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Solutions
Block 5: Multiple Integration

Unit 1: Double Sums

5.1.1(L)

In the expression E (Zalj) , it is assumed that in the paren-
i=1 \j=1
thesized-sum, i is treated as being constant (notice the "flavor"

of the notion of independent variables). That is,

Therefore,
n n
E (Zalj) = Z (ail + ... + aim)

+ ... +ta, )+ ... + (a R T (1)

(apy nl nm

From (1) we see that i iaij is the sum of mn terms, each of
i=l j=1

the form aij where i=1,...,n and j=1,...,m.

While this sum is independent of the order in which we add the

terms, we still agree to adhere to the given definition for rea-

sons which will become clearer in Exercise 5.1.4(L).

Similarly,

m
E(alj + oL+ anj)
J=1

# eme Y ¥ ae s A + e ta.). (2)

(all nl 1m nm

Except for the order, the mn terms in (2) are the same as those in
(1), and the desired result is established.

S.5.1.1
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5.1.1(L) continued

We would like to conclude our commentary on this exercise with an
observation that may make it easier for you to visualize what we
mean by a double sum. Notice that the mn numbers aij where
i=1,...,nand j =1,...,m may be viewed, in matrix fashion, as an
array of n rows and m columns. That is,

ay] Agg seees ajn
57 8ny eeees a, . (3)
4nl %n2 " %nm
n m n
= + :
The sum Z Zaij E (aj; + ... + a; ) may be viewed as the
i=1 j=1 i=1

sum of the sum of each of the n rows in (3). In other words,
a;q + ... 4+ aim is the sum of the terms in the ith row of (3) and

we then sum over the n rows.

n m
Schematically, to find Z Eaij' we have from (3),
i1 =1
sum i .
B3 %33 v My T Bt * (ay * 335 * wee +ag,)
R
a1 @3 +ec Ayp * By ... tay, por J(ayy + ag, * . 2m
- sum
aq 8,9 +++ 8 T oa,, t...ta oy {anl ta,+ ...+ anm)
m n n
Oon the other hand, to form E Zaij' we first form _Z:aij =
j=1 i=1 i=1
alj + wianan =H anj which is equivalent to the sum of the terms in the
.th

51 column of (3), and we then sum over the m columns. That is,

m n
to form Z Eaij' we have
j=1 i=1

§.5.1.2
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£

5.1.1(L) continued

all alz CRCEE alm

a

21 22 T ° 2m
a] @y ceees .
¥ ¥ +

sum each column -+ then add the sums of the columns. That is,

a1 212 m
+ +
A31 492 m
+ + + + + +
+ + -
_anl an2 anm
n m m n
In summary, both Z Zaij and Z Eaij are ways of adding
i=1  j=1 j=1 i=1
the terms in (3). In the former case, we first sum the rows and

then add these results, while in the latter case, we first sum the
columns and then add these results.

5.1.2

Using the matrix notation, we have

a a a

Ll 12 13

Then

2 3 (agq * a3, + 2ay5)

2, 2%t N (1)
i=l I (ayy + ay; +ayy)

S.5.1.3
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5.1.2 continued

while
o & a1, a3, a3

= + + +
hod Zaij L (2)
3=1 4=l 5 ) 233
Hence, from (1) and (2)

2 3 3 2
:E: :E:al] :E: :E:aij =a;y) *aj, tajgtay tay, tag (3)
i=1 3*_-1 3:1 i=1
=aj) tay ta, tay, tajytay (4)

Without reference to the matrix notation,

2 3 2 3
)IDINED M P2
ij 1]
i=1l j=1 i=1 \j=1
2

Il
W
=
—
+
]
48}
+
[
=
W

which agrees with (3).

b. In this case, alj =ij, i=1,2,3,4and j =1,2,3.
rectangular array is

a7 215 253 1 2 3
ay; 25, 253 ~ 2 4 6
231 235 333 IR
a0 845 943 4 8 12

Therefore,

(aj; +aj, +a53) + (ay; +a,, +ay),

Hence, our

S.5.1.4
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5.1.2 continued

(L+2+43) + (2+4+6) + (3+6+9) + (4+8+12) (5)

