Inverse Functions and Logarithms

A function assigns an output $y=f(x)$ to each input x
A one-to-one function has different outputs y for different inputs x
For the inverse function the input is y and the output is $\boldsymbol{x}=\boldsymbol{f}^{-\mathbf{1}}(\boldsymbol{y})$
Example If $y=f(x)=x^{5}$ then $x=f^{-1}(y)=y^{\frac{1}{5}}$
KEY If $y=a x+b$ then solve for $x=\frac{y-b}{a}=$ inverse function
Notice that $x=f^{-1}(f(x))$ and $y=f\left(f^{-1}(y)\right)$
The chain rule will connect the derivatives of f^{-1} and f

> The great function of calculus is $\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x}}$
> Its inverse function is the "natural logarithm" $\boldsymbol{x}=\ln \boldsymbol{y}$
> Remember that x is the exponent in $y=e^{x}$
> The rule $e^{x} e^{X}=e^{x+X}$ tells us that $\ln (\boldsymbol{y} \boldsymbol{Y})=\ln \boldsymbol{y}+\ln \boldsymbol{Y}$
> Add logarithms because you add exponents: $\ln \left(\boldsymbol{e}^{\mathbf{2}} \boldsymbol{e}^{\mathbf{3}}\right)=\mathbf{5}$
> $\left(e^{x}\right)^{n}=e^{n x}$ (multiply exponent) tells us that $\ln \left(y^{\boldsymbol{n}}\right)=\boldsymbol{n} \ln \boldsymbol{y}$

We can change from base e to base 10: New function $\boldsymbol{y}=\mathbf{1 0}^{\boldsymbol{x}}$
The inverse function is the logarithm to base $10 \quad$ Call it $\log : x=\log y$
Then $\log 100=2 \quad$ and $\quad \log \frac{1}{100}=-2 \quad$ and $\quad \log 1=0$
We will soon find the beautiful derivative of $\ln y \quad \frac{d}{d y}(\ln y)=\frac{\mathbf{1}}{\boldsymbol{y}}$ You can change letters to write that as $\frac{d}{d x}(\ln x)=\frac{\mathbf{1}}{x}$

Practice Questions

1. What is $x=f^{-1}(y)$ if $y=50 x$?
2. What is $x=f^{-1}(y)$ if $y=x^{4}$? Why do we keep $x \geq 0$?
3. Draw a graph of an increasing function $y=f(x)$. This has different outputs y for different x. Flip the graph (switch the axes) to see $x=f^{-1}(y)$
4. This graph has the same y from two x 's. There is no $f^{-\mathbf{1}}(y)$

5. The natural logarithm of $y=1 / e$ is $\ln \left(e^{-1}\right)=$? What is $\ln (\sqrt{e})$?
6. The natural logarithm of $y=1$ is $\ln 1=$? and also base 10 has $\log 1=$?
7. The natural logarithm of $\left(e^{2}\right)^{50}$ is ? The base 10 logarithm of $\left(10^{2}\right)^{50}$ is ?
8. I believe that $\ln \boldsymbol{y}=(\ln 10)(\log \boldsymbol{y})$ because we can write y in two ways $y=e^{\ln y}$ and also $y=10^{\log y}=e^{(\ln 10)(\log y)}$. Explain those last steps.
9. Change from base e and base 10 to base 2. Now $y=2^{x}$ means $\boldsymbol{x}=\log _{2} \boldsymbol{y}$. What are $\log _{2} 32$ and $\log _{2} 2$? Why is $\log _{2}(e)>1$?

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Highlights of Calculus
Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

