2 Oh A & M M A A A R O M e e A e e

£33

Solutions
Block 3: Partial Derivatives

Unit 7: More on Derivatives of Integrals

x L P
surface is w=f(x,y)

m [f non-negative means our
surface never goes below
the xy plane since w20

c for all (x,y)]
7z ¥
> X=X,
X
(Figure 1)

1. We pick x=x, (subject only to the condition, of course, that our
choice is in the domain of f£f) and form the curve CD which is the

intersection of the surface w=f(x,y) and the plane X=Xq .

b
2. ./- f{xo,y)dy implies, among other things, that acy<b.
a
Hence we locate A(0,a,0) and B(0,b,0) on the y-axis and project

them onto the plane X=X, as the points P(xo,a,O) and Q{xo,h,O).
We them project P and Q onto the points P and Q (on the curve CD)

8.3.7.1
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3.7.1 continued

whose coordinates are F(xo,a,f(xo,a)), ﬁ(xo,b,f{xo,b)). (Notice
that the line PQ must lie in the domain of f).

3. In terms of f, the equation of the curve P § is given by
w = f{xo,y}, agy<b. [Notice that since X is fixed, f(xo,y) is
a function of only y, but what this function looks like depends
on x;. Pictorially this means that the plane X=X, fixed the curve
CD, but if we vary Xq (that is, we look at the plane X=X for
different choices xo) the shape of CD varies].

4, The portion of the plane X=X whose vertices are P,P,Q, and Q
has the appearance

W —
= P w=f(x0,yJ
% -Q- x=x0
7 i
/l' /
/ .
/ ﬂ{f'//;/f
,/.;J/,//// 5y
P Q
(xolalo) (xorbao)
(Figure 2)

so by the results of our study of calculus of a single variable
the area of the region bounded above by w=f(x0,y}, below by the
xy-plane, on the left by y=a and on the right by y=b is

-/b f(xo,y}dy

a

provided only that w=f{x0,y) is piecewise continuous.

§.3.7.2
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3.7.1 continued

In summary, then, with reference to Figure 1,
b

f £ (x,,y)dy
a

is the area of the shaded region P P Q Q, and once a and b are
fixed, the region (hence also its area) is completely determined
by Xq - That is,

b
f £(xy,y)dy = g(x,).

a

3.7..2

We have that f(x,y) is continuous on the rectangle asys<b, cgx<d,
and for c<x<d we define g(x) by

g(x) = fb f(x,y)dy (1)

a

(The geometric meaning of equation (1) was discussed in the

previous exercise).

If we now look at g(x+Ax), we have

g (x+Ax) = fb £ (x+Ax,y)dy (2)

a

(where Ax must be sufficiently small so that (x+Ax,y) is in the
domain of f for all asys<b; and since ultimately we shall let
Ax+0, there is no loss of generality in choosing Ax to be small).

8.3.7.3




Solutions
Block 3: Partial Derivatives
Unit 7: More on Derivatives of Integrals

3.7.2 continued

From (1) and (2) we see that

b
g(x+Ax) - g(x) = fb f(x+ix,y)dy - f f(x,y)dy (3)
a a

and again it is crucial that we realize that both x and x+Ax are
arbitrary but fixed numbers so that the definite integrals in (3)
are functions of the single variable y. (We could have used X
and x0+h rather than x and Ax but we prefer to use the more

generally accepted convention of x and Ax).

Then, since the integral of a sum (difference) is the sum (difference)

of the integrals, we conclude from (3) that

b
g (x+4x) =g (x) =f [£ (x+bx,y) -f(x,y) ]dy )
a
Consequently
g (x+Ax) -g (x) 1 ?
Ax - f [f(x+dx,y) -£(x,y)ldy L
a

; ; ; 1
Since Ax is a (non-zero) constant so also is T and a constant

factor may be moved inside the integral sign (i.e.

cf £ (y)dy =f cf (y)dy ) '

we obtain from (5) that for a fixed x and fixed Ax # 0,

b
g (x+Ax)-g(x) _ f(x+Ax,y)-f(x,y)
X - f [ v dy (6)

a

S:3.7.4
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3.7.2 continued

so that

lim | g(x+ax)-g(x) |_ lim Pl Eerax,y) -£0x,y) | 4 -
AX+0 Ax = Ax>0 f Ax 4
a

Now if we are permitted to interchange the order of the limit

and the integral on the right side of (7) [hopefully, no one feels,

especially after our discussion of uniform convergence in part
1 of our course, that such a step is automatically valid] we would
obtain

. b 2

; _ lim g (x+Ax)-g(x) | _ lim |f (x+Ax,y)-f(x,y)

g' (x) Ax+0 [ Ax ] B f ’ Ax*D[ Ax dy
a

(8)

We now observe that

lim f (x+0x,y)~-f(x,y) (9)
Ax~+0 Ax

is by definition
fx(xfy} (10)

[provided that fx exists at the points (x,y), agy<bl].

