Integrals **Six Functions Derivatives** $x^{n+1}/(n+1), n \neq -1$ x^n nx^{n-1} $-\cos x$ $\sin x$ $\cos x$ $\sin x$ $\cos x$ $-\sin x$ e^{cx}/c e^{cx} ce^{cx} $x \ln x - x$ $\ln x$ 1/x**Ramp function Step function Delta function** 1 Infinite spike has area = 1

Summary: Six Functions, Six Rules, Six Theorems

Six Rules of Differential Calculus	
1. The derivative of $af(x) + bg(x)$ is $a\frac{df}{dx} + b\frac{dg}{dx}$	Sum
2. The derivative of $f(x)g(x)$ is $f(x)\frac{dg}{dx} + g(x)\frac{df}{dx}$	Product
3. The derivative of $\frac{f(x)}{g(x)}$ is $\left(g\frac{df}{dx} - f\frac{dg}{dx}\right) / g^2$	Quotient
4. The derivative of $f(g(x))$ is $\frac{df}{dy}\frac{dy}{dx}$ where $y = g(x)$	Chain
5. The derivative of $x = f^{-1}(y)$ is $\frac{dx}{dy} = \frac{1}{dy/dx}$	Inverse
6. When $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$, what about $f(x)/g(x)$?	l'Hôpital
$\lim \frac{f(x)}{g(x)} = \lim \frac{df/dx}{dg/dx}$ if these limits exist. Normally this is $\frac{f'(a)}{g'(a)}$	

0

0

Fundamental Theorem of Calculus

0

If
$$f(x) = \int_{a}^{x} s(t)dt$$
 then **derivative of integral** $= \frac{df}{dx} = s(x)$
If $\frac{df}{dx} = s(x)$ then **integral of derivative** $= \int_{a}^{b} s(x)dx = f(b) - f(a)$
Both parts assume that $s(x)$ is a continuous function.
All Values Theorem Suppose $f(x)$ is a continuous function for $a \leq a$

All Values Theorem Suppose f(x) is a continuous function for $a \le x \le b$. Then on that interval, f(x) reaches its maximum value M and its minimum m. And f(x) takes all values between m and M (there are no jumps). **Mean Value Theorem** If f(x) has a derivative for $a \le x \le b$ then

$$\frac{f(b) - f(a)}{b - a} = \frac{df}{dx}(c) \text{ at some } c \text{ between } a \text{ and } b$$

"At some moment c, instant speed = average speed"

Taylor Series Match all the derivatives $f^{(n)} = d^n f / dx^n$ at the basepoint x = a

$$f(x) = f(a) + f'(a) (x - a) + \frac{1}{2} f''(a) (x - a)^2 + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a) (x - a)^n$$
Stopping at $(x - a)^n$ leaves the error $f^{n+1}(c) (x - a)^{n+1}/(n+1)!$ [*c* is somewhere between *a* and *x*] [*n* = 0 is the Mean Value Theorem]

The Taylor series looks best around a = 0 $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^n$ **Binomial Theorem** shows Pascal's triangle $\begin{pmatrix} 1+x \\ (1+x)^2 \\ 1+2x+1x^2 \\ (1+x)^3 \\ 1+3x+3x^2+1x^3 \\ (1+x)^4 \\ 1+4x+6x^2+4x^3+1x^4 \end{pmatrix}$ Those are just the Taylor series for $f(x) = (1+x)^p$ when p = 1,2,3,4 $f^{(n)}(x) = (1+x)^p \ p(1+x)^{p-1} \ p(p-1)(1+x)^{p-2} \cdots \\ f^{(n)}(0) = 1 \ p \ p(p-1) \cdots \\ p(p-1) \ \cdots$ Divide by n! to find the Taylor coefficients = **Binomial coefficients** $\frac{1}{n!} f^{(n)}(0) = \frac{p(p-1)\cdots(p-n+1)}{n(n-1)\cdots(1)} = \frac{p!}{(p-n)!n!} = \binom{p}{n}$ The series stops at x^n when p = n Infinite series for other p

Every
$$(1+x)^p = 1 + px + \frac{p(p-1)}{(2)(1)}x^2 + \frac{p(p-1)(p-2)}{(3)(2)(1)}x^3 + \cdots$$

Practice Questions

1. Check that the derivative of $y = x \ln x - x$ is $dy/dx = \ln x$. 2. The "sign function" is $S(x) = \begin{cases} 1 & \text{for } x \ge 0 \\ -1 & \text{for } x < 0 \end{cases}$ What ramp function F(x) has $\frac{dF}{dx} = S(x)$? F is the integral of S. Why is the derivative $\frac{dS}{dx} = 2$ delta(x)? (Infinite spike at x = 0 with area 2) 3. (l'Hôpital) What is the limit of $\frac{2x + 3x^2}{5x + 7x^2}$ as $x \to 0$? What about $x \to \infty$? 4. l'Hôpital's Rule says that $\lim_{x\to 0} \frac{f(x)}{x} = ?$? when f(0) = 0. Here g(x) = x.

- 5. Derivative is like Difference Integral is like Sum
 Difference of sums If f_n = s₁ + s₂ + ··· + s_n, what is f_n f_{n-1}?
 Sums of differences What is (f₁ f₀) + (f₂ f₁) + ··· + (f_n f_{n-1})?
 Those are the Fundamental Theorems of "Difference Calculus"

 6. Draw a non-continuous graph for 0 ≤ x ≤ 1 where your function does NOT reach its maximum value.
 7. For f(x) = x², which in-between point c gives f(5) f(1) / 5-1 = df/dx (c)?
 8. If your average speed on the Mass Pike is 75, then at some instant your speedometer will read _____.

 9. Find three Taylor coefficients A, B, C for √1+x (around x = 0).
 (1+x)^{1/2} = A + Bx + Cx² + ···
- 10. Find the Taylor (= Binomial) series for $f = \frac{1}{1+x}$ around x = 0 (p = -1).

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.