3+t)+2(3+2 t)=4$ or $9+5 t=4$ or $t=-1$. Then $P=(2,1)$.
40 The drug runner takes $\frac{1}{2}$ second to go the 4 meters. You have 5 meters to travel in the same $\frac{1}{2}$ second. Your speed must be 10 meters per second. The projection of your velocity (a vector) onto the drug runner's velocity equals the drug runner's velocity.
42 The equation $a x+b y+c z=d$ is equivalent to $\frac{a}{d} x+\frac{b}{d} y+\frac{c}{d} z=1$. So the three numbers $e=\frac{a}{d}, f=\frac{b}{d}, g=\frac{c}{d}$ determine the plane. (Note: We say that three points determine a plane. But that makes 9 coordinates! We only need the 3 numbers e, f, g determined by those 9 coordinates.)
44 Two planes $a x+b y+c z=d$ and $e x+f y+g z=h$ are (a) parallel if the normal vector (a, b, c) is a multiple of (e, f, g) (b) perpendicular if the normal vectors are perpendicular (c) at a 45° angle if the normal vectors are at a 45° angle: $\frac{N_{1} \cdot N_{2}}{\left|N_{1}\right|\left|N_{2}\right|}=\frac{\sqrt{2}}{2}$.
46 The $a V R$ lead is in the direction of $A=-i+j$. The projection of $V=2 i-j$ in this direction is $\mathbf{P}=\frac{\mathbf{A} \cdot \mathbf{V}}{|\mathbf{A}|^{2}} \mathbf{A}=\frac{-3}{2}(-i+j)=\left(\frac{3}{2},-\frac{3}{2}\right)$. The length of \mathbf{P} is $\frac{3 \sqrt{2}}{2}$.
48 If V is perpendicular to L, the reading on that lead is zero. If $\int V(t) d t$ is perpendicular to L then $\int \mathbf{V}(t) \cdot \mathbf{L} d t=0$. This is the area under $\mathbf{V}(t) \cdot \mathbf{L}$ (which is proportional to the reading on lead \mathbf{L}).

11.3 Cross Products and Determinants

(page 423)

The cross product $\mathbf{A} \times \mathbf{B}$ is a vector whose length is $|\mathbf{A} \| \mathbf{B}| \sin \theta$. Its direction is perpendicular to \mathbf{A} and B. That length is the area of a parallelogram, whose base is $|\mathbf{A}|$ and whose height is $|\mathbf{B}| \sin \theta$. When $\mathbf{A}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$ and $\mathbf{B}=b_{1} \mathbf{i}+b_{2} \mathbf{j}$, the area is $\left|\mathbf{a}_{1} \mathbf{b}_{2}-\mathbf{a}_{2} \mathbf{b}_{1}\right|$. This equals a 2 by 2 determinant. In general $|\mathbf{A} \cdot \mathbf{B}|^{2}+|\mathbf{A} \times \mathbf{B}|^{2}=|\mathbf{A}|^{2}|\mathbf{B}|^{2}$.

The rules for cross products are $\mathbf{A} \times \mathbf{A}=0$ and $\mathbf{A} \times \mathbf{B}=-(\mathbf{B} \times \mathbf{A})$ and $\mathbf{A} \times(\mathbf{B}+\mathbf{C})=\mathbf{A} \times \mathbf{B}+\mathbf{A} \times \mathbf{C}$. In particular $A \times B$ needs the right-hand rule to decide its direction. If the fingers curl from A towards B (not more than 180°), then $\mathbf{A} \times \mathbf{B}$ points along the right thumb. By this rule $\mathbf{i} \times \mathbf{j}=\mathbf{k}$ and $\mathbf{i} \times \mathbf{k}=-\mathbf{j}$ and $\mathbf{j} \times \mathbf{k}=\mathbf{i}$.

The vectors $a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ have cross product $\left(\mathbf{a}_{2} \mathbf{b}_{3}-\mathbf{a}_{\mathbf{3}} \mathbf{b}_{2}\right) \mathbf{i}+\left(\mathbf{a}_{\mathbf{3}} \mathbf{b}_{\mathbf{1}}-\mathbf{a}_{\mathbf{1}} \mathbf{b}_{\mathbf{3}}\right) \mathbf{j}+$ $\left(\mathbf{a}_{1} \mathbf{b}_{2}-\mathbf{a}_{2} \mathbf{b}_{1}\right) \mathbf{k}$. The vectors $\mathbf{A}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{B}=\mathbf{i}+\mathbf{j}$ have $\mathbf{A} \times \mathbf{B}=-\mathbf{i}+\mathbf{j}$. (This is also the ρ by ρ determinant $\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right|$.) Perpendicular to the plane containing $(0,0,0),(1,1,1),(1,1,0)$ is the normal vector N $=-i+j$. The area of the triangle with those three vertices is $\frac{1}{2} \sqrt{2}$, which is half the area of the parallelogram
with fourth vertex at (2, 2, 1).

Vectors $\mathbf{A}, \mathbf{B}, \mathbf{C}$ from the origin determine a box. Its volume $|\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})|$ comes from a 3 by 3 determinant. There are six terms, three with a plus sign and three with minus. In every term each row and column is represented once. The rows $(1,0,0),(0,0,1)$, and $(0,1,0)$ have determinant $=-1$. That box is a cube, but its sides form a left-handed triple in the order given.

