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Block 4: ~atrix Algebra 


Unit 6: The Jacobian 


4.6.1 

.a. Notice that 


implies that -f (x,y) = I(-x,-y), 2since x2 - y2 = ) - 2 
(-x (-y)

and 2xy = 2 (-x) (-y) . Thus -f maps (x,y) and (-x,-y) into the 
2same element, namely, f(x,y) = f(-x,-y) = (x - y21 2xy). 

Geometrically (x,y) and (-x,.-y) lie on the same line through 

the origin. Thus, given any (non-zero) neighborhood R of 

(0,0), it contains a circular neighborhood Nr(O,O) centered at 

(0,0), having radius r. Pick (xo,yo) € Nr (0 ,O) subject only to 

the condition that (xory0) # (0,O). Then (-xor-yo) € Nr (0,O) CR 

and -f(xoryo) = f(-xo,-yo). Therefore -f is not 1-1 on R. 
Pictorially 

(1) R is drawn large ko we can "see well". 


(2) (xo,yo)c R does not guarantee that (-xo,-yo) c R since R 
need not be symmetric with the origin. 

(3) The reason for constructing Nr(O,O) was simply to replace 


R by a region which is symmetric with respect to the origin 

(we did not have to pick a circular region). The key point 

is that such a symmetric region can be inscribed in any 
S.4.6.1 
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4.6.1 continued 

non-zero region R. 

( 4 )  (xoryo) and (-xo ,-yo) ER [s ince they a r e  i n  the  subregion 
2 2 

N r ( O I O )  1 and f (xo,y0) = f ( -xor-~,)  = (xo - yo I 2x0yo) 

Using the  technique described i n  Lecture 4.040 we would have 

t h a t  

Therefore, 

From (1)we would expect t rouble  when (x Iy )  = ( 0 , O )  , s ince then 
2and only then is 2 (x  + y2) = 0.  The invers ion theorem v e r i f i e s  

t h a t  -f is  not  i n v e r t i b l e  i n  any neighborhood of (0,O) but  is  

i n v e r t i b l e  i n  s u f f i c i e n t l y  small neighborhoods (i.e., is  locally 

i n v e r t i b l e )  of any o ther  po in t ,  s ince  

b. The region S i n  question is 
Y 
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-

The reg ion  S  does -no t  inc lude  t h e  p o i n t  (0,O).  Therefore 

I f ' ( a ) l #- 0  f o r  every a ES. Yet -f i s  n o t  1-1 on S. Indeed i f  

-a i s  any f i r s t  quadrant  p o i n t  i n  S then -2 i s  a t h i r d  quadrant  

p o i n t  i n  S  and f(2) = -f (-2) even though -a Z -a.-

A l l  t h e  inver s ion  theorem al lows us t o  conclude i s  t h a t  f o r  

each a- E S t h e r e  i s  a s u f f i c i e n t l y  smal l  neighborhood of 5 on 

which -f i s  1-1. The t r o u b l e  wi th  S  i s  t h a t  it i s  too  l a r g e  

a  region f o r  -f t o  be  1-1. 

In  summary, then 

(1)f :Er + E
r is l o c a l l y  i n v e r t i b l e  i n  a s u f f i c i e n t l y  smal l  

neighborhood of  -a provided only t h a t  I f 1 ( = )  1 # 0 .  

(2)  The f a c t  t h a t  - - 0 guarantees  t h a t  fI f l ( a ) l  # us - i s  i n v e r t i -

b l e  near  -a ,  b u t  t h e  s i z e  of t h e  neighborhood must be s u i t a b l y  

r e s t r i c t e d .  That i s ,  knowing t h a t  -I f l ( a ) l #  0  f o r  every aES i s  

n o t  enough t o  i n s u r e  t h a t  f i s  1-1 on S. 

4.6.2 

a. W e  have f : ~ 2 - + E2 de f ined  by -f  (x ,  y)  = ( x3 - y 
3 , Zxy) . That i s ,  

u = x3 - Y 3  ) (1) 
v = 2xy 

From (1), 

a ( u . 1 ~ )= [I:'-a ( x , Y )  = 
 I:'] 

t h e r e f o r e ,  

;] 
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4 .6 .2  continued 


#ere£ ore ,  


Theref o re ,  f is l o c a l l y  i n v e r t i b l e  a t  any point  (x, y) E E ~pro-

vided only t h e  po in t  is not  on the  l i n e  y = -x. 

