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Block 4: Matrix Algebra

Unit 6: The Jacobian

4.6.1

a, Notice that

e R e YZ

= 2xy
implies that f(x,y) = f£(-x,-y), since x2 - y2 = (-xz) = (-y}2
and 2xy = 2(-x)(-y). Thus f maps (x,y) and (-x,-y) into the
same element, namely, f(x,y) = f(-x,-y) = (xz- yz. 2xy) .

Geometrically (x,y) and (-x,-y) lie on the same line through
the origin. Thus, given any (non-zero) neighborhood R of
(0,0), it contains a circular neighborhood Nr(0,0} centered at
(0,0), having radius r. Pick {xo,yo)e NI(O,O) subject only to
the condition that (xo,yoj # (0,0). Then (-xo,-yo)e Nr(0,0)CR

and £{xo,yo) - E(—xo,—yo). Therefore f is not 1-1 on R.
Pictorially
. '
“/ \t,.\ R
Vi \
N, (0,0)

3 \ KoY
\ //
y
/

(1) R is drawn large so we can "see well".

(2) (xo,yo)c R does not guarantee that (-xo,-yOJe R since R

need not be symmetric with the origin.

(3) The reason for constructing Nr(0,0) was simply to replace
R by a region which is symmetric with respect to the origin
(we did not have to pick a circular region). The key point

is that such a symmetric region can be inscribed in any

5.4.6.1




Solutions
Block 4: Matrix Algebra
Unit 6: The Jacobian

4.6.1 continued

non-zero region R.

(4) (x Yo ) and (- X “¥is JER [since they are 1n the subregion

_ _ 2
Nr(0,0)] and £(x0¥s) = £0-%50-T5) = (x4~ = Yo P 2X5¥e) -
Note:

Using the technique described in Lecture 4.040 we would have

that

du = 2xdx - 2ydy
= 2ydx + 2xdy .

Therefore,

- X
dx = 5 3 du + 5 dv
2(x"+ y7) 2(x"+ y¥7)
(1)
dy = G # e 0
2 {x7+ v2) 2(x%+ y°) .
From (1) we would expect trouble when (x,y) = (0,0), since then
and only then is 2(x2 + y2) = 0. The inversion theorem verifies

that f is not invertible in any neighborhood of (0,0) but is
invertible in sufficiently small neighborhoods (i.e., is locally

invertible) of any other point, since

|ﬂiEL3l |= 0 «>(x,y) = (0,0).
a(x,y)
b. The region S in quEStion is
T
\\\
\\( a
_.!_\_L\_\\ \‘ > X
-\ \ /i a\? 5
\ 4\ \\ ¥
STEN L
[
|
l
S.4.6.2
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Block 4: Matrix Algebra
Unit 6: The Jacobian

4.6.1 continued

The region S does not include the point (0,0). Therefore
|£'(a) |# 0 for every a eS. Yet f is not 1-1 on S. Indeed if
a is any first quadrant point in S then -a is a third gquadrant

point in S and f(a) = f(-a) even though a # -a.

All the inversion theorem allows us to conclude is that for

each ae S there is a sufficiently small neighborhood of a on
which f is 1-1. The trouble with § is that it is too large

a region for f to be 1l-1.

In summary,then

(1) ;:Er + E¥ is locally invertible in a sufficiently small
neighborhood of a provided only that |£'(a)| # 0.

(2) The fact that |£'(a)| # 0 guarantees us that f is inverti-
ble near a, but the size of the neighborhood must be suitably
restricted. That is, knowing that |f'(a)|# 0 for every aeS is

not enough to insure that f is 1-1 on S.

4.6.2
2 2 ; = 3 3 ;
a. We have f:E"> E defined by f(x,y) = (x~ - y~, 2xy). That is,
3 3
u=x" =y (1)
= 2xy
From (1),
2 2
3 (u,v) _ u, uY _ 3x~ - 3y
3(x,y) ¥y L 2y 2x
therefore,
|3(u,v) - 6x3 & 6y3 - 6{x3 " y3)
d(x,y)
Sd.643
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4.6.2 continued
therefore,

3

!MI:O«—»;{3+Y = e = =3 ,

3 (x,y)

Therefore, f is locally invertible at any point (x,y)eE2 pro-
vided only the point is not on the line y = -x.

