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HERBERT

GROSS:

Hi. In our last few lectures we were trying to establish the identity of integral calculus and

differential calculus in their own right, independently of one another, and then by the

fundamental theorems of integral calculus to show the amazing relationship between these

two subjects. Now what we would like to do today is to emphasize this topic in terms of an

application unlike what we've been doing before.

In particular, what we will do today is discuss the question of finding volumes. And in doing

this, several interesting things should happen, not the least of which is that we will rederive

certain results that we've been taking for granted about solid regions-- volumes of regions-- for

quite awhile. And also, it will give us an excellent chance to understand what we really mean

by a mathematical structure.

Well, at any rate, to emphasize the structure part, I've called today's lesson, '3-dimensional

Area'. See, instead of calling it volume, I call it 3-dimensional area, and the reason for this is

I'd like to show you how one can study volumes in a completely analogous way to how we

studied areas.

Remember, we had three basic assumptions for area. I'm now going to assume three similar

assumptions for volume except where I have to amend them by necessity. And the only place

this amendment has to take place is whereas the rectangle was the basic building block of

areas, the so-called cylinder will be the basic building block of volumes.

Let me take a moment to digress here and explain to you mathematically what the

mathematician calls a cylinder. We start with any closed curve, say, in a plane, and we then

take a line perpendicular to that plane. And with that line we trace along the curve. And we

then take another plane parallel to the plane that the curve is in and slice this thing off

someplace.

In other words, by definition, a cylinder has congruent cross sections all the way through. And

what we're saying is that-- in fact, the familiar form of a cylinder is the one where the cross



section is a circle. That's called the right circular cylinder.

Remember, the volume of a right circular cylinder is 'pi r squared h', the area of the cross

section times the height. Well, that's the generalization that we make. In other words, our first

assumption is that for any cylinder the volume of the cylinder is the cross-sectional area times

the height. Or you could call it the area of the base times the height, since the cross-sectional

area is the same for all slices. OK?

The next assumption says, if we think of volume as meaning the amount of space only in three

dimensions, whereas area means the amount of space in two dimensions, our next

assumption is that if the three dimensional region 'R' is contained in the three dimensional

region 'S', then the volume of 'R' is less than or equal to the volume of 'S'.

And finally, we assume an analogous result about the area of the whole equals the sum of the

areas of the parts. We assume that if a region is made up of the union of 'n' regions which do

not overlap-- notice the union notation here. The union of 'R sub 1' up to 'R sub n' and if the

'R's do not overlap, then the volume of the region 'R' is the sum of the volumes of the

constituent parts.

In other words, notice that except for the fact that cylinder replaces rectangle, the basic

axioms for studying volume are precisely the same as the axioms for studying area. In

particular, then, what this means is that structurally the same results that we were able to

show for area should follow word for word, essentially, for volumes.

And I thought what we would do is start with a rather familiar example. You may recall-- of

course, we've used this result many times-- that the volume of a cylinder is given by 1/3-- that

the volume of a cone is '1/3 pi r squared h' where 'r' is the radius of the base and 'h' is the

height. And you may remember that in solid geometry as a traditional high school curriculum

went, these results were given but seldom if ever proved.

So what I thought we would do now is see how we can use these axioms to arrive at these

results, and to get the spirit of what we've been trying to do, I will do this by integral calculus at

least first and then by differential calculus later. But the idea is something like this. To visualize

the cone, the radius of whose base is 'r' and whose height is 'h', we can think of the straight

line that joins the origin to the point (r, h), this region here, this right triangle. And we can think

of that as being revolved about the x-axis to give the cone.



Now when we were dealing with areas, you may recall that we broke things down into

rectangles that were too big, rectangles that were too small, and we computed, say, 'U sub n'

and 'L sub n', et cetera. We can do the same thing now. What we do is we again circumscribe

rectangles.

Now the idea is whatever volume is traced out by this piece here, whatever volume is traced

out when we rotate this triangle about the x-axis, that volume will be less than the volume

generated by this particular rectangle, because, you see, the volume that we're looking for is

contained inside the rectangle when we revolve this particular thing. Now notice that this

particular rectangle when revolved gives me a right circular cylinder, and we're assuming that

we know how to find the volume of a cylinder. It's the cross sectional area times the height.