M“
.Mu

[
Il
pt
(S}
Il
=

6 + 12 + 18 + 24

= 60

3 4 1 2 3
o 2 4 6
:E: :E: 1] = l_a * |t
j=1 i=1 4 8 12

10 + 20 + 30 = 60

—_—
c. In this case, i =4, j =3, and a.. = i + j. Hence, our rectangu-

1]
lar array is given by

Lo I R VY T o
L=0 T 6 2 B - S 9% §
SN I - T ) B -

Therefore,

3 4
(i + 3)
j=1 i=1

515 31(1)

Our main aim here is to establish a few formulas for dealing with
double sums.

5.5.1.5
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5.1.3(L) continued

n m n m
a. E caij = E caij
i=1 §=1 i=1 \j=1
n
= cail T e
i=1

Equation (1) shows us that a
within the double sum.

Matrix-wise

. +a m) + ... + (a F v FoE)]

nl nm

(1)

constant factor may be removed from

(ca + s T Ca
5 1 i 1m
i=1 =1
(canl + ovee F canm)
ok R LR
= & .
+
ah1 i sane anm
Il m
= ¢ E E aij'
i=1l j=1
Babuki6
e e e

L3 L3
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5.1.3(L) continued

n m n m

T D TR b

i=1 =1 i=1 \j=1

I

n
Z (aibl + ...+ aibm)
=1,

1 271

+ (anb1 F oo F anbm}

= al{bl + ... + bm} + aszl ¥ e
+ an(bl + wew F bm)
= (a1 + a, + .+ an}(bl ¥ e D
n m

&7
0

c. As a check on Exercise 5.1.2, part (b), we have

4 3

2 (2

i=1 =1 i=1 j=1

M-
.t:1°’

Il

(1 + 2+ 3+ 4)(1L + 2 + 3)

(10) (6)

60.

(albl e oA bm) + (& by + aws

+ azbm) SR

+ bm) y

)

$.5.1.7
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5.1.3(L) continued

n m n
d. E (ai + bj) - E (ai + bl} + (ai + b2) * aee hoay ok bm)
i=1l  j=1 i=1\ v —
m terms

n
Z:[mai # {bl e w +bm}]
i=1

Imal + {b1+...+bm)] F e ¥ [man + {b1+...+bm)]

N J
i3

n terms

Therefore,

n m
E E {ai + bj) = {mal * cvmw ok man) + n(bl ¥ e B bm)
i=1 j=1
=m(al+...+an) +n(b1+...+bm)
n m
=m a; +n :z:b. (2)
1 ]
i=1 j=1

Notice that (2) tells us that, obvious or not,

Il m n m
Z Z(ai + bj) # Eai + ij.
i=] HF=1 i=1 j=1
e. As a check of Exercise 5.1.2, part (c),
4 3 4 3
vt =3 i e 4 D
i=1l j=1 i=1 j=1

=3(1L+2+ 3+ 4) +4(1 + 2 + 3)
= 30 + 24

= 54.

s.5.1.8
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ra rm

Bl = Ta .

N A &

r3 3

5.1.4(L)

In computing limits of double sums, we may have to contend with
either of the forms,

- - or - -
:E: EE: ij :E: ij
i=1 =1

j=1 im=l

While the order of summation is irrelevant for finite choices of
m and n, the order may well make a difference for the infinite
double sum. This should not be too surprising, since this fact
was true even for single infinite sums (absolute convergence
versus "plain old" convergence). In any event, when limits are
involved we must, in general, make sure we add in the indicated
order. In this particular exercise, notice that our rectangular
array is given by

L= 0 0 0 0 0o . r

0 T o= I 0 0 0 O s

0 0 L =4 0 0 ae sials L (1)
0 0 0 L= 0 N

0 0 0 0 L =1 et et

0 0 0 0 0 =1, ,

Notice that each row has 0 as its sum. That is,
[+2]
E a.. =20
1]