3
b. x° =y> = (-y)° =(-x)
2xy = 2(-y) (=x).
Hence f maps (x,y) and (-y,-x) into the same element (x3-y3,
2xy) .
Notice that (x,y) and (-y,-x) are symmetric with respect to the
line y = -x. [I.e.
y = =X b4 Yy = X
Q(b:a)
P (a,b)
> X
(1) P(a,b) and Q(b,a) are symmetric w.r.t. ¥y = X.
(2) 9(b,a) and R(-b,-a) are symmetric w.r.t. the origin
(i.e. r and -r are symmetric with respect to origin)
(3) AORP is isosceles and OA is an angle bisector. Therefore
OA is perpendicular bisector of RP.
(4) P(a,b) and R(-b,-a) are symmetric w.r.t y = -x]
S.4.6.4
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Block 4: Matrix Algebra
Unit 6: The Jacobian

4.6.2 continued

Hence, for any point a on y = -x we have

y = -x

(1) These two points have the same image under f since they are

symmetric with respect to y = -x.

(2) No matter how small we choose R, once it contains a it

contains (at least) 2 points symmetric with respect to y

-X.

(3) Therefore, f cannot be 1-1 in any neighborhood of a if a

is on the line y = -x.

4.6.3
Since XyreeerX are assumed to be independent axi/ axj = if
i # j. and of course axi/ axj =1 if i = j.
Accordingly
ax ax 1 0 .
1 3
a3 e 3% 5] X, = —
1 R i _ axl axn = 0 1 =
S . ) IX. n
1 = J axn oxX, 0 LS
axl axn
Thus
afxl,...xn}
B(XI,...xn)
5.4.6.5
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4.6.3 continued

can be cancelled (as if it were the fraction g ) as a "factor"

from any matrix equation since it represents the identity
matrix.

In the language of determinants

3(x1,...,xn)

a{xl,...,xn}

and this is why some people like the notation

3(Yyrennsyy)

a(xl,...,xn)

to denote the Jacobian determinant rather than the Jacobian
matrix. That is, with this notation,

a(xlpvongxn} =l.
B(xl,...,xn}

4.6.4

In Exercise 4.6.2 we saw that

2

3lu,v) _  |3x%  -3y?

a(x'y) ZY 2x .

Now, from

{ 3 3
u X -y

2xy

we have

3x2dx - 3y2dy

2ydx + 2xdy .

du
dv

(1)

(2)

S.4.6.6

l I S I U5 S S VS Ul U TS S B D R BD BE PR BB o



Solutions
Block 4: Matrix Algebra
Unit 6: The Jacobian

4.6.4 continued

Solving (2) for dx and dy in terms of du and dv we obtain

6(x3 + y3)dx = 2xdu + 3y2dv

(3)
3

(x> < y3)dy -2ydu + 3x2dv R

Therefore unless 6(x3 + y3) = 0, we may divide by it in (2) to

obtain

_ ¥
dt = —gt—g du+ —gl——av
(4)

dy = =y by
3(x™+ y7) 2(x+ 37)

[Notice again how the mechanical approach yields (4) directly,
that is, 6(x3 + y3) is the Jacobian determinant. Hence we
know it cannot be zero at a point where f is invertible. 1In
other words we can derive (4) without (consciously) referring

to the Jacobian

At any rate, from (4) we deduce that

2
— x —
X = — , X = e Mg ,
u 3(x3+ Y3) v 2(x3+ Y3)
(5)
- ___Jéi__ﬁ
¥ & , and y_ =
3{x3+ Y3) v 2(x3+ Y3)

From (5) we conclude that

X
ax,y) _ o Kl _ |36yt 2063+ yd)
B(H,V) y'i.l YV x2

-y
3(x+ y°) 2 (%4 ¥O) ~ .