Thus if we assume that fx exists [which will allow us to replace
(9) by (10) in (8)] and that fx is continuous [which will allow
us to interchange the order of limit and integration in (7)], we
obtain

b

d
g'(x) = a;jb f{x,y}dy=f £ (x,y)dy |

a a I

S53:7.5
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3.7.2 continued

which says (as we might have "guessed") that we differentiate

b
f f(x,y)dx
a

with respect to x by first taking the (partial) derivative of
f(x,y) with respect to x and then performing the integration.

3. 73

In order to be able to utilize the chain rule, we think of

b(x)
f f(x,y)dy
a(x)

as being

WV
f f(erde
u

(where x, u, and v are considered as being independent) and then
letting u=a(x) and v=b(x). In other words, we let

v
F(x,ua,v) =./- f(x,y)dy; u=a(x), and v=b(x)
u

Then

g(x) = F(x,a(x), b(x)) = f £ (x,y)dy

and we wish to compute g' (x).

[This is a generalization of Exercise 3.7.2 in which our limits
of integration were constants. Now our limits of integration
may be any differentiable function of x. In particular,
constants are differentiable functions of x.]

$.3.7.6
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3.7.3 continued

Pictorially, the distinction between this problem and the previous

ones is as follows.
b
When we looked at ,/. f(xo,y)dy, (see Figure 1, Exercise 3.7.1),

a
the view in the xy-plane was

y=b

y=a

v
»®

x=x0

(Figure 1)

That is, g(y) was the segment of x=x, between the lines y=a and
y=b.

If we now think of a and b as being functions of x, the lines
y=a and y=b are replaced by the curves y=a(x) and y=b(x).
Consequently our view in the xy-plane has the form

(Figure 2)

S, 317
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3.7.3 continued

That is, P and Q still denote the end points of the segment of

x=x. lying between the curves y=a(x) and y=b(x).

0
The main difference between Figure 1 and Figure 2 is in the fact
that the y-coordinates of P and Q do not depend on X in Figure 1,
but in Figure 2, they do.

In three dimensions:

L

X=X0

(Figure 3)

[Comparing Figure 3 here with Figure 1 in Exercise 3.7.1, notice
that in both cases the shape of PQ depends on Xy, but in Figure 3

the y-coordinate of P (and Q) also depends on the choice of xO].

$.3.7.8
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3.7.3 continued

The geometric interpretation is supplied only to show pictorially

that our new problem is more complicated than our original one.

Analytically, we are saying that now our limits of integration

vary with the choice of parameter, whereas previously these limits

were constants (with respect to both x and y).

At any rate, we have

b (x)
g(x) = F(x,a(x),b(x)) = f f(x,y)dy
a(x)

or to emphasize the chain rule format,

g(x) = F(x,u,v)
u=a(x), v =>b(x)
Applying the chain rule to (1') we obtain

dx du

g'(x) = Fx{x,u,v} T + Fu{x,u,v) aa ¥ Fv{x,u,v}

(1)

(")

(2)

Since u=al(x) and v=b(x) where a and b are differentiable functions

of x; %% = a'(x) while %% = HriR) .

Putting this into (2) yields

g'(x) = FX(X,U,VJ + [Fu(x,u,v)]a'{x) + [Fv(x,u,v)]b'(x) (3
The key step now lies in the fact that
v
F(x,u,v) = f f(x,y)dy where u,v, and x
u are independent variables (4)
Therefore [from (4)]
S Zaid e
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3.7.3 continued

v
F (x,u,v) means §§ [./. f(x,y)dy] and since u and v are
u

independent constants as far as varying x is concerned, we may

use our previous results concerning constant limits of integration
to conclude that

v
P = [ g vy (5)
u

We also see from (4) that

v

Fv(x,u,v) = 3% [f

f(er}dY]
u

and since u and x are constants with respect to v, we may use the
result

a v
EV_IP h(y)dy = h(v)
c

to conclude

Fv(x,u,vJ = f(x,v)* (6)

Similarly

*
That is, f£(x,y) = h(y) since x is constant with respect to our
integration. Then because h(y) = f(x,y), h(v) = f(x,v).