Let's focus our attention on what I call the k-th region here and see what this thing looks like.

First of all, notice that if we've divided this length, which is 'h' units long into 'n' equal parts,

each of these pieces is 'h' over 'n'.

Secondly, notice that the radius of the base of the cylinder that we're going to get-- well, let's

see. It's going to be this y-coordinate. Given the x-coordinate, 'y' is determined by multiplying

the x-coordinate by 'r/h'. The x-coordinate is 'kh' over 'n'. I multiply that by 'r/h'. That gives me

'kr' over 'n'. That's the height of this-- the radius of the base of the cylinder that we're going to

revolve.

Now what is the volume of this cylinder? The area of the base is 'pi y squared', and I'm now

going to multiply that by the height, which is 'h/n'. And if I do that, I obtain what? The volume of

this particular cylinder is 'pi r squared h' times 'k squared' over 'n cubed'.

And now, if I add up all of these volumes as 'k' goes from 1 to 'n', that will give me a bunch of

stacked cylinders which enclose my cone. In other words, an answer that will be too large will

be what? This sum as 'k' goes from 1 to 'n', notice that this is the only portion that depends on

'k', so the upper approximation-- in other words, the volume that's too large to be the right

answer-- is 'pi r squared h' over 'n cubed' times the sum as 'k' goes from 1 to 'n', 'k squared''.

Now you notice I always stick to problems where we have something fairly simple like this,

because this limit process, as we've mentioned in the previous lectures, becomes very, very

difficult to do in general, the beauty or one of the beauties of our fundamental theorem.

But the idea is I do know that this sum is 'n' times 'n + 1' times '2n + 1' over 6. Now distributing



the 'n cubed' one factor at a time, the way we have before, I can now write that this is '1/6 pi r

squared h'. 'n + 1' over 'n' is '1 + '1/n''. '2n + 1' over 'n' is '2 + '1/n''. And I find that my upper

approximation is given by this expression.

And if I now take the limit of 'U sub n' as 'n' goes to infinity, this factor approaches 1. This

factor approaches 2. Therefore, our entire product approaches in the limit '1/3 pi r squared h',

which is the familiar result of solid geometry.

Of course, we've taken a lot for granted over here. What we've really proven here is not that

the volume of a cone is '1/3 pi r squared h'. What we have proven is at the limit of 'U sub n' as

'n' approaches infinity, it's '1/3 pi r squared h'. The question that comes up is how do you know

that as these divisions get small that the volume-- the upper approximation gets arbitrarily

close to the correct answer.

And again, notice how we can reason analogously to what we did in the case of area. Namely,

what we could do next, you see, is take the smallest cylinder that can be inscribed here. In

other words, this would give us an approximation which is too small. The total error is no more

than the solid generated by this hatch region revolving about the x-axis. Notice, however, that

each of these pieces fits very nicely in here, so that the total error between an approximation

which is too big and an approximation which is too small is this height, which is 'r'. OK?

Let's see, the cross-sectional area-- this is 'r'. So 'pi r squared' is the area of the base. The

height is 'h/n'. Notice that 'r' and 'h' are given constants, therefore, as 'n' goes to infinity, the

numerator stays constant. The denominator goes to infinity. The difference goes to 0. In other

words, again, we can show that 'U sub n' and 'L sub n' have a common limit.

In fact, we can generalize this result rather nicely. Take this drawing to be whatever you'd like

it to be. I've simply tried to visualize here a solid region. This is a 3-dimensional region. It has

various cross sections. And I know that as I look at it in the 'x' direction, the region begins at 'x'

equals 'a' and terminates at 'x' equals 'b'.

And the question is how can I find the volume of this particular region, assuming I know the

cross-sectional area for any slice? And the idea, again, is what? We can slice this solid up into

'n' parts, which I call 'delta V1' up to 'delta Vn'. The sum of these would be the true volume that

we're looking for. Now, I focus my attention on the k-th piece here, and again, what I do is I

inscribe and circumscribe cylinders, one of which is contained entirely within 'delta V sub k',

and the other of which surrounds 'delta V sub k'.



In other words, what I do is is I find the biggest possible cross-sectional area I have in this

interval, and I denote the 'x' value at which that occurs by 'M sub k'. I find the value of 'x',

which I call 'm sub k', at which I get the smallest cross-sectional area. And therefore, the

inscribed cylinder has volume given by this. The circumscribed cylinder has volume given by

this, and the piece that I'm looking for, the true volume, is caught between these two.