If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ lie in the same plane then $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ is zero. For $\mathbf{A}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ the first row contains the letters $\mathbf{x}, \mathbf{y}, \mathbf{z}$. So the plane containing \mathbf{B} and \mathbf{C} has the equation $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}=0$. When $\mathbf{B}=\mathbf{i}+\mathbf{j}$ and $\mathbf{C}=\mathbf{k}$ that equation is $\mathbf{x}-\mathbf{y}=\mathbf{0} . \mathbf{B} \times \mathbf{C}$ is $\mathbf{i}-\mathbf{j}$.

A 3 by 3 determinant splits into three 2 by 2 determinants. They come from rows 2 and 3 , and are multiplied by the entries in row 1 . With i, j, k in row 1 , this determinant equals the cross product. Its j component is $-\left(\mathbf{a}_{1} \mathbf{b}_{\mathbf{3}}-\mathbf{a}_{\mathbf{3}} \mathbf{b}_{\mathbf{1}}\right)$, including the minus sign which is easy to forget.
$1 \mathbf{0} \quad \mathbf{3} 3 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k} \quad \mathbf{5}-2 \mathbf{i}+3 \mathbf{j}-5 \mathbf{k} \quad \mathbf{7} 27 \mathbf{i}+12 \mathbf{j}-17 \mathbf{k}$
$9 \mathbf{A}$ perpendicular to $\mathbf{B} ; \mathbf{A}, \mathbf{B}, \mathbf{C}$ mutually perpendicular $\quad \mathbf{1 1}|\mathbf{A} \times \mathbf{B}|=\sqrt{2}, \mathbf{A} \times \mathbf{B}=\mathbf{j}-\mathbf{k} \quad 13 \mathbf{A} \times \mathbf{B}=\mathbf{O}$
$\mathbf{1 5}|\mathbf{A} \times \mathbf{B}|^{2}=\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}\right)^{2}=\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} ; \mathbf{A} \times \mathbf{B}=\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}$
17 T ; T; F; T $\quad 19 \mathbf{N}=(2,1,0)$ or $2 \mathbf{i}+\mathbf{j} \quad 21 x-y+z=2$ so $\mathbf{N}=\mathbf{i}-\mathbf{j}+\mathbf{k}$
$23[(1,2,1)-(2,1,1)] \times[(1,1,2)-(2,1,1)]=\mathbf{N}=\mathbf{i}+\mathbf{j}+\mathbf{k} ; x+y+z=4$
$25(1,1,1) \times(a, b, c)=\mathbf{N}=(c-b) \mathbf{i}+(a-c) \mathbf{j}+(b-a) \mathbf{k}$; points on a line if $a=b=c$ (many planes)
$27 \mathbf{N}=\mathbf{i}+\mathbf{j}$, plane $x+y=$ constant $\quad 29 \mathbf{N}=\mathbf{k}$, plane $z=$ constant
$\mathbf{3 1}\left|\begin{array}{lll}x & y & z \\ 1 & 1 & 0 \\ 1 & 2 & 1\end{array}\right|=x-y+z=0 \quad \mathbf{3 3} \mathbf{i}-3 \mathbf{j} ;-\mathbf{i}+3 \mathbf{j} ;-3 \mathbf{i}-\mathbf{j} \quad \mathbf{3 5}-1,4,-9$
$39+c_{1}\left|\begin{array}{ll}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right|-c_{2}\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right|+c_{3}\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|$
41 area $^{2}=\left(\frac{1}{2} a b\right)^{2}+\left(\frac{1}{2} a c\right)^{2}+\left(\frac{1}{2} b c\right)^{2}=\left(\frac{1}{2}|\mathbf{A} \times \mathbf{B}|\right)^{2}$ when $\mathbf{A}=a \mathbf{i}-b \mathbf{j}, \mathbf{B}=a \mathbf{i}-c \mathbf{k}$
$43 \mathbf{A}=\frac{1}{2}(2 \cdot 1-(-1) 1)=\frac{3}{2}$; fourth corner can be $(3,3)$
$45 a_{1} \mathbf{i}+a_{2} \mathbf{j}$ and $b_{1} \mathbf{i}+b_{2} \mathbf{j} ;\left|a_{1} b_{2}-a_{2} b_{1}\right| ; \mathbf{A} \times \mathbf{B}=\cdots+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}$
$47 \mathbf{A} \times \mathbf{B}$; from Eq. (6), $(\mathbf{A} \times \mathbf{B}) \times \mathbf{i}=-\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{k}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{j} ;(\mathbf{A} \cdot \mathbf{i}) \mathbf{B}-(\mathbf{B} \cdot \mathbf{i}) \mathbf{A}=$ $a_{1}\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right)-b_{1}\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right)$
$49 \mathbf{N}=(Q-P) \times(R-P)=\mathbf{i}+\mathbf{j}+\mathbf{k} ;$ area $\frac{1}{2} \sqrt{3} ; x+y+z=2$
$2(\mathbf{i} \times \mathbf{j}) \times \mathbf{i}=\mathbf{k} \times \mathbf{i}=\mathbf{j} . \quad 4\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 1 \\ 2 & 3 & -1\end{array}\right|=\mathbf{i}(-6)+\mathbf{j}(+4)+\mathbf{k}(0)=-6 \mathbf{i}+4 \mathbf{j}$.
$6\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right|=\mathbf{i}(0)+\mathbf{j}(-2)+\mathbf{k}(-2)=-2 \mathbf{j}-2 \mathbf{k}$.
$\mathbf{8}\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & -\cos \theta & 0\end{array}\right|=0 \mathbf{i}+0 \mathbf{j}+\mathbf{k}\left(-\cos ^{2} \theta-\sin ^{2} \theta\right)=-\mathbf{k}$.