S.3.7.10
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3.7.3 continued

v
aa_u [ f f(x!y)dY]

u

Fu(x,u,v)

- f(x,u)" 7

putting (5), (6), and (7) into (3) we obtain

\'4
') = [ £ yay + £V ) - [Fgwlal () (8)
u

Finally, recalling that u=a(x) and v=b(x) we see from (8) that

b (x)
g'(x) = -/‘ fx(x,y)dy + b'(x)f(x,b(x)) - a'(x)f(x,a(x))

a(x)

or remembering that

b (x)
g(x) = f f(x,y)dy

a(x)

we finally obtain

a b (x) b (x)
& £(x,y)dy = f £, (x,y)ay+b" (x) £ (x,b(x))
a(x) a(x)
- a'(x)f(x,a(x)) (9)

* a c
That is, EE_/. h(y)dy = -h(u), so since v and x are being

u
treated as constants, we may let f(x,y) = h(y) and ¢ = v so that

a v 4 v
10 f f(x,y)dy = Ef h(y)dy = -h(u) = -f(x,u).
u

u

o i P i
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3.7.3 continued

[Notice in the special case for which a(x) and b(x) are constants,
a'(x) = b'(x) = 0 so that if a(x) = a and b(x) = b equation (9)
yields

a b b
173 f f(x,y)dy =f fx{x,y}dy
a a

which agrees with our earlier result.]

The important point is that if our limits of integration are
non-constant functions of x, the "correction factor" for our

constant-limit result is

b'(x)f(x,b(x)) - a'(x)f(x,a(x))

3.7.4(L)

a. Our aim here is to pick an example wherein

b
f f(x,y)dx
a

is easy to compute so that we may "check" the result

b b
= f £ (x,y)dy =f £.(x,y)dy
a a

without recourse to any abstract theory.

We have
fix,y) = x2y £ y3x5 + 3 (1)
Hence

1 1
f f(x,y)dy = % x2y2 + % :n:sy4 + 3y

0 y=0

| _ 1 2 1.5 ¥*
=5 x +7x + 3 (2)

*
Remember, even though the symbol suggests a variable, x is being
treated as a constant when we compute 1

f f(x,y)dy.

0

S.3.7.12
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3.7.4 continued

so that
1
d _d 1 2 1 5
d—xl:f f(x,y)dy]—a-i(ix +Ix +3)
0
=x+%-x4 {3}

Oon the other hand, from (1) we have that

fx(x,y) = 2xy + 5x4y3
so that
1 I
2 5 4 4
f f (x,y)dy = xy° + 7 X'y
0 y=0
_ 5 4
=x+ 73X (4)

whereupon a comparison of (3) and (4) establishes, at least in
this example, that

a 1 1
x J tewa= [ feney
0 0

b. In part (a) we picked a rather trivial example in which it made
little if any difference whether we first computed

b
f £(x,y)dy
a

and differentiated this with respect to x,or whether we computed

b
[ ey,
a

8. 34713
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3.7.4 continued

In other words there are times when the "old" way will be at

least as easy as the "new" way. On the other hand there are times
where we work abstractly with functions of two variables and we
have no explicit recipe for simplifying f£(x,y). [This is much

the same as using the formula {a+b)2 = a2 + 2ab + bz. For
example, to compute the specific number (3+2)2 we (hopefully)

would not resort to the recipe, but when we had no specific
values for a and b we would, by necessity, have to use the

recipe].
Aside from this, there are also times when f(x,y) is given explicitly,

but

b

f £(x,y)dy

a
is extremely difficult (or even impossible) to compute, while

b

f £ (x,y) dy

a

is relatively simple to compute. (There are, of course, many

times when neither

/

a

b b
f(x,y) dy nor f fx(x,y} dy
a

are convenient to compute). Thus the aim of part (b) is to
emphasize the case in which

b
_[ £ (x,y) dy
a

is more accessible to us than is

j-b f(x,y) dy.

a

5.3.7.14
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3.7.4 continued

Notice first of all that the formula stated in Exercise 3.7.2
applies since sin(xeY) and its partial with respect to x are
continuous for all values of x and y (i.e., the rectangle R in
this case may be drawn without restriction).