Therefore, if I add these up as 'k' goes from 1 to 'n', I've caught 'V' between 'U sub n' and 'L

sub n'. Assuming only that the area is a continuous function, the difference between the

largest cross section and the smallest cross section approaches 0 as 'delta x sub k'

approaches 0. In essence then, the same as we did before, what we can show is that as 'n'

goes to infinity, both 'U sub n' and 'L sub n' approach a common limit, and therefore, the 'V'

being caught between these two is equal to the common limit.

Now here's the interesting point. When we talked about the definite integral, no one asked

physically what the function 'f' was or what the 'c sub k's that we're using here were, only that

they be in the proper interval and 'f' be a continuous function. Notice that we're assuming that

'A' is continuous. In essence then, by the definition of the definite integral, that volume is just

what? The definite integral from 'a' to 'b', 'f of x' 'dx'. In other words, it's this sum taken in the

limit as 'n' approaches infinity, or another way of saying that, as the maximum 'delta X sub k'

approaches 0. That, by the way, is the integral calculus approach.

If we want the differential calculus approach, remember what we do, we say look it. The

change in volume is less than or equal to the maximum cross-sectional area times 'delta X'

and greater than or equal to the minimum cross-sectional area times 'delta X'. Same as we did

for area, you see, we divide through by 'delta X'. We have that 'delta V' divided by 'delta X' is

caught between 'A of M', 'A of m', where 'm' and 'M' are in this interval.

And now you see as 'delta X' approaches 0, 'm' and 'M' both approach 'x'. You see the same

procedure as we had before. You see what we're saying going back to this diagram is, for

example, here is a 'delta X', and 'm' and 'M' are points in here, and as 'delta X' goes to 0, 'm'

and 'M' both approach the end point 'x'. And since 'A' is assumed to be continuous, if 'M' and

'm' approach 'x', 'A of M', 'A of m' approach 'A of x', and we arrive at, by differential calculus,

that 'dV dx' is 'A of x', and therefore, 'V' is again equal to integral ''A of x' 'dx'' as 'x' goes from

'a' to 'b'. Where now by differential calculus, this means what? It simply means 'G of b' minus

'G of a', where 'G' is any function whose derivative is 'f'.



Now again, I have to go through this thing rather hurriedly because I want to get some

examples done. But what I hope is that we went slowly enough so that you can again sense

how we're using integral calculus, differential calculus, and the relationship between them.

Let's, at any rate, illustrate some of these results more concretely in terms of-- well, first of all,

let's talk about one particular type of solid, what's called a solid of revolution. That's the

particular type of solid where you have a region in the 'xy' plane, and you take that region and

rotate it either around the x-axis or the y-axis, thus generating a 3-dimensional region. See, in

other words, a plane area is rotated through 360 degrees either with respect to the x-axis or

the y-axis.

I'll consider the x-axis here. Notice that this is a special case of what we've just studied,

namely, in this particular case, if 'y' equals 'f of x' is a continuous function, notice that every

cross section here, every cross section will be a circle. The area of the circle is 'pi y squared'.

That's 'pi 'f of x' squared'.

And therefore, according to our fundamental theorem, since the area is continuous-- and why

is the area continuous? Well, if 'f' is continuous, remember the product of continuous functions

is continuous. If 'f' is continuous, 'f squared' is continuous. So according to our result, the

volume of the region 'R' is just the integral from 'a' to 'b', 'pi 'f of x' squared' 'dx'.

And you see, using differential calculus, all we need now is a function whose derivative is 'pi 'f

of x' squared', and we call that function 'G'. We compute 'G of b' minus 'G of a' and that gives

us the volume that we're looking for.

Remember, when we talked about areas, we mentioned this was highly specialized. What if

you had a region like this? And again, sparing the details, observe that if we have a region like

this, we can draw in the lines where the curve doubles back. We can now visualize this as the

volume-- the difference of two volumes. Namely, we can find this volume and subtract from

that volume this volume. See, in other words, both of these have the right form. And by this

difference, what's left? The difference of the big volume minus the small volume is the volume

generated by 'R'.