10 (a) True ($\mathbf{A} \times \mathbf{B}$ is a vector, $\mathbf{A} \cdot \mathbf{B}$ is a number) (b) True (Equation (1) becomes $0=|A|^{2}|B|^{2}$ so $\mathbf{A}=\mathbf{0}$ or $\mathbf{B}=\mathbf{0}$) (c) False: $\mathbf{i} \times(\mathbf{j})=\mathbf{i} \times(\mathbf{i}+\mathbf{j})$
12 Equation (1) gives $|\mathbf{A} \times \mathbf{B}|^{2}+0^{2}=(2)(2)$ or $|\mathbf{A} \times \mathbf{B}|=2$. Check: $\mathbf{A} \times \mathbf{B}=\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 1 & -1 & 0\end{array}\right|=-2 \mathbf{k}$.
14 Equation (1) gives $|\mathbf{A} \times \mathbf{B}|^{2}+1^{2}=(2)(2)$ or $|\mathbf{A} \times \mathbf{B}|=\sqrt{\mathbf{s}}$. Check: $\mathbf{A} \times \mathbf{B}=\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|=\mathbf{i}-\mathbf{j}+\mathbf{k}$.
$16|\mathbf{A} \times \mathbf{B}|^{2}=|\mathbf{A}|^{2}|\mathbf{B}|^{2}-(\mathbf{A} \cdot \mathbf{B})^{2}$ which is $\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}$. Multiplying and simplifying leads to $\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}+\left(a_{1} b_{3}-a_{3} b_{1}\right)^{2}+\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}$ which confirms $|\mathbf{A} \times \mathbf{B}|$ in eq. (6).
18 (a) In $\mathbf{A} \times \mathbf{B}=-(\mathbf{B} \times \mathbf{A})$, set \mathbf{B} equal to \mathbf{A}. Then $\mathbf{A} \times \mathbf{A}=-(\mathbf{A} \times \mathbf{A})$ and $\mathbf{A} \times \mathbf{A}$ must be zero. (b) The converse: Suppose the cross product of any vector with itself is zero. Then $(\mathbf{A}+\mathbf{B}) \times(\mathbf{A}+\mathbf{B})=\mathbf{A} \times \mathbf{A}+\mathbf{B} \times \mathbf{A}+$ $\mathbf{A} \times \mathbf{B}+\mathbf{B} \times \mathbf{B}$ reduces to $0=\mathbf{B} \times \mathbf{A}+\mathbf{A} \times \mathbf{B}$ or $\mathbf{A} \times \mathbf{B}=-(\mathbf{B} \times \mathbf{A})$.
$20 \mathbf{N}=(3,0,4) . \quad 22 \mathbf{N}=(1,1,1) \times(1,1,2)=\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & 1 & 2\end{array}\right|=\mathbf{i}-\mathbf{j}$.
24 These three points are on a line! The direction of the line is $(1,1,1)$, so the plane has normal vector perpendicular to $(1,1,1)$. Example: $\mathbf{N}=(1,-2,1)$ and plane $x-2 y+z=0$.
26 The plane has normal $\mathbf{N}=(\mathbf{i}+\mathbf{j}) \times \mathbf{k}=\mathbf{i} \times \mathbf{k}+\mathbf{j} \times \mathbf{k}=-\mathbf{j}+\mathbf{i}$. So the plane is $x-y=d$. If the plane goes through the origin, its equation is $x-y=0$.
$28 \mathbf{N}=\mathbf{i}+\mathbf{j}+\sqrt{2} \mathbf{k}$ makes a 60° angle with \mathbf{i} and \mathbf{j}. (Note: A plane can't make 60° angles with those vectors, because N would have to make 30° angles. By Problem 11.1.46 this is impossible.)
$\mathbf{3 0} \frac{1}{2} ; \frac{1}{6} ; \frac{1}{24} \quad \mathbf{3 2}$ Right-hand triple: $\mathbf{i}, \mathbf{i}+\mathbf{j}, \mathbf{i}+\mathbf{j}+\mathbf{k}$; left-hand triple: $\mathbf{k}, \mathbf{j}+\mathbf{k}, \mathbf{i}+\mathbf{j}+\mathbf{k}$.
$34 \mathbf{B} \cdot(\mathbf{A} \times \mathbf{B})=b_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)+b_{2}\left(a_{3} b_{1}-a_{1} b_{3}\right)+b_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)=0$.
$36 \mathbf{A} \times \mathbf{B}=(\mathbf{A}+\mathbf{B}) \times \mathbf{B}$ (because the extra $\mathbf{B} \times \mathbf{B}$ is zero); also $\frac{1}{2}(\mathbf{A}-\mathbf{B}) \times(\mathbf{A}+\mathbf{B})=\frac{1}{2} \mathbf{A} \times \mathbf{A}-\frac{1}{2} \mathbf{B} \times \mathbf{A}$ $+\frac{1}{2} \mathbf{A} \times \mathbf{B}-\frac{1}{2} \mathbf{B} \times \mathbf{B}=\mathbf{0}+\mathbf{A} \times \mathbf{B}-\mathbf{0}=\mathbf{A} \times \mathbf{B}$.
38 The six terms $-b_{1} a_{2} c_{3}+b_{1} a_{3} c_{2}+b_{2} a_{1} c_{3}-b_{2} a_{3} c_{1}-b_{3} a_{1} c_{2}+b_{3} a_{2} c_{1}$ equal the determinant.
40 Add up three parts: $(B-A) \cdot(A \times B)=0$ because $A \times B$ is perpendicular to A and B; for the same reason $(\mathbf{B}-\mathbf{A}) \cdot(\mathbf{B} \times \mathbf{C})=-\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ and $(\mathbf{B}-\mathbf{A}) \cdot(\mathbf{C} \times \mathbf{A})=\mathbf{B} \cdot(\mathbf{C} \times \mathbf{A})$. Add to get zero because $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ equals $\mathbf{B} \cdot(\mathbf{C} \times \mathbf{A})$.