We have
2
g(x) = f sin(xeY)dy

1
therefore

2 3
g'l (x) — f ﬁ [Sin(xey) ]dYr
1

and

g% [sin(xe¥)] = [cos (xe¥)] g% (xe¥)
2

Therefore g'(x) = f e¥ cos (xey)dy (1)
1

2 *
- f cos (xe¥) [xe¥dy]
1

1
|

2
= i f cos (xeyld(xey) 2 (2)
Il
y=2

1
I

= i sin{xey}
y=1

sin(ezx) - sin(ex)
X

*
Again, keep in mind that x is a constant with respect to the
integration where the variable of integration is y.

*%

Treating x as a constant notice that we could have obtained (2)
from (1) by the substitution u=xeY and proceeded in the usual
way for integrating a function of a single variable.

8.3.7:15
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3.7.4 continued

Notice that fsin(cey)dy is not readily evaluated. Thus in this
example

b

f £ (x,y)dy

a

is easier to compute than is

b
d
a
3.7.5(L)

This is a new "wrinkle" to our present discussion. The point is
that

2 .
f sin cy a
Y
1
is a function of c. That is, we may write

2 .
gl(c) =f s:.n_ycy_ dy (1)
1

*
To find the values of ¢ which produce max-min values for g it is

necessary only to compute g'(c) and g"(c) and this is much easier
than computing g(c) itself.

*
As mentioned in the lecture there is no need to think specifically
in terms of the variables x and dy. Thus we may also write

b b
% f(c,y)dy = f fc(c,y)dy. If we are inclined to think of ¢
a a
as being a constant notice that once chosen, it is. That is, while
b

-/. f(c,y)dy may vary with the choice of ¢, ¢ is fixed in value
a

inside the integrand once it is chosen. This is precisely why c¢
is called a parameter (i.e., a "variable constant'").

S.3.7.16
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3.7.5(L) continued

Now, since the choice of ¢ is independent of y we have that

3 sincy | _1 39 . . 1.

T [ v ] =3y Jc [sin cy] v (y) cos cy .
2 .

Since./. Eig_EZ. dy guarantees that 1lgy<2, y#0 and hence
I

1

@y=l.TMmhm

k] [@] Npo— (2)

Applying the result of Exercise 3.7.2 to equation (1) and using
result (2), we obtain

2
g'(c) =f cos cy dy

1

Therefore
. 2 - *
g'(c) = L sin cy _ sin 2¢ - sin ¢ (3)
c c
y=1

Therefore
g'(c) = 0 ++ sin 2c - sin ¢ =0

++ 2 sin ¢ cos ¢ - sin ¢ = 0
«+ sin ¢ (2 cos ¢ - 1) =0

2 1
++ sin ¢ = 0 or cos ¢c = 5

*
This expression is invalid if c¢=0. Notice that if c=0
2 . 2
gle) = f “;—OX dy=0. Since O<csy and 1<y<2, f Ei“y—cl dy is
1 1

non-negative because O<cy<m + sin cy>0. Hence g(c)=0 must be a
i
2
with the understanding that c#0.

minimum of g(c) for O<e< With this in mind, we may use (3)

$:3.7:17
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3.7.5(L) continued

Since the validity of (3) requires that c#0 we have that for

0<cs% , Sin c#0. We have, however, in our previous footnote
established that c¢=0 yields a minimum, namely 0, for

*

2 5
f al_r;_cxdy , 0scel
1

Finally for 0<cs% ; COs € = % o= % . To see whether this
is a max or min we compute g“(%} from equation (3). This yields

c[2 cos 2c - cos cl-[sin 2c - sin c]

S S S NS S EE s

g"{C)= >
c
Therefore
a [2 cos 2% . cos 1] - [sin 2w sin 1]
weTy _ 3 3 3 3 3
g (§} = >
L
9 ]
m 1 1 1 1
_3[-2 (2‘)_5]- [7/3‘2-/?]
= > !I
a
9
Therefore :
T 3
3351 -0 :
T _ 9
9"(p) = ——F—=-37 <0
M
9 1
|
*Notice also that we could have "lucked out" here. Had we

ignored ¢=0 and equated g'(c) to 0 in (3), the value c=0 for a
minimum would still have "turned up."

S:3.7.18
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3.7.5(L) continued

*
Therefore g"(%}< 0; consequently g(c) is (a relative) maximum

when c = % . In summary for Oscsg

2 i
f s_J.nTcg_ dy 1is least when c=0
1 greatest when c = %

2 e B
The minimum value is 0 and the maximum value is./. 55%?2—1 dy

L
(which may be evaluated by series, etc.).
3.7.6
* %
g(y) = o x dx (1)

%
Actually equation (3) is easier to use and it would spare us
the grief of distinguishing between a relative maximum and an

absolute maximum at x=%. Namely since ¢>0 we have from (3)

that sign [g'(c)] = sign [sin 2c¢ - sin c¢] = sign [sin ¢ (2 cos c-1)].