Hence f maps (x,y) and (-y,-x) i n t o  t he  same element (x3- y3 .-
2 ~ ) .  

Notice t h a t  (x,y) and (-y,-x) a r e  symmetric with respect  t o  the  

l i n e  y = -x. I1.e. 

(I) P(a ,b)  and Q(b,a} a r e  symmetric w . r . t .  y = x. 

( 2 )  Q(b,a )  and R(-b,-a) a r e  symmetric w . r . t .  t he  o r i g i n  

(i.e. r and -r a r e  symmetric wi th  respec t  t o  o r ig in )  

(3) AORP is  i so sce l e s  and OA is  an angle b i sec tor .  Therefore 

OA i s  perpendicular b i s ec to r  of RP. 

( 4 )  P (a,b) and R(-b,-a1 a r e  symmetric w . r .  t y = -XI 
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4.6.2 continued 

Hence, f o r  any p o i n t  5 on y = -x we have 

(1) These two p o i n t s  have t h e  same image under -f s i n c e  they a r e  

symmetric wi th  r e s p e c t  t o  y = -x. 

(2)  No mat te r  how smal l  w e  choose R, once it con ta ins  2 it 
con ta ins  ( a t  l e a s t )  2 p o i n t s  symmetric wi th  r e s p e c t  t o  y = -x. 

( 3 )  Therefore ,  f cannot  be  1-1 i n  any neighborhood of 2 i f  2 
is on t h e  l i n e  y = -x. 

S ince  xl, ...,x a r e  assumed t o  be independent a x . /  ax = 0 i f  n 1 j 
i # j. and o f  course axi/ ax = 1 i f  i = j.

j 


Thus 
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4.6 .3  continued 

acan be cancelled (as if it were the fraction - ) as a "factor" a 
from any matrix equation since it represents the identity 

matrix. 

In the language of determinants 

and this is why some people like the notation 

to denote the Jacobian determinant rather than the Jacobian 

matrix. That is, with this notation, 

a. In Exercise 4 .6 .2  we saw that 

b. Now, from 

we have 
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Solving (2)  f o r  dx and dy i n  terms of  du and dv we o b t a i n  

3 3Therefore un less  6 ( x  + y ) = 0, we may d i v i d e  by it i n  (2)  t o  

o b t a i n  

- X 
2 

-
yu - , and y = 

3(x3+ y3) v 2 (x3+ y3)  I 
From (5)  w e  conclude t h a t  

c . Combining (1) and (6)  w e  have 

[Notice again  how t h e  mechanical approach y i e l d s  ( 4 )  d i r e c t l y ,  
3t h a t  i s ,  6 (x3 + y ) i s  t h e  Jacobian determinant .  Hence w e  

know it cannot  be zero  a t  a p o i n t  where -f i s  i n v e r t i b l e .  I n  

o t h e r  words we can d e r i v e  ( 4 )  wi thout  (conscious ly)  r e f e r r i n g  

t o  t h e  Jacobian 

A t  any r a t e ,  from ( 4 )  we deduce t h a t  
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4 . 6 . 4  continued 

d . 

(provided x3  + y3  # 0) 

Since d e t  In = 1 and d e t  AB 

y i e l d s  

= ( d e t  A) (de t  B)  , equation ( 7 )  

Therefore 

and t h i s  makes sense  s i n c e  

a . 

when x3  + y3  # 0.  

4.6 .5  

W e  must examme 
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4.6.5 con t inued  

S ince  

and 


v = , ( x , y )  # ( 0 . 0 ) ,  w e  have 
X + Y  

The re fo re ,  

The re fo re  u and v a r e  f u n c t i o n a l l y  dependent.  
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Theref o re  

2and s ince  x + y2 + 0 ,  

theref  o r e ,  

Therefore f # 0 but  f [ u (x ,y ) ,  V ( X I Y ) ]  0 .  

f :E2 + E2 is  defined byc* -

i f  (x,y) # (0,O) and f (0 , O )  = (0,O) ; hence t he  image of f i n..-
t he  uv-plane [from equation (1)1 is  the  e l l i p s e  uL + 4vL 1 

together  with t h e  po in t  (0,O) [which does not belong t o  the  

e l l i p s e ;  i . e . ,  equation (1)was derived under the  assumption 

t h a t  (x,y) + (0,O) 1 
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W e  want t o  know whether (1) allows us  t o  view u and v a s  

func t ions  of t h e  independent v a r i a b l e s  x ,  y ,  and z * i n  some 

neighborhood of ( x o , y o , z o , ~ o , ~ o ) . According t o  our theory 

t h i s  can be done a t  any p o i n t  s a t i s f i e d  by (1)provided only 

t h a t  

b. 	 To show t h a t  u and v a r e  func t ions  of  x ,y ,  and z it i s  s u f f i c i e n t  

t o  show t h a t  ux, u u a s  w e l l  a s  vx, v and vZ a r e  determined. 
Y '  2 Y 