And as I say, these are rather simple details that we can check out computationally in terms of

exercises, but the reason I wanted to mention the solid of revolution is that not only is this a

rather common and important category, but it also happens to be the type of solid that we



opened our program with. Remember, the cone may be viewed as what? The solid generated

by a particular right triangle being revolved about the x-axis.

In fact, I thought we could try that same problem now doing it by the antiderivative method.

Namely, we take this particular region 'R' and notice now, if we revolve this about the x-axis--

let's see, the cross-sectional area will be what? Well, it's a circle of radius 'y'. For a given value

of 'x', 'y' is equal to 'r' times 'x' over 'h'. See the slope of this line is 'r/h'. It passes through the

origin here. So the cross-sectional area is 'y squared' times pi. That's 'pi 'r squared h' squared'

over 'h squared' times 'x squared'.

And to find that volume, I simply integrate this between 0 and 'h'. Recalling that pi, 'r', and 'h'

are constants, I can take the constants outside of the integral sign. The integral of 'x squared',

meaning what? The inverse derivative is '1/3 x cubed'. If I evaluate that between 0 and 'h', I

get '1/3 h cubed'. The 'h cubed' in the numerator cancels the 'h squared' in the denominator,

leaving a factor of 'h' in the numerator, and I wind up, as I saw before, that the volume of this

cone is '1/3 pi r squared h'.

And this is nice that I get the same answer as by the limit method, because according to the

fundamental theorem, the first fundamental theorem, this is precisely what was supposed to

happen. In other words, I can do these either by limits or by derivatives. I want you to see

these things side by side, because in certain cases, as I've emphasized in the previous

lectures, there will be times when we cannot, by differential calculus, find a function 'G' whose

derivative is equal to a given function 'f of x'. But enough about that for the time being.

The next question that comes up gives us a review of what happens with inverse functions. It's

a rather interesting type of situation. It's called the method of cylindrical shells and it's

motivated by the following. Let's suppose again we're given a very nice region 'R'. What do I

mean by very nice? Well, to simplify the computation, even though it doesn't change the

theory at all, I'm assuming that 'y' equals 'f of x' is an increasing curve. In other words, I'm

even assuming that we have a one-to-one function here.

Now the idea is here's this nice region and instead of revolving this about the x-axis, I would

like to revolve it about the y-axis. Now you see, to use the method of revolution here, to

revolve this about the y-axis, essentially what I do is I pick a washer-shaped region, you see? I

have to compute the volume generated by the 'y' part.

See, in other words, I do this as two separate parts. I find the volume of the big piece minus



the volume of the small piece, and what's left is the volume generated by 'R'.

But notice a rather difficult computational thing occurs here. Namely, notice that this length

here has to be expressed as 'x' goes from one value to another value. Now, you see, if this is

'b', and this is 'a', you see, notice what's happening here, how our strips are being chosen.

You see, for a given strip, the final 'x' value is 'b', but what is the initial 'x' value? See, down

here the 'x' value is 'a', but what happens up here? In other words, how do you find what the

'x' value is for a given value of 'y' here?

Well, you see what you must do is invert the relationship. Now even though I've picked a case

where the inverse exists-- see, this is a one-to-one function-- we've already had ample

examples in which we've shown that computationally it's extremely difficult if it's even possible

to explicitly perform the inversion.

And this is where the method of cylindrical shells comes from. Essentially what the method of

cylindrical shells says is wouldn't it have been nice if we chose our generating element to be

this way? In other words, what we say is look at this piece of area over here. One way of

visualizing this solid being rotated is to think of this particular region being rotated about the x-

axis, and it generates a certain volume.

By the way, what volume will it generate? The volume that it will generate will be less than the

volume that this rectangle generates but greater than the volume that this rectangle here

generates. Now what is the volume generated by the large rectangle?

And, by the way, notice that I mean by the volume generated by the rectangle think of this as

being a slab of a certain amount of material and I rotate that slab around through 360

degrees. The volume I'm thinking of is the volume of the material in that slab, not the material

that's enclosed. It would be like, if you're thinking in terms of a tin can. I'm not thinking of the

volume enclosed by the tin can. I'm thinking of the volume of the tin itself that makes up the

can.