Changing the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}$ to $\mathbf{B}, \mathbf{C}, \mathbf{A}$ and to $\mathbf{C}, \mathbf{A}, \mathbf{B}$, the vector $(\mathbf{A} \times \mathbf{B})+(\mathbf{B} \times \mathbf{C})+(\mathbf{C} \times \mathbf{A})$ stays the same. So this vector is perpendicular to $C-B$ and $A-C$ as well as $B-A$.
42 The two sides going out from $\left(a_{1}, b_{1}\right)$ are $\left(a_{2}-a_{1}\right) \mathbf{i}+\left(b_{2}-b_{1}\right) \mathbf{j}$ and $\left(a_{3}-a_{1}\right) \mathbf{i}+\left(b_{3}-b_{1}\right) \mathbf{j}$. The cross product of those sides gives the area of the parallelogram as $\left|\left(a_{2}-a_{1}\right)\left(b_{3}-b_{1}\right)-\left(a_{3}-a_{1}\right)\left(b_{2}-b_{1}\right)\right|$.
Divide by 2 for the area of the triangle.
44 Area of triangle $=\frac{1}{2}\left|\begin{array}{lll}a_{1} & b_{1} & 1 \\ a_{2} & b_{2} & 1 \\ a_{3} & b_{3} & 1\end{array}\right|=\frac{1}{2}\left|\begin{array}{lll}2 & 1 & 1 \\ 4 & 2 & 1 \\ 1 & 2 & 1\end{array}\right|=\frac{1}{2}(4+8+1-2-4-4)=\frac{3}{2}$. Note that expanding the first determinant produces the formula already verified in Problem 42.
46 (a) $\mathbf{A} \times \mathbf{B}=\left|\begin{array}{rrr}i & j & k \\ 1 & 1 & -4 \\ -1 & 1 & 0\end{array}\right|=4 \mathbf{i}+4 j+2 k$. The inner products with i, j, k are $4,4,2$. (b) Square and add to find $|A \times B|^{2}=4^{2}+4^{2}+2^{2}=36$. This is the square of the parallelogram area.
48 The triple vector product in Problem 47 is $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{B} \cdot \mathbf{C}) \mathbf{A}$. Take the dot product with D. The right side is easy: $(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D})-(\mathbf{B} \cdot \mathbf{C})(\mathbf{A} \cdot \mathbf{D})$. The left side is $((\mathbf{A} \times \mathbf{B}) \times \mathbf{C}) \cdot \mathbf{D}$ and the
vectors $\mathbf{A} \times \mathbf{B}, \mathbf{C}, \mathbf{D}$ can be put in any cyclic order (see "useful facts" about volume of a box, after Theorem 11G). We choose $(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D})$.
50 For a parallelogram choose S so that $S-R=Q-P$. Then $S=(2,3,3)$. The area is the length of the cross-product $(Q-P) \times(R-P)=\left|\begin{array}{lll}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 2 \\ 1 & 2 & 2\end{array}\right|=-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$. Its length is $\sqrt{2^{2}+2^{2}+1^{2}}=3$.

One way to produce a box is to choose $T=P+S$ and $U=Q+S$ and $V=R+S$. (Then STUV comes from shifting $O P Q R$ by the vector S.) In that case the three edges from the origin are $O P$ and $O Q$ and $O S$. Find the determinant $\left|\begin{array}{ccc}1 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 3 & 3\end{array}\right|=3+0-3+2-3-0=-1$. Then the volume is the absolute value 1. Another box has edges $O P, O Q, O R$ with the same volume.

11.4 Matrices and Linear Equations

(page 433)

The equations $3 x+y=8$ and $x+y=6$ combine into the vector equation $x\left[\begin{array}{l}3 \\ 1\end{array}\right]+y\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}8 \\ 6\end{array}\right]=d$. The left side is $A u$ with coefficient matrix $A=\left[\begin{array}{cc}3 & 1 \\ 1 & 1\end{array}\right]$ and unknown vector $u=\left[\begin{array}{l}x \\ y\end{array}\right]$. The determinant of A is 2 , so this problem is not singular. The row picture shows two intersecting lines. The column picture shows $x a+y b=d$, where $a=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $b=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. The inverse matrix is $A^{-1}=\frac{1}{2}\left[\begin{array}{rr}1 & -1 \\ -1 & 3\end{array}\right]$. The solution is $\mathbf{u}=A^{-1} \mathbf{d}=\left[\begin{array}{l}1 \\ 5\end{array}\right]$.

A matrix-vector multiplication produces a vector of dot products from the rows, and also a combination of the columns:

$$
\left[\begin{array}{l}
\mathbf{A} \\
\mathbf{B}
\end{array}\right][\mathbf{u}]=\left[\begin{array}{l}
\mathbf{A} \cdot \mathbf{u} \\
\mathbf{B} \cdot \mathbf{u}
\end{array}\right], \quad\left[\begin{array}{ll}
\mathbf{a} & \mathbf{b}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=[x \mathbf{a}+y \mathbf{b}], \quad\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
8 \\
6
\end{array}\right]
$$

If the entries are a, b, c, d, the determinant is $D=\mathbf{a d}-\mathbf{b c} . A^{-1}$ is $\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ divided by D. Cramer's Rule shows components of $u=A^{-1} d$ as ratios of determinants: $x=\left(\mathbf{b}_{2} \mathbf{d}_{1}-\mathbf{b}_{1} \mathbf{d}_{2}\right) / D$ and $y=\left(\mathbf{a}_{1} \mathbf{d}_{2}-\mathbf{a}_{2} \mathbf{d}_{1}\right) / D$.