Since 0<c$%, sin ¢>0, hence sign [sin ¢ (2 cos c-1)] = sign (2 cos c-1).

Therefore, g'(c) is positive for 0<c<%—and negative for %<c<%.

m
s

Hence for Oscsz

g(%) is an absolute maximum.

*% :
When x=1, &n x=0 so that our integrand is "« ." Similarly when
x=0, &n x=-< so thatfn x again gives us trouble. The point is that

1.y
./- xl;xx dx is a (convergent) improper integral and really denotes
0

lim f1+k xy—xb
h,k+0 h n x

dx (where the convergence requires that

y>b>-1).

5.3.7.19
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3.7.6 continued

Therefore

1 y b
. _ ] x¥ - x
g(y)—f 3 [_i—nx ]dx

0
1
=f 1% % [x] ax
0

1
= f R,nlx {n x ey!.nx} dx
0
1
_ ey&nx as
0
i 5
=_/' %Y dx (2)
0

Since y is being treated as a constant in our integration and since
y;-l, we see from (2) that

xy+1 1
L s
g'(y) = y+1
x=0
so
R
g'(y) = 7+ I (3)
$.3.7.20
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3.7.6 continued

b. &n(y+l) is a rather simple function whose derivative with respect

to y is Comparing this with (3) we see that since gl(y) and

1
y+l °
2n(y+1) have identical derivatives they differ by at most a
constant. Thus

gl(y) = n(y+l) + c (4)

or, from (1),
f W ax = 2.n(y+1} + C (5)
0

To determine c, we let y=b in (5) to obtain

fl b _ b
X - X 4dx = n(b+l) + ¢

0 in x
or
0 = ¢n(b+l) + c therefore
c = - &n(b+l) (6)

Putting the value of c, as indicated by (6), into (5) we obtain

1 b
[ -x
o YR dx = &n(y+1l) - n(b+1)
or
1
Y b
X - X - yrl z
JE T % dx = &n s where y>b>-1 (7)

§:3:7.21
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3.7.6 continued

c. In particular with y=3 and b=2 (so that y>b>-1 is clearly satisfied),
equation (7) yields
fl x> - x2 dx = Ln(3+1)
&n x in(2+1)
0
= In %
. h o - e h
[Notice that = dx is difficult to evaluate. Thus
parts (b) and (c) show us how the result in Exercise 3.7.2 can be
utilized to evaluate
1
b
f x - x° dx; y>b>-1 ]
= in x iy .
0
3T
a. Using the "direct" approach first we have that
x* L 2 x*
g (x) =f xy dy = 5 Xy
X y=X
2
= % x(xz) = % x(x) 2
e
Hence
_5 4 3 2 (1)
g'(x) = 5 X 3 X
$.3.7.22
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3.7.7 continued

If we use the recipe, we have

(x)
g'(x) = jrb fx(X,dey + b'(x)f(x,b(x))-a'(x)f(x,a(x))
a(x)

where f(x,y) = xy, a(x) = x, and b(x) = xz.

Therefore

2
X

g'(x) = f 3—%1’1 ay + 2x[x(x%)1" - 11x(x)1”
X

x2 2
=./- y dy + 2x - X
X
Therefore
x2
g'{x)=%y2 | + 2xY = %
y=Xx

=3x'-3x (2)
Comparing (1) and (2) we see that g'(x) is the same for both
methods.

b. Here we have
*
Since f(x,y) = xy; f(x,t) = xt for any number t. In particular
f(x,b(x)) = f(x,xz) = x(xz) = x3 and f(x,a(x})=f(x,x)=x(x)=x2
843723
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3.7.7 continued

a(x) = -x therefore a'(x) = -1
b(x) = x therefore b'(x) = 1
2
—amxy X
fix,y) = l—g——— [ therefore f(x,b(x))=f(x,x)=£_§___
fx(::Y1 . LaX (=) exz_l
= 17[_(.y)e ] flx,a(x))=f(x,-x)=— e
Using the formula
b (x)
g'(x) = .]F £ (x,y)dy+b' (x) £ (x,b(x))-a" (x) f(x,a(x))
a(x)
2 2
X - .4
- -Xy l-e e (e -1 )
./P e dy + o (-1) =
-x
: = 1- 'x2+ x? 1
= -1 %y I P e’ -
X X
=-X
2 2
2 X -%
- [ﬂi o X ]_ [_L ..;xl-x)] el
X X X
Therefore
2 2
x° -x
g' (x) = 2_(..81(;3_) (3)