Well, you see again, to go through this thing as rapidly as possible but still hitting the main

points, you see, notice that the volume that I'm looking for, what is the volume that's cut out by

this big rectangle? Well, notice that the area of the base from-- if I look at this as being this

cylinder minus this cylinder, the volume of the big cylinder is pi times ''x + delta X' squared'

times the height here, which is 'f of 'x + delta X'.



And the volume of the hollow part from here to here is what? It's 'pi x squared'-- that's the

radius of the base-- times the height, which is still 'f of 'x + delta X''. In other words, 'delta V' is

bounded above by this volume. In other words, as messy as this looks, that's only what?

That's the volume of the region generated by this big rectangle.

If we take the smallest rectangle, namely the one that's inscribed inside this region, we get the

same results, except that the height is now replaced by 'f of x' rather than by 'f of 'x + delta X''.

In other words, we catch 'delta V' between two expressions involving 'x'. By the way, notice

how the bracketed expression simplifies the 'pi x squared' here cancels with the 'pi x squared'

here leaving inside the parentheses just '2x delta X' plus 'delta X squared'. In other words,

simplifying this thing, I can now show that 'delta V' is caught between these two expressions

now, this expression here, which is too big, and this expression here, which is too small.

Now I divide by 'delta X'. The usual procedure to find 'dV dx', it's 'delta V' divided by 'delta X'.

Then I will take the limit as 'delta X' approaches 0. You see, so I divide through by 'delta X'.

We're assuming, of course, that 'delta X' is not 0. That's what the limit means as 'delta X'

approaches 0. You see, it's not zero, but it gets arbitrarily close to 0.

Notice then that my 'delta V' divided by 'delta X' is caught between pi times '2x + delta X' times

'f of 'x + delta X'', and pi times '2x + delta X' times 'f of x'. And I now let 'delta X' approach 0.

And here's the key point. As 'delta X' approaches 0, notice that the left hand side becomes '2

pi x' times 'f of x'.

Notice also what happens to the right hand side. This factor, as 'delta X' approaches 0,

becomes '2x'. And because 'f' is continuous, as 'delta X' approaches 0, 'f of 'x + delta X''

approaches 'f of x'. In other words, then, in the limit, as 'delta X' approaches 0, I have that 'dV

dx' on the one hand can't be any greater than '2 pi x' times 'f of x'. On the other hand, it can't

be any less than '2 pi x' times 'f of x'. Consequently, it must equal '2 pi x' times 'f of x'.

Therefore, if this is 'dV dx', then 'V' itself is the integral of this thing evaluated between 'a' and

'b', because that's where we're adding these things up from. In other words, if we're using

differential calculus, this is 'G of b' minus 'G of a' where 'G prime' equals 'f'. If we're using

integral calculus, we've found the 'U sub n' and 'L sub n' and we've caught 'V' between 'U sub

n' and 'L sub n'.

But, in any event, what we've shown rigorously now is that by the cylindrical shell method--

and we'll illustrate these with examples to finish off today's lesson-- that the volume is given by



integral from 'a' to 'b' '2 pi x'-- and let me just replace 'f of x' by 'y' to make my diagram

simpler-- times 'dx'.

And if you want to think of this in what I call the traditional engineering point of view where you

think of a thin rectangle generating a volume, what we're saying is if you think of a little thin

piece like this being revolved to generate, say, some material in a tin can, notice that the

amount of material in here will be what? Well, when you unroll this thing-- see, this thing sort of

like this. When you unroll this thing, the radius is 'x', so the circumference when you unroll it

will be '2 pi x'. The height is 'y'.

So the cross-sectional area is '2 pi x y' and the thickness is 'dx'. So if I multiply that by dx, that

gives me the volume generated by this piece. And then in the proud tradition of the sigma

notation, which I'll come back to in the next lecture to show how dangerous this really is, but

the shortcut method is what? Add up all of these contributions as 'x' goes from 'a' to 'b'.

At any rate, that's called the method of cylindrical shells. Essentially, one uses cylindrical shells

when we think of a generating element being parallel to the axis of rotation. We use revolution,

when it's perpendicular to the axis of rotation. Which of the two is easier depends on the

particular computational technique necessitated by the relationship between the variables in

the problem.

Well, at any rate, let's do a couple of examples. The first example I'd like to do is to take that

same region 'R', namely, the right triangle whose legs are 'r' and 'h'. We've already solved this

problem of finding the volume when we rotate this about the x-axis. What I'd now like to do is

see what volume is generated by this as I rotate it about the y-axis.