A matrix-matrix multiplication $M V$ yields a matrix of dot products, from the rows of M and the columns of \mathbf{V} :

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
\mathbf{A} \\
\mathbf{B}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right]=} & {\left[\begin{array}{ll}
\mathbf{A} \cdot \mathbf{v}_{1} & \mathbf{A} \cdot \mathbf{v}_{2} \\
\mathbf{B} \cdot \mathbf{v}_{1} & \mathbf{B} \cdot \mathbf{v}_{2}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right]=\left[\begin{array}{ll}
8 & 12 \\
6 & 8
\end{array}\right]} \\
-1 / 2 & -1 / 2 \\
\hline
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right][A]=[A] . ~ . ~\left[\begin{array}{ll}
A
\end{array}\right]=\left[\begin{array}{ll}
\end{array}\right]
$$

The last line contains the identity matrix, denoted by I. It has the property that $I A=A I=\mathbf{A}$ for every matrix A, and $I \mathbf{u}=\mathbf{u}$ for every vector \mathbf{u}. The inverse matrix satisfies $A^{-1} A=\mathbf{I}$. Then $A u=d$ is solved by multiplying both sides by A^{-1}, to give $u=A^{-1} d$. There is no inverse matrix when $\operatorname{det} A=0$.

The combination $x a+y b$ is the projection of d when the error $d-x a-y b$ is perpendicular to a and b. If
$\mathbf{a}=(1,1,1), b=(1,2,3)$, and $d=(0,8,4)$, the equations for x and y are $3 x+6 y=12$ and $6 x+14 y=28$. Solving them also gives the closest line to the data points $(1,0),(2,8)$, and $(3,4)$. The solution is $x=0, y=2$, which means the best line is horizontal. The projection is $0 a+2 b=(2,4,6)$. The three error components are $(-2,4,-2)$. Check perpendicularity: $(1,1,1) \cdot(-2,4,-2)=0$ and $(1,2,3) \cdot(-2,4,-2)=0$. Applying calculus to this problem, x and y minimize the sum of squares $E=(-x-y)^{2}+(8-x-2 y)^{2}+(4-x-3 y)^{2}$.

$$
\begin{aligned}
& 1 x=5, y=2, D=-2,\left[\begin{array}{l}
7 \\
3
\end{array}\right]=5\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \quad \mathbf{3} x=3, y=1,\left[\begin{array}{l}
8 \\
0
\end{array}\right]=3\left[\begin{array}{l}
3 \\
1
\end{array}\right]+\left[\begin{array}{l}
-1 \\
-3
\end{array}\right], D=-8 \\
& 5 x=2 y, y=\text { anything, } D=0,2 y\left[\begin{array}{l}
2 \\
1
\end{array}\right]+y\left[\begin{array}{l}
-4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad 7 \text { no solution, } D=0 \\
& \mathbf{9} x=\frac{1}{D}\left|\begin{array}{ll}
8 & -1 \\
0 & -3
\end{array}\right|=\frac{-24}{-8}=3, y=\frac{1}{D}\left[\begin{array}{ll}
3 & 8 \\
1 & 0
\end{array}\right]=\frac{-8}{-8}=1 \quad 11 \frac{0}{0}
\end{aligned}
$$