From a pure ly  mechanical p o i n t  of  view, as w e  d i d  i n  Block 3 ,  

w e  may d i f f e r e n t i a t e  system (1) i m p l i c i t l y  with r e s p e c t  t o  x ,y ,  

and z t o  o b t a i n  

and 

1 

*We named t h e  v a i i a b l e s  x , y , z , u , v  r a t h e r  t h a n  x 

x t o  make i t  e a s i e r  t o  remember "which  

T z a t  i s ,  t h i n g  o f  x , y ,  and  z a s  d e n o t i n g  

t h e  v a r i a b l e s  x 1 , x 2 , x 3 , x 4 , x 5  a r e  b e i n g  c h o s e n  a t  random 

( i . e . ,  t h e  i n d e p e n d e n t  v a r i a b l e s ) .  
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Appropriately pairing members of (2) with members of ( 3 )  we 

obtain 

From the left side of (1) we can explicitly compute fx, 

f~' 


fzrfu,fvrgxr9YrgZ,gu and gv* 


Therefore at any solution of (1) the unknowns in (4) are 

ux,vx,u ,v ,uZ, and vZ. . In each case, then, our determinant 
Y Y  


of eoefficients for each pair of equations is 


and unless this determinant is o we can solve (4) for ux,vx, 


u ~ , v ~ ~ u ~ , 
and vZ. 


4.6.7 


a. 	 Without the knowledge contained in Chapter 7 of the Supple- 


mentary Notes, we could have proceeded as follows: 


Assuminq that the system 


x + y + z = o  


X
2 + y 2 + z 2 + 2 ~ z - 1 = 0  


determines y and z as functions of x, we can differentiate 


(1) implicitly with respect to x to obtain 
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4.6.7 continued 

9 +
dx 

dl'y;[;; + (x + 2 )  

Solving ( 2 )  f o r  dy/dx and dzjdx we o b t a i n  

Y 


Therefore ,  

and correspondingly  

u n l e s s  x + z - y = 0 ( s i n c e  i n  t h i s  case  we cannot  s o l v e  ( 3 )  

f o r  =Idz . 

That i s ,  once w e  know t h a t  system (1) determines y and z a s  

f u n c t i o n s  o f  x,  equa t ions  ( 4 )  and (5 )  fo l low inescapably.  

The p o i n t  of t h i s  e x e r c i s e  i s  t o  show t h a t  t h e  genera l  

theory  suppor t s  what w e  a l r eady  suspec t  t o  be t r u e  - t h a t  

y and z a r e  func t ion  of x un less  x + z - y = 0. 
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4.6.7 continued 


More specifically, the general theory tells us that y and z are 


functions of x if 


where f(x,y,z) = x + y + z and g(x,y,z) = x 2 + y2 + z2 + 2x2 - 1. 

Now 


Therefore, 


a(f,g)= o + + x + z - y = 0 . 
I 1a (Y,'i 

Therefore, the theory tells us, just as we suspected, that 

unless x + z - y = 0 (i.e., unless we are on the plane 2 = y - x) 

system (1) determines y and z as differentiable functions of x. 

As a direct check notice that x + z - y = 0 says y = x + z, 
whereupon (1)becomes 


From (6) it follows that 


Since 2(x + zl2 = 1 implies x + z = + -1 , system (7) is 
inconsistent since it implies 0 = +- 1- . 

-JZ 


Hence system (1) is incompatible when x + z - y = 0; otherwise 

system (1)determines y and z as differentiable functions of x 
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4.6.7 continued 


with dy/dx and dz/dx a s  given by ( 4 )  and (5). 


b. I f  w e  look a t  

w e  o b t a i n  

Therefore x and z axe never e x p r e s s i b l e  a s  func t ions  of y. In  

p a r t i c u l a r ,  n o t i c e  t h a t  (1) can be w r i t t e n  as 

4 . 6 . 8  

a .  Row reducing our  given system of equat ions  y i e l d s  

The l a s t  two equa t ions  on t h e  r i g h t  s i d e  of (1) imply t h a t  

uZ - 3u = O; o r ,  u = o o r  u = 3. 