And again, I find that I can do this problem in several ways, but I thought it was an easy

enough problem to do by cylindrical shells, because, as we so often do, I thought the first

problem that we do by cylindrical shells should be one that we can check by another method.

But at any rate, using cylindrical shells, let's see what happens over here.

The volume is what? It's the integral from 0 to 'h', '2 pi x' times this height, which is 'rx' over 'h'

integrated with respect to 'x'. That's just '2 pi r' over 'h'-- we can take that outside, because

that's a constant factor-- integral 'x squared dx'. The integral of 'x squared' is '1/3 x cubed'. We

evaluate that between 0 and 'h'. That gives us '1/3 h cubed'. We cancel the 'h' in the

denominator with one of the 'h's in the numerator, and we find that the volume that's

generated is '2/3 pi r h squared', not 'r squared h', 'r h squared', not 1/3, 2/3.



generated is '2/3 pi r h squared', not 'r squared h', 'r h squared', not 1/3, 2/3.

Remember, by the way, what this thing looks like. I think you can visualize this. This is a

cylinder with a cone cut out of it. See, in other words, if this thing had been solid, we'd have

called it a right circular cylinder, and then what's missing is the cone shaped region over here.

In fact, that's how we can check this.

See, what would the volume be that's generated by this rectangle? This would be a cylinder

the radius of whose base is 'h', whose height is 'r', and the volume of that cylinder is 'pi h

squared r'. The cone that's missing, the cone that was cut out of this thing, has the radius of a

space equal to 'h' and its height equal to 'r', so its volume is '1/3 pi h squared r'. And,

therefore, the volume that's left when we subtract this off is '2/3 pi h squared r', which does

check with this.

By the way, just as an aside, notice that the region 'R' generates a different volume if we rotate

it about the y-axis than it did if we rotate it about the x-axis. Numerically, what we're saying is

that we just found that the volume when rotated around the y-axis is '2/3 pi h squared r'. We

know that when we revolve that about the x-axis, it's '1/3 pi r squared h', and these two

expressions are not identical.

In fact, if we divide both sides by 'pi r h' over 3, we find that equality holds only if we have that

highly specialized case that '2h' equals 'r', which is not really important. I just threw that in as

an aside. But I do want you to notice that the same area, of course, generates different

volumes depending on what you rotate it with respect to.

Well, at any rate, at least this was a problem that we could check by another method. Let me

just use cylindrical shells for a problem which is slightly tougher but one that can still be

checked by another method. Let's take the following region. Let's take the curve 'y' equals '2x

- x squared' between 'x' equals 0 and 'x' equals 2. Leaving the details as a rather trivial

exercise, it is not difficult to see that this is the parabola that peaks at 1, 1 and crosses the x-

axis at 'x' equals 0 and 'x' equals 2.

If I now want to compute this volume as I rotate the region 'R' about the y-axis-- see, I'm going

to rotate this about the y-axis. I want to find out what volume is generated by this region 'R' in

this case. Remember I can use either cylindrical shells or I can use revolution here.

Notice the problem I'm going to be in. Notice that this particular function is single valued but

not one-to-one. When I try to find these two 'x' values I'm going to run into multi-values. I'm



going to have to invert. All sorts of computational skills are going to come into play here.

On the other hand, if I take my generating element parallel to the y-axis, I have a very simple

expression for this, and now that indicates what? By the method of cylindrical shells, this will

be the integral from 0 to 2. The generating arm is 'x', so that cuts out '2 pi x'. The height is 'y',

which is '2x - x squared'. The thickness is 'dx'. In other words, mechanically I must evaluate

this particular integral. OK?

At any rate, it's factoring out the 2 pi and just observing that the integral of '2 x squared' is '2/3

x cubed'. The integral of 'x' to the fourth is '1/4 'x to the 4th''. Evaluating that between 0 and 2,

I get 2 pi times 16/3 minus 4. The lower limit is 0 here. This just comes out to be 16 minus 12,

4/3 times 2 pi. That's 8 pi over 3.

By the way, before I go any further with this, let's make the interesting observation. See, 8 pi

over 3 is the volume generated by this whole thing being revolved about the y-axis. If I'd drawn

in this line, which is a line of symmetry, notice that these two areas are congruent. These two

regions are congruent. However, it's also interesting to observe that the volume generated by

this piece as you revolve it about the y-axis is not twice the volume generated by this piece.