$15 A^{-1}=\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ if $a d-b c=1 \quad 17$ Are parallel; multiple; the same; infinite
19 Multiples of each other; in the same direction as the columns; infinite
$21 d_{1}=.34, d_{2}=4.91 \quad 23.96 x+.02 y=.58, .04 x+.98 y=4.92 ; D=.94, x=.5, y=5$
$25 a=1$ gives any $x=-y ; a=-1$ gives any $x=y$
$27 D=-2, A^{-1}=-\frac{1}{2}\left[\begin{array}{rr}5 & -4 \\ -3 & 2\end{array}\right] ; D=-8,(2 A)^{-1}=\frac{1}{2} A^{-1} ; D=\frac{1}{-2},\left(A^{-1}\right)^{-1}=$ original A;
$D=-2($ not +2$),(-A)^{-1}=-A^{-1} ; D=1, I^{-1}=I$
$29 A B=\left[\begin{array}{ll}7 & 5 \\ 5 & 1\end{array}\right], B A=\left[\begin{array}{rr}5 & 11 \\ 3 & 3\end{array}\right], B C=\left[\begin{array}{ll}3 & 5 \\ 1 & 3\end{array}\right], C B=\left[\begin{array}{ll}4 & 2 \\ 2 & 2\end{array}\right]$
$31 A B=\left[\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right], \begin{array}{r}a e c f+a e d h+b g c f+b g d h \\ -a f c e-a f d g-b h c e-b h d g\end{array}=(a d-b c)(e h-f g)$
$33 A^{-1}=\left[\begin{array}{rr}1 & -2 \\ 0 & \frac{1}{2}\end{array}\right], B^{-1}=\left[\begin{array}{rr}\frac{1}{2} & -1 \\ 0 & 1\end{array}\right]$
35 Identity; $B^{-1} A^{-1}$
37 Perpendicular; $\mathbf{u}=\mathbf{v} \times \mathbf{w}$
39 Line $4+t$, errors $-1,2,-1 \quad 41 d_{1}-2 d_{2}+d_{3}=0 \quad 43 A^{-1}$ can't multiply O and produce u
$2 x=5, y=1 ; 5\left[\begin{array}{l}2 \\ 1\end{array}\right]+1\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{r}11 \\ 6\end{array}\right] ;\left|\begin{array}{cc}2 & 1 \\ 1 & 1\end{array}\right|=1 . \quad 4$ Parallel lines (no solution) $;\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|=0$.
$6 x=0, y=1 ; 0\left[\begin{array}{r}10 \\ 1\end{array}\right]+1\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right] ;\left|\begin{array}{rr}10 & 1 \\ 1 & 1\end{array}\right|=9$.
8 The solution is $x=\frac{d-b}{a d-b c}, y=\frac{a-c}{a d-b c}$ (ok to use Cramer's Rule) (solution breaks down if $a d=b c$);
$\frac{d-b}{a d-b c}\left[\begin{array}{l}a \\ c\end{array}\right]+\frac{a-c}{a d-b c}\left[\begin{array}{l}b \\ d\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right] ;\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
10 In Problem 4, $x=\left|\begin{array}{ll}3 & 2 \\ 7 & 4 \\ 1 & 2 \\ 2 & 4\end{array}\right|=\frac{-2}{0}$ and $y=\left|\begin{array}{ll}1 & 3 \\ 2 & 7 \\ 1 & 2 \\ 2 & 4\end{array}\right|=\frac{1}{0}$ (no solution)
12 With $A=I$ the equations are $\begin{aligned} & 1 x+0 y=d_{1} \\ & 0 x+1 y=d_{2}\end{aligned}$. Then $x=\frac{\left|\begin{array}{cc}d_{1} & 0 \\ d_{2} & 1\end{array}\right|}{\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|}=d_{1}$ and $y=\frac{\left|\begin{array}{cc}1 & d_{1} \\ 0 & d_{2}\end{array}\right|}{\left|\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right|}=d_{2}$.
14 Row picture: $10 x+y=1$ and $x+y=1$ intersect at $(0,1)$. Column picture: Add $0\left[\begin{array}{c}10 \\ 1\end{array}\right]$ and $1\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

16 If $a d-b c=1$ then $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$.
$18 x=\left|\begin{array}{ll}0 & 1 \\ 2 & 2 \\ 3 & 1 \\ 6 & 2\end{array}\right|=\frac{-2}{0}$ (no solution); $x=\frac{\left|\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right|}{\left.\begin{array}{ll}3 & 1 \\ 6 & 2\end{array} \right\rvert\,}=\frac{0}{0}$ and $y=\left|\begin{array}{ll}3 & 1 \\ 6 & 2 \\ 3 & 1 \\ 6 & 2\end{array}\right|=\frac{0}{0}$. In Cramer's Rule this $\frac{0}{0}$ signals
that a solution might (or might not) exist.
$20 x-y=d_{1}$ and $9 x-9 y=d_{2}$ can be solved if $d_{2}=9 d_{1}$.
22 Problem 21 is $\begin{aligned} & .96 x+.02 y=d_{1} \\ & .04 x+.98 y=d_{2}\end{aligned}$. The sums down the columns of A are $.96+.04=1$ and $.02+.98=1$.
Reason: Everybody has to be accounted for. Nobody is lost or gained. Then $x+y$ (total population before move) equals $d_{1}+d_{2}$ (total population after move).
24 Determinant of $A=\left|\begin{array}{rr}.96 & .02 \\ .04 & .98\end{array}\right|=.94 ; A^{-1}=\frac{1}{.94}\left[\begin{array}{rr}.98 & -.02 \\ -.04 & .96\end{array}\right]$ (columns still add to 1); $A^{-1} A=I$.
$26 x=0, y=0$ always solves $a x+b y=0$ and $c x+d y=0$ (these lines always go through the origin). There are other solutions if the two lines are the same. This happens if $\mathbf{a d}=\mathbf{b c}$.
28 Determinant of $A^{-1}=\frac{d}{a d-b c} \frac{a}{a d-b c}-\frac{(-b)}{a d-b c} \frac{(-c)}{a d-b c}=\frac{a d-b c}{(a d-b c)^{2}}=\frac{1}{a d-b c}$. Therefore $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$.
30 (a) $|A|=-9 ;|B|=2 ;|A B|=-18 ;|B A|=-18$.
(b) (determinant of $B C$) equals (determinant of B) times (determinant of C).
$32\left|\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right|+\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|$ does not equal $\left|\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right|$ Example of equality: $\left|\begin{array}{ll}3 & 3 \\ 1 & 1\end{array}\right|+\left|\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right|=\left|\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right|$.
$34 A B=\left[\begin{array}{ll}2 & 6 \\ 0 & 2\end{array}\right]$ has determinant 4 so $(A B)^{-1}=\frac{1}{4}\left[\begin{array}{rr}2 & -6 \\ 0 & 2\end{array}\right]$. Check that this is also $B^{-1} A^{-1}=\frac{1}{2}\left[\begin{array}{rr}1 & -2 \\ 0 & 2\end{array}\right] \frac{1}{2}\left[\begin{array}{rr}2 & -4 \\ 0 & 1\end{array}\right]$.
$36 C^{-1} B^{-1} A^{-1} A B C$ equals the identity matrix (because it collapses to $C^{-1} B^{-1} B C$ which is $C^{-1} C$ which is I). Then the inverse of $A B C$ is $\mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1}$.
38 (a) Find x and y from the normal equations. First compute $\mathbf{a} \cdot \mathbf{a}=3$ and $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}=0$ and $\mathbf{b} \cdot \mathbf{b}=2$ and $\mathbf{a} \cdot \mathbf{d}=12$ and $\mathbf{b} \cdot \mathbf{d}=2$. The normal equations $\begin{aligned} & 3 x+0 y=12 \\ & 0 x+2 y=2\end{aligned}$ give $x=4, y=1$.
(b) The projection $p=x a+y b$ equals $4(1,1,1)+1(-1,0,1)=(3,4,5)$. Error $d-p=(-1,2,-1)$.