Therefore t h e  given system of equat ions  is  incompatible 

u n l e s s  u = 0 o r  u = 3 .  

b. With u = 0 ,  (1)becomes 
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4 . 6 . 8  continued 

and from (2) w e  see t h a t  w e  may pick  x  o r  y o r  z a t  random and 

then s o l v e  f o r  t h e  remaining two. 

For example, i f  w e  l e t  z = z  then 4y - 72 = 0 impl ies  y  = 7 
O a zo; 

whereupon x - y + 22 = 0 then t e l l s  us t h a t  

7 2
0Therefore wi th  z = z u = 0 , i m p l i e s  t h a t  y = -2 and x = --

0 ' 4 0 4 
Hence, one set  o f  p o i n t s  (4- tuples)  which s a t i s f y  t h e  given 

system of  equat ions  i s  

and 

Therefore ,  "near" (x,y,z,O)€S,  w e  have 

Hence y and x can a l l  be  expressed a s  f u n c t i o n s  of z .  

With u = 3 ,  system (1)y i e l d s  

So from (5) w e  o b t a i n  f o r  z = zo 



Solu t ions  
Block 4 :  Matrix Algebra 
Unit  6: The Jacobian  

4.6.8 continued 

Therefore  nea r  (x, y,  z, 31 ES, 

Therefore t h e  given system can always b e  solved f o r  u, x ,  and y 

i n  t e r m s  of  z s i n c e  t h e  given system i s  equ iva len t  t o  t h e  union 

of  ( 4 )  and (6). 

c. 	 I f  u # 0 o r  u # 3 t h e  given system i s  incompatible.  Hence we 

cannot  view x ,y ,  and z a s  func t ions  of  u s i n c e  any such func t ion  

would have t h e  domain {0 ,3)  . That is ,  u assumes only t h e  two 

d i s c r e t e  va lues  0 and 3. ' 

d .  	 W e  now want t o  show how t h e s e  r e s u l t s  a r e  obta ined i n  terms of 

t h e  genera l  theory.  

F i r s t  of  a l l ,  i n  o r d e r  t h a t  t h e  given system determines x ,y ,  and 

u i n  t e r m s  o f  z we must look a t  

where 

Theref o r e  
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4.6.8 continued 


Theref ore 


1 a(fp g ~ ~ )j o unless u = 3 .I 
a (x,Y,u) 


Hence in a neighborhood of any solution ( x o , y o , ~ o l ~ ~ )  
of the 

given system, we may express x,y, and u as functions of z, 

except when u = 3/2. 

But in part (a) we showed that uo = 3/2 means ( X ~ , ~ ~ , Z ~ , U ~ )is 

not a solution of our system. In fact we showed that 

( X ~ , ~ ~ , Z ~ , U ~ )could not be a solution unless uo = 0 or uo = 3. 

Xn any event, since uo f 3/2, equation (7) tells us x,y, and u 

may be expressed as functions of z near ( X ~ , ~ ~ , Z ~ , U ~ ) .  

Finally 


Hence, x,y, and z cannot be expressed in terms of u. 
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4.6.9 

a .  H e r e  

Therefore ' 

Theref o r e  

b. 

Theref o r e  

o f o r  a l l  ( x , y , z )  : f ( x , y , z )  
a (x,Y) 

s i n c e  x 2 + y2 + z2 + 1-> 1. 

Therefore  i n  t h e  given system x and y 

func t ions  of z. 

From (1) 

= g ( x , y , z )  = o 

a r e  always determined a s  

Theref o r e ,  
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4.6.9 continued 

Therefore ,  

2 2 2 dx -
( x + y + Z + l ) - - -dz ' Y -2 22+ 2 y z = - ( y - 2 )  2 . 
Theref o r e  

[Notice t h a t  on t h e  r i g h t  s i d e  of  (2)  x ,y ,  and z a r e  n o t  

independent; r a t h e r  they s a t i s f y  f ( x , y , z )  = 0 and-
g ( x , y , z )  = 0. I n  o t h e r  words, x and y a r e  func t ions  of  z f o r  

which f (x ,y , z )  E g ( x , y , z )  0 .  The f a c t  t h a t  x and y a r e  

d i f f e r e n t i a b l e  func t ions  of  z was e s t a b l i s h e d  i n  p a r t  ( a ) . ]  
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