Equation (3) can be rewritten to utilize the definition that

2 2
b4 -X

: 2 _ e -e
sinh x" = S

S.3.7.24



Solutions

Block 3: Partial Derivatives

Unit 7: More on Derivatives of Integrals

3.7.7 continued

That is,

I

g'(x)

_ 4 sinh x2

X _ =Xy
(Note: f i=e "

y
-X

but the integral converges so no harm is done.)

3.7.8(L)

2
4 eX 7%
X 2

_ 4 sinh (x%)

X

. X#0

dy is an improper integral since 0e[-x,x]

a. Given that y is some function of x such that

X
y (x) =f h(t) sin(x-t)dt
a

we have

(1)
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Solutions
Block 3: Partial Derivatives
Unit 7: More on Derivatives of Integrals

3.7.8(L) continued

X 5
¥y = f d[h(t)sin(x-t)] 4, , & [h(x)sin(x-x)]

ax it
a =0

= g—: [h(a)sin(x-a) ]
—
={)

X
= f h(t)cos (x-t)dt + 0 - 0
R |

b4

- f h(t) cos (x-t) dt
a

From (2),

X

y"(x) = h(t)cos (x-t)dt

§la
p =

X ~§;,
- f = [h(t)cos(x-t)lat + gX [h (x) cos (x-x)
a =l
=0
S——
_ da

ax [h(a)cos(x-a)]
= er -h(t)sin(x-t) + h(x)

a

X

From (1) we have that-/. -h(t)sin(x-t)dt = -y(x), so that equation

a
(3) becomes

(2)

(3)
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Solutions
Block 3: Partial Derivatives
Unit 7: More on Derivatives of Integrals

3.7.8(L) continued

y"(x) = -y(x) + h(x)
Therefore
y"(x) + y(x) = h(x) (4)

Moreover when x=a, y' and y are both 0 since our integral goes
between a and a as limits.

Hence y(x) is determined by the equation

y"(x) + y(x) = h(x)

where y(a) = y'(a) = 0.

b. This is a concrete illustration of part (a)

X .t
y(x) = f 2e” sin(x-t)dt

0
therefore
* ] £ dx X
' - - i - — i -
y'(x) f =X [2e” sin(x-t)]ldt + = [2e s:t.n(: x) ]
0 =0
w S0 [2e0 sin(x-0)]
dx
R L E
=f 2e” cos(x-t)dt
0
therefore
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Solutions
Block 3: Partial Derivatives
Unit 7: More on Derivatives of Integrals

3.7.8(L) continued

* dx

dx
0

0
P
_7ao

dx

* t
= f -2e® sin(x-t)at + 2%
0

-y(x) + 2e*

I

y"(x) = f 2 [2¢%cos (x-t) 1at + X [2e*

—_— [ZeO

cos (x-x) ]
X

cos (x-0) ]

0

therefore
y"(x) + y(x) = 2e*
(5)
and y(0) = y'(0) =0
3.7:9
d.
% t
y (x) =f (t-x) [y (t) -eF1at (1
0
therefore
=8 t
y' (x) =f B [(t-x){y(t)-e"}]dt + 0 + ©
0
&
=f [e =y (t)]dt (2)

S53: 7728
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Solutions
Block 3: Partial Derivatives
Unit 7: More on Derivatives of Integrals

3.7.9 continued

therefore
yhix) = & = y (x)
therefore
X

y"(x) + y(x) = e

and y(0) = y'(x) = 0 [from (1) and (2)]

y(x) = %—(ex - sin x - cos X)

¥ (x) = % (e* - cos x + sin x)
y"(x) = % (e* + sin x + cos x)

Adding (4) and (6) yields

y"(x) + y(x) = eX

Moreover, letting x=0 in (4) and (5) shows that

I

y(0) = y'(0) 0

so y(x) satisfies the conditions of (3).

In other words, if y is defined by

% =

y (x) =f (t-x) [y (£) ~eF1at
0

then

y(x) = % (e* - sin x - cos x)

[How we determined that y(x) = l(ex

(3)

(4)

(5)

(6)

- sin x - cos x) would satisfy

the given conditions, without solving the given integral equation,

is a subject covered later during our discussion of differential

equations in Block 7.]
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