Check perpendicularity of error: $(-1,2,-1) \cdot(1,1,1)=0$ and $(-1,2,-1) \cdot(-1,0,1)=0$.
40 Compute $a \cdot a=3$ and $\mathbf{a} \cdot b=b \cdot a=2$ and $b \cdot b=6$ and $a \cdot d=5$ and $b \cdot d=6$. The normal equation (14) is $\begin{aligned} & 3 x+2 y=5 \\ & 2 x+6 y=6\end{aligned}$ with solution $x=\frac{18}{14}=\frac{9}{7}$ and $y=\frac{8}{14}=\frac{4}{7}$. The nearest combination $x a+y b$ is $p=\left(\frac{5}{7}, \frac{13}{7}, \frac{17}{7}\right)$. The vector of three errors is $d-p=\left(\frac{2}{7},-\frac{6}{7}, \frac{4}{7}\right)$. It is perpendicular to a and b. The best straight line is $f=x+y t=\frac{9}{7}+\frac{4}{7} t$.
$42 M=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $P=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
44 Suppose $\mathbf{u} \neq 0$ but $A u=0$. Then A^{-1} can't exist. It would multiply 0 (the zero vector) and produce u.

11.5 Linear Algebra

Three equations in three unknowns can be written as $A u=d$. The vector u has components x, y, z and A is a 3 by 3 matrix. The row picture has a plane for each equation. The first two planes intersect in a line, and
all three planes intersect in a point, which is u. The column picture starts with vectors a,b,c from the columns of \mathbf{A} and combines them to produce $x \mathbf{a}+y \mathbf{b}+z \mathbf{c}$. The vector equation is $x \mathbf{a}+y \mathbf{b}+z \mathbf{c}=\mathbf{d}$.

The determinant of A is the triple product $a \cdot b \times c$. This is the volume of a box, whose edges from the origin are $\mathbf{a}, \mathbf{b}, \mathbf{c}$. If $\operatorname{det} A=0$ then the system is singular. Otherwise there is an inverse matrix such that $A^{-1} A=I$ (the identity matrix). In this case the solution to $A u=d$ is $u=A^{-1} d$.

The rows of A^{-1} are the cross products $\mathbf{b} \times \mathbf{c}, \mathbf{c} \times \mathbf{a}, \mathbf{a} \times \mathbf{b}$, divided by D. The entries of A^{-1} are 2 by 2 determinants, divided by D. The upper left entry equals $\left(b_{2} c_{3}-b_{3} c_{2}\right) / D$. The 2 by 2 determinants needed for a row of A^{-1} do not use the corresponding column of A.

The solution is $\mathbf{u}=A^{-1} \mathbf{d}$. Its first component x is a ratio of determinants, $|\mathbf{d} \mathbf{b} \mathbf{c}|$ divided by $|\mathbf{a} \mathbf{b} \mathbf{c}|$. Cramer's Rule breaks down when $\operatorname{det} A=0$. Then the columns a, b, c lie in the same plane. There is no solution to $x a+y b+z c=d$, if d is not on that plane. In a singular row picture, the intersection of planes 1 and 2 is parallel to the third plane.

In practice u is computed by elimination. The algorithm starts by subtracting a multiple of row 1 to eliminate x from the second equation. If the first two equations are $x-y=1$ and $3 x+z=7$, this elimination step leaves $3 y+z=4$. Similarly x is eliminated from the third equation, and then y is eliminated. The equations are solved by back substitution. When the system has no solution, we reach an impossible equation like $1=$ 0. The example $x-y=1,3 x+z=7$ has no solution if the third equation is $\mathbf{3 y}+z=5$.
$1\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 3 & 5 \\ 0 & 2 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 8\end{array}\right] \quad 3\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
$5 \operatorname{det} A=0$, add 3 equations $\rightarrow 0=1$