(6)

c. Combining (1) and (6) we have

Il U ) ) A P A BN A BN B8 PO) M PWm PN PO BB Pl B0
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Block 4: Matrix Algebra
Unit 6: The Jacobian
4.6.4 continued 2
= X y
. ) 2 2 3 3 3 3
|j} {u,v}J Ijé (x,y)J _ 3x -3y 3(x7+ y7)  2(x7+ y7)
3 (x,y) |3 (u,v) 2y 2% -y x2
3{x3+ y3) 2(x3+ y3)
o3 . o3 3x2y2 3x2y 2
x3+ y3 x3+ Y3 2(x3+ y3) 2(x3+ YB}
= 2xy 2Xy y3 4 x3
__3(x3+ y3) 3(x3+ y3) x3+ y3 x3 + y3
1 0
=l o 1

(provided x3 + y3 # 0)

d. Since det I, = 1l and det AB =

yields
d(u,v) 9(x,y) 1.
3(x,y) a(u,v)

Therefore

|8(u , V) {B{x.x)
3(x,vy) 9(u,v)

and this makes sense since

3 (x,y)
3(u,v)

# 0

when x3 + y3 # 0.

4.6.5

(7)

(det A) (det B), equation (7)

a. We must examine

3(u,v)
Dlxv) e

S.4.6.8
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4.6.5 continued

Since

x° - y2
u =

x2 N y2
and

. . . (x,vy) # (0,0), we have

x2+ y2 #

W (x2+ y2J2x - (xz- x?)Zx _ 4xy2

X (xZ; y2)2 (x2+ y2)2
y o= G yheey - 6P yhay | —axly

v (x2+ y2)2 (x2+ y2)2
o (x> yz)y - xy(2x%x)  _ xf_:_zfz

p.4 (x2+ y2)2 (x2+ y2)2
e (x2+ y2)x - xy(2y) x3 - xyz

y o g2y ® (x%+ yH 2
Therefore,

3 (u,v)

a(x,y)

b o

(x“+ yv°) (x“+ y%) 2,3 2 2ol 2

4xy” (x7- xy”) + 4x"y(y - x7y) _ 4
_ T4 B
(x"+ yv)
3. 2 3 - xy?
) 2,2 2 2,2
(x™+ y7) (x"+ ¥7)

Therefore u and v are functionally dependent.

5.4.6.9
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4.6.5 continued

2 (xP g2

(x"+ y)

b. u

22

4v2 _ ixy

(x"+ vy ]2 -

Therefore

2 2 (x2- v2) + ax?y?
u- + 4v© = ) PN
(x~+% §*)

(x4+ 2x2y2 + y4
(x2+ Y2)2
(XZ 3 2}2

(x™ + y7)
+y% #o0,

and since x2

w? + av? = 1 ) (1)

therefore,

u2 - 4v2 - 1

]
o

Let f(u,v) = u2 + 4v2 = 1.

Therefore f # 0 but flu(x,y), vi(x,y)] = 0.

Cs _f_:E2 - E2 is defined by
2 2
f(pr) = (= b4 ’ X
= 2 2 2 2
X+ Yy X +y

if (x,y) # (0,0) and £(0,0) = (0,0); hence the image of f in
the uv-plane [from equation (1)] is the ellipse u2 + 4v2 =1
together with the point (0,0) [which does not belong to the
ellipse; i.e., equation (1) was derived under the assumption

that (x,y) # (0,0)]
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Ul U S ua

S.4.6.10




&3 £ M oM

AR BN A G OE A A .

al fa e

Solutions
Block 4: Matrix Algebra
Unit 6: The Jacobian

4.6.6
a. flx,y,z,y,v) = -
g(x,y,z,u,v) =0
We want to know whether (1) allows us to view u and v as
functions of the independent variables x, y, and z * in some
neighborhood of {xo,yo,zo,uo,vo). According to our theory
this can be done at any point satisfied by (1) provided only
that
3 (f,q) 4 0.
3(u,v)
b. To show that u and v are functions of x,y, and z it is sufficient

to show that Uy s
From a purely mechanical point of view, as we did in Block 3,

we may differentiate system (1) implicitly with respect to x,y,

u,, u, as well as Vigr vy and v, are determined.

and z to obtain

]
o

f. + fu + £v
u x v X

f + fu + f£fv =0 } (2)

z z z J
and
+ =
Ix guux * gvvx 0
+ u_ + v =0 (3
9y + I8y * Iy )
+ -
9z Iyu'z Ve . J .,
*We named the variables x,y,z,u,v rather than x., X,, X, xﬂ,

X. to make it easier to remember "which variables are which",
Tgat is, thing of x,y, and z as denoting whatever three of
the variables Xj,X2,X3,X,,X5 are being chosen at random
(i.e., the independent variables).