See, notice that the integral from 0 to 1-- in other words, if we just took this region here,

integrated this from 0 to 1, we would get 5/6, 2/3 minus 1/4 times 2 pi, 5/6. And if we double

that, we would get 5/3. In other words, this area is 5/6. Double it would be 5 pi over 6. Double

it would be 5 pi over 3, and 5 pi over 3 is not the same as 8 pi over 3.

The thing to keep in mind here is notice how the distance comes in again. You see, for

example, these two lines here are symmetric with respect to the line 'x' equals 1. But notice

that this generates a much larger volume than this because its generating arm is longer. It's

further away. But at any rate, that's just an aside. Notice how by the method of cylindrical

shells, we determine the volume is 8 pi over 3.

Suppose we'd wanted to do this by the solid method-- the solid revolution method. Notice that

we would first have to invert this relationship. We would first have to solve for 'x' in terms of 'y'.

Notice that 'y' equals '2x - x squared' is the same as saying that ''x squared' - 2x + y' is 0.

Using the quadratic formula, we can solve for 'x', and we now find that 'x' is 1 plus the square

root of '1 - y' or 1 minus the square root of '1 - y'.

What that means, by the way, geometrically, is simply this. For a given value of 'y', there are



two values of 'x' located symmetrically with respect to 'x' equals 1. See, they're on symmetrical

portions. Well, this doesn't make that much difference. The thing now is what? What is my

cross-sectional area? My cross-sectional area is pi times this length squared minus pi times

this length squared. That's pi times 1 plus the square root of ''1 - y' squared' minus pi times

the square root of 1 minus the square root of ''1 - y' squared'.

When I square this and subtract, all but the middle term drops out. In other words, I have twice

the square root of '1 - y' here minus twice the square root of '1 - y' here. When I subtract, I get

4 times the square root of '1 - y'. I multiply that by pi. That's my cross-sectional area.

And now to find the volume, I just integrate that as 'y' goes from 0 to 1. You see, and if I carry

out this integration, noticing that the integral of ''1 - y' to the 1/2' is minus 2/3. Remember, the

derivative of '1 - y' with respect to 'y' is minus 1. ''1 - y' to the 3/2'. Evaluate that between 0 and

1. The upper limit gives me 0. The lower limit is minus 2/3. I subtract the lower limit. It gives

me 2/3. 4 pi times 2/3 is 8 pi over 3, the same answer as I got before.

Notice, by the way, that this was messy, but we could handle it. If this had been much tougher-

- say a 6 over here or something like that instead of a 2-- how would we have solved for 'x' in

terms of 'y'? You see, in other words, this would have been a case where the shell method

would have been necessitated because of the impossibility of the algebra.

But at any rate, we have plenty of opportunity to illustrate that in terms of exercises and

supplementary notes and reading material and what have you. That is actually the easiest

part.

The hard part is to understand the significance of what's going on, so I thought that to

summarize today's lecture, let's keep in mind that whether you call it area or whether you call it

volume or whether you call it distance traveled in velocity, the fact remains that if 'f' is a

function continuous on the closed interval from 'a' to 'b', and we partition that interval into 'n'

parts, and we form the sum as 'k' goes from 1 to 'n', 'f of 'c sub k'' times 'delta x sub k', where

'c sub k' is in the k-th interval, and 'delta x sub k' is just 'x sub k' minus 'x sub 'k - 1''. If we take

that limit as the largest 'delta x' approaches 0 and call that 'Q', that limit 'Q' exists.

Symbolically, it's written by the definite integral from 'a' to 'b', ''f of x' dx', and, more to the

point, if you happen to know differential calculus, you can compute 'Q' just by computing 'G of

b' minus 'G of a', where 'G prime' is any function whose derivative is 'f'. OK?



Now again, this is why I'm calling it a summary. If you separate this out from all of the

computational stuff that we did in today's lecture, this is the part that's left. OK? And what I

want to do next time is to show you that things are not quite this straightforward all the time,

that certain nice things have been happening here that allow us, essentially, to get away with

murder. And what I mean by that will become clearer next time, but until next time then

goodbye.

MALE
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