$$
75 a+1 b+0 c=d, A^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]
$$

$9 \mathbf{b} \times \mathbf{c} ; \mathbf{a} \cdot \mathbf{b} \times \mathbf{c}=0$; determinant is zero $116,2,0$; product of diagonal entries
$13 A^{-1}=\left[\begin{array}{rrr}1 & -2 & 4 \\ 0 & \frac{1}{2} & -1 \\ 0 & 0 & \frac{1}{3}\end{array}\right], B^{-1}=\left[\begin{array}{rrr}0 & 2 & -\frac{1}{2} \\ 0 & -3 & 1 \\ 1 & 0 & 0\end{array}\right] \quad 15$ Zero; same plane; D is zero
$17 \mathrm{~d}=(1,-1,0) ; \mathbf{u}=(1,0,0)$ or $(7,3,1) \quad 19 A B=\left[\begin{array}{rrr}8 & 4 & 1 \\ 40 & 26 & 0 \\ 18 & 12 & 0\end{array}\right], \operatorname{det} A B=12=(\operatorname{det} A) \operatorname{times}(\operatorname{det} B)$
$21 A+C=\left[\begin{array}{rrr}2 & 3 & -3 \\ -1 & 4 & 6 \\ 0 & -1 & 6\end{array}\right], \operatorname{det}(A+C)$ is $\operatorname{not} \operatorname{det} A+\operatorname{det} C$
$23 p=\frac{(2)(3)-(0)(6)}{6}=1, q=\frac{-(4)(3)+(0)(0)}{6}=-2 \quad 25\left(A^{-1}\right)^{-1}$ is always A
$27-1,-1,1,1, ;(y, x, z),(z, y, x),(y, z, x),(z, x, y) \quad 292!=2,4!=24$
$31 z=\frac{1}{2}, y=-\frac{3}{2}, x=3 ; z=\frac{7}{2}, y=\frac{3}{2}, x=-\frac{1}{2}$
33 New second equation $3 z=0$ doesn't contain y; exchange with third equation; there is a solution
35 Pivots $1,2,4, D=8$; pivots $1,-1,2, D=-2 \quad 37 a_{12}=1, a_{21}=0, \sum a_{i j} b_{j k}=$ row i, column k in $A B$
$39 a_{11} a_{22}-a_{12} a_{21} \neq 0 ; D=0$
$2\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] 4\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}5 \\ 2 \\ 0\end{array}\right]$
6 By inspiration $(x, y, z)=(1,-1,1)$. By Cramer's Rule: $\operatorname{det} A=-1$ and then

$$
x=\frac{1}{-1}\left|\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right|=1, y=\frac{1}{-1}\left|\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right|=-1, z=\frac{1}{-1}\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right|=1
$$

$8 x+2 y+2 z=0 \rightarrow x+2 y+2 z=0 \rightarrow x+2 y+2 z=0 \rightarrow x=-8$

$$
\begin{array}{rrrr}
2 x+3 y+5 z=0 & -y+z=0 & -y+z=0 & y=2 \\
2 y+2 z=8 & 2 y+2 z=8 & 4 z=8 & z=2
\end{array}
$$

10 The plane $a_{1} x+b_{1} y+c_{1} z=d_{1}$ is perpendicular to $\mathbf{N}_{1}=\left(\mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{c}_{\mathbf{1}}\right)$. The second plane has $\mathbf{N}_{2}=\left(\mathbf{a}_{2}, \mathbf{b}_{2}, \mathbf{c}_{2}\right)$. The planes meet in a line parallel to the cross product $\mathbf{N}_{1} \times \mathbf{N}_{2}$. If this line is parallel to the third plane the system is singular. The matrix has no inverse: $\left(\mathbf{N}_{1} \times \mathbf{N}_{2}\right) \cdot \mathbf{N}_{\mathbf{3}}=\mathbf{0}$.
$12 \mathbf{a} \times b=2 \mathbf{i}, \mathbf{a} \times c=6 j-2 k, b \times c=4 j-k$.
$14\left[\begin{array}{lll}1 & 4 & 0 \\ 0 & 2 & 6 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ when $\begin{aligned} & x=1 \\ & y=0 \\ & z=0\end{aligned}$ and $\left[\begin{array}{lll}0 & 0 & 1 \\ 2 & 1 & 0 \\ 6 & 4 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
The product $A^{-1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ automatically gives the first column of A^{-1}.
$16 \begin{array}{rlrlr}x-y-3 z & =0 \\ -x+2 y & =0 & x-y-3 z & =0 & \rightarrow \\ & \rightarrow & \mathbf{x}=\mathbf{6 c} \\ -y+3 z & =0 & y-3 z & =0 & \mathbf{y}=\mathbf{3 c} \\ -y+3 z & =0 & & \mathbf{z}=\mathbf{c}\end{array}$
18 Choose $d=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ as right side. The same steps as in Problem 16 end with $y-3 z=0$ and $-y+3 z=1$.
Addition leaves $0=1$. No solution. Note: The left sides of the three equations add to zero.
There is a solution only if the right sides (components of d) also add to zero.
$20 B C=\left[\begin{array}{rrr}0 & -1 & 3 \\ 1 & 0 & -6 \\ 2 & 2 & -18\end{array}\right]$ and $C B=\left[\begin{array}{rrr}-20 & -13 & 1 \\ 4 & 2 & -1 \\ 16 & 11 & 0\end{array}\right]$. It is $C B$ whose columns add to zero (they are combinations of columns of C, and those add to zero). $B C$ and $C B$ are singular because C is.
$222 A=\left[\begin{array}{rrr}2 & 8 & 0 \\ 0 & 4 & 12 \\ 0 & 0 & 6\end{array}\right]$ has determinant 48 which is 8 times det A. If an n by n matrix is multiplied by 2 , the determinant is multiplied by 2^{n}. Here $2^{3}=8$.
24 The 2 by 2 determinants from the first two rows of B are $-1,-2$, and -1 . These go into the third column of B^{-1}, after dividing by $\operatorname{det} \mathbf{B}=2$ and changing the sign of $\frac{-2}{2}$.
26 The inverse of $A B$ is $\mathbf{B}^{-1} A^{-1}$. The inverses come in reverse order (last in - first out: shoes first!)

30 The matrix $P A$ has the same rows as A, permuted by P. The matrix $A P$ has the same columns as A, permuted by P. Using P in Problem 27, the first two rows of A are exchanged in $P A$ (two columns in $A P$.)

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Calculus

Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