S.4.6,11
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4,6.6

Appropriately pairing members of (2) with members of (3) we

obtain

;
X * fuux * fvvx - }
Ix ax T Vx T

£ o+ £u. . * £ =0
e B } ;
y + guuy + gvvy 0

+ fu_ +
A f'l.l 4 fVVZ

] 1}
o o
——

+ u_+ v
gz gu z gV z

From the left side of (1) we can explicitly compute fx' £

fz:fur fvlgxlgyigzlgu and gv-

b

Therefore at any solution of (1) the unknowns in (4) are
ux,vx,uy,vy,uz, and Ve * In each case, then, our determinant

of coefficients for each pair of equations is

3(f,q) 1

3 (u,v)

and unless this determinant is o we can solve (4) for W Tt

u_,v._,ua nd v
Y' Y’ z’ a z*

4.6,7

(4)

Without the knowledge contained in Chapter 7 of the Supple-
mentary Notes, we could have proceeded as follows:

Assuming that the system
x+y+z=20

x2 + y2 + 22 + 2%z = 1 =0

determines y and z as functions of x, we can differentiate
(1) implicitly with respect to x to obtain

(1)

S.4.6.12
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Unit 6: The Jacobian

4.6.7 continued

1+ g§ + g% =0

2x+2y§x+2zdz+2x§-}—‘+22=0

dx ax
or
g.Y. + dz = =1
- dx (2)
Y%% + (x + 7} g% = - (x + 2)}.

Solving (2) for dy/dx and dz/dx we obtain

*y% "Y%‘E‘Y
y %% + (x + 2z) g% = -(x + z)
Therefore, -
(x + 2z - y) &= (-x-z+y) (3)
or
-1 (4)

and correspondingly

%% =0 (5)

unless x + z -— y = 0 [since in this case we cannot solve (3)
dz

forﬁ.

That is, once we know that system (1) determines y and z as

functions of x, equations (4) and (5) follow inescapably.

The point of this exercise is to show that the general
theory supports what we already suspect to be true - that

y and z are function of x unless x + z = y = 0.

§.4.6.13
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4.6.7 continued

More specifically, the general theory tells us that y and z are

functions of x if

3(f,q9)
d(y,z)

# 0

where f(x,y,z) = x+ y + z and g(x,y,z) = x2 + yz + z2 + 2%z - 1.
Now

1 1
2y 2z + 2x

)Eif;ﬂl |= = 2z + 2x - 2y.

o (y,z)

Therefore,

3(f,q)
o (y,z)

=0 +«>*rx+2 -y =0.

Therefore, the theory tells us, just as we suspected, that
unless x + z - y = 0 (i.e., unless we are on the plane z = y - X)
system (1) determines y and z as differentiable functions of x.

As a direct check notice that x + z — y = 0 says y = X + 2z,

whereupon (1) becomes

x+ (x+2) +z=20
(6)

xz + (x2 + 2xz + zZJ + 22 + 2xz - 1 =10 @

From (6) it follows that

2(x +z) =0
(7)

2(x + 2)2 & A

Since 2(x + 2)2 = 1 implies x + z = .3 , system (7) is

+
inconsistent since it implies 0 = irl—
V2
Hence system (1) is incompatible when x + z - y = 0; otherwise
system (1) determines y and z as differentiable functions of x

S.4.6.14
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4.6.7 continued

with dy/dx and dz/dx as given by (4) and (5).

b. If we look at
3 (f,q)
9(x,2)
we obtain
3(£,9) L - = &
9(x,2z) 2x + 2z 2x + 2z
Therefore x and z are never expressible as functions of y. 1In
particular, notice that (1) can be written as
(x + 2) +y=20
(1)
(x + z}2+ yz -1=0 B
4.6.8
a. Row reducing our given system of equations yields
X-y+ 22+ u=0 X=y+2z+u=20
2x + 2y = 3z + 2u =0 Y 4y - Tz =0 (1)
Ix+ 'y =z + u2 =0 dy - 7z + u2 - 3u=240}
The last two equations on the right side of (1) imply that
2
uw - 3u=0; or, u=0or u= 3.
Therefore the given system of equations is incompatible
unless u = 0 or u = 3.
b. With u = 0, (1) becomes
x -y + 2z = (2)
y = Tz =
S.4.6.15
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4.6.8 continued

and from (2) we see that we may pick x or y or z at random and
then solve for the remaining two.

