Inverse Functions and Logarithms

Inverse Functions and Logarithms

A function assigns an **output** y = f(x) to each **input** xA one-to-one function has different outputs y for different inputs xFor the **inverse function** the input is y and the output is $x = f^{-1}(y)$ Example If $y = f(x) = x^5$ then $x = f^{-1}(y) = y^{\frac{1}{5}}$ KEY If y = ax + b then solve for $x = \frac{y - b}{a}$ = inverse function Notice that $x = f^{-1}(f(x))$ and $y = f(f^{-1}(y))$ The **chain rule** will connect the derivatives of f^{-1} and f

The great function of calculus is $y = e^x$ Its inverse function is the "**natural logarithm**" $x = \ln y$ Remember that x is the exponent in $y = e^x$ The rule $e^x e^X = e^{x+X}$ tells us that $\ln(yY) = \ln y + \ln Y$ Add logarithms because you add exponents: $\ln(e^2e^3) = 5$ $(e^x)^n = e^{nx}$ (multiply exponent) tells us that $\ln(y^n) = n \ln y$

We can change from base *e* to base 10: New function $y = 10^x$ The inverse function is the logarithm to base 10 Call it log: $x = \log y$ Then $\log 100 = 2$ and $\log \frac{1}{100} = -2$ and $\log 1 = 0$ We will soon find the beautiful derivative of $\ln y = \frac{d}{dy}(\ln y) = \frac{1}{y}$ You can change letters to write that as $\frac{d}{dx}(\ln x) = \frac{1}{x}$

Inverse Functions and Logarithms

- 5. The natural logarithm of y = 1/e is $\ln(e^{-1}) = ?$ What is $\ln(\sqrt{e})$?
- 6. The natural logarithm of y = 1 is $\ln 1 = ?$ and also base 10 has $\log 1 = ?$
- 7. The natural logarithm of $(e^2)^{50}$ is ? The base 10 logarithm of $(10^2)^{50}$ is ?
- 8. I believe that $\ln y = (\ln 10)(\log y)$ because we can write y in two ways $y = e^{\ln y}$ and also $y = 10^{\log y} = e^{(\ln 10)(\log y)}$. Explain those last steps.
- 9. Change from base *e* and base 10 to **base 2**. Now $y = 2^x$ means $x = \log_2 y$. What are $\log_2 32$ and $\log_2 2$? Why is $\log_2(e) > 1$?

Resource: Highlights of Calculus Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.