For example, if we let z = z then 4y - 7z = 0 implies y = % zi
whereupon x - y + 2z = 0 then tells us that

7 -
x T 24 + 220 =0
or
%5
x = = z_ -

%5

Therefore with z = z u = 0 implies that y = %zo and x = wraall

o!
Hence, one set of points (4-tuples) which satisfy the given
system of equations is

‘ z 730
(HT'T'ZO'O)[- (3)

Therefore, "near" (x,y,z,0)€S, we have

u=20

y = % z g (4)
_ _ 1

X = 'IZ

Hence y and x can all be expressed as functions of z.

With u = 3, system (1) yields

x-y+2z -3 (5}

0 -

4y - 7Tz

So from (5) we obtain for z = Z,

S.4.6.16
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4,6.8 continued

Z
X, = % Z X 2z0 == 3, 0r x =~ 29 - 3.
Therefore near (x,y,z,3)eS,
I
u=3
y =7z ; (6)
X = = % z - 3; i

Therefore the given system can always be solved for u, x, and y
in terms of z since the given system is equivalent to the union
of (4) and (6).

If u # 0 or u # 3 the given system is incompatible. Hence we
cannot view x,y, and z as functions of u since any such function
would have the domain {0,3} . That is, u assumes only the two

discrete values 0 and 3. °

We now want to show how these results are obtained in terms of

the general theory.

First of all, in order that the given system determines x,y, and

u in terms of z we must look at

3(f,g,h)
3 (x,y,u)

where

]

f(x,y,z,u) Xx -y + 2z +u

g(x,¥,2,¥)
h(x,y,z,u)

2x + 2y = 3z + 2u

Ix+y =z + u2 .

Il

Therefore
-1 1
3 (£,9,h) : T 3
3 (x,y,u) 3 i 2u

S.4.6.17
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E

4.6.8 continued

4u - 2 + 4u - 6 + 2 - 6

8u - 12.

Therefore

|a{f h) ' # 0 unless u = % . (7)
Hence in a neighborhood of any solution (xo,yo,zo,ué) of the
given system, we may express x,y, and u as functions of z,
except when n = 372,

o’zo'uo) is

not a solution of our system. In fact we showed that

But in part (a) we showed that . * 3/2 means (xo,y

(x ,u_) could not be a solution unless u, = 0 or B = 3.

0'¥or%51Y

In any event, since ug # 3/2, equation (7) tells us x,y, and u

may be expressed as functions of z near {xo,yo,zo,uo}.

Finally
3(£,9,h) -
3(x,y,2) 3 1 -1
2 <3 L2 =3 .. |2
1 =1 3 -1 3
= 1+7-38

Hence, X,y, and z cannot be expressed in terms of u.
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4.6.9

a. Here

I
=

£ix,y.,2) + vy + 2z

(1)

Wi

g(x,y,z) X" X = 3 y- - zy

Therefore

1 1

2

. T —yz- 22

|a (f,9) |=
3(x,y)

Therefore

E..(._fd} = ) o —(x2+y2_+ zz+]_) = 0.
3 (x,y)

Therefore

IiiﬁLﬂl’# 0 for all (x,y,z):f(x,y,2) = g(x,y,2z) =0
3(x,y)

since x2 + yz + zz + 1> 1

Therefore in the given system x and y are always determined as

functions of z.

)
[\¥]
+
c
318
1
g
3%
22
|
N
[}
2
1
o
N
<
]
o

Therefore, o
dx
dz

{x2+ 1) g% - (y2+ z

Il
28]
N

o]

S.4.6.19
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4.6.9 continued

(y2+ z2} g% + (y2+ 22) g% = - (y2 + 22)

P+ 1) E - v D) K- oaye :
Therefore,

(x2+ y2+ 22+ 1) g% = —yz- 22+ 2yz = =(y - 2)2.
Therefore

dx _ -(y - 2)°

) . {2}

dz x2+ y2+ z + 1

[Notice that on the right side of (2) x,y, and z are not
independent; rather they satisfy f(x,y,z) = 0 and

g(x,y,z) = 0. In other words, x and y are functions of z for
which f(x,y,z) = g(x,y,z)= 0. The fact that x and y are
differentiable functions of z was established in part (a).]

S.4.6.20
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