J=1

for each i. Hence,

o =] oo

:2:: :E:aij - :E: = s (2)
i=1 \j=1 i=1

Schematically,

S.5.1.9
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5.1.4(L) continued

(L = 1 40 + 0 w5
+

(0 +1~-1+0+0 ...)
+

(0 +0+1T=1L#0+0 «s

.)

reer O 4+ O 4+ O
]

On the other hand, the first column has 1 as a sum, while each of

the other columns has 0 as a sum.

i=1 i=1
Thus,
=] =] (=]
Z Eaij Eail *
=1 i=1 i=1

=1 + E 0

j=2
= lo

Comparing equations (2) and (3), we see that

oo oo

i=1 §=1

Eaij =0 while E E aij
j=1 i=1

That is,

(3)

As an aside, notice that if we sum diagonally as shown below, the

sum diverges by oscillation.

Namely,

S5l 10
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[ ]

5.1.4 (L) continued

In other words, the sum is drastically affected by rearrangements
of the terms.

The following theorem, stated without proof, gives us a situation

[=s] (= =] o oo

for which E : E aij = E § :aij’ Namely, if we let bi denote
i=1l j=1 j=1 i=1

(=] =] =] o

E ]aij], then if E:bi converges (i.e. if E : E ]aijl converges)

':l i=L =1 j=l

then E E 1] E E . This is the analog of absolute

i=1l1 j=1

j=1 i=1
convergence for single infinite sums. From our point of view, a

s +]

major point is that for most of the double series E Z :aij

i=1 j=1
[ee]

encounter in our applications, it is true that E E laij! does
i=1 \j=1

converge. Consequently, in most cases, we can change the order of

summation without changing the sum (but we must check

oo

E Elaijl in each case).

i=1 \j=1

In our present example, for a fixed i (i.e., a fixed row in our

array) :E:laijl =1+ |-1|] = 2. That is, if :E:laijl = b,, then
j=1 =

b, = 2. Therefore, E :bi = E 2 = =, so that the conditions

stated in the theorem do not apply.

8.5.1.11
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5.1.4(L) continued

An important corollary of the theorem is that if a,. > 0 for each

l]
(=] [=e
i and j [so that E E aij is the same as z E |a1] , then
i=1l1 =1 i=1
(=] o« (=] o0
if E E aij converges, E E aij converges also, and to the
i=l =1 j=1 i=1
same sum.
S L5 (D)
a.
Yy
A
m
m [ |
m-1 | l |
m | |
|
P dover i e me o e s
m
. &
-1 _ _ _ _ .
m P |S
I
! |
|
2 l
m [ |
|
L |
m - ; | '
13
: | -
1 2 i1 i »n-l n
n n ~°°° n 'n n n
Figure 1
Least density of PQRS occurs at P(——- l——) since P is the point in
PQRS nearest the origin. Maximum den51ty occurs at R{— l} since
it is furthest from the origin.?*
*#Notice that nearest and furthest are important only because
p= x2 + y2 which is the square of the distance from the origin to
(X’Y)-
S.5.1.12
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5.1.5(L) continued

-

;a2 i +%2]
AM, . = (ill) + (lli) Ax.Ay.
ij |\ n m 1594

-

—
e
1
=
—
[3%]
+
@5
I
=
S
38 ]
S|
=l

o (1)
mn n2 m2
Correspondingly,
— 1 [12 ii] :
AM,. = =— | =5 + . 2)
ij mn n2 \ii
Therefore,
n m
M = E E ﬁMij -
i=1l =1
n m n m
2 2 2 2
z 1 |Ga-1- , (G-1) <M< E E 5| b calr g (3)
mn 2 m2 mn n2 m2
i=1  §=1 n i=1  j=1
Since m and n are fixed integers, ;% is a constant, hence, by
Exercise 5.1.3(L), part (a),
n m n m
n i 7 .2
}E:mn 2 2 mn :E: :E: n2 mz
i=1 j=1 © o i=1 §=1
On the other hand, by part (d) of the same exercise,
n m 12 ii n i2 noo,
2:;17*“12 =‘“§:n—z*“zmlz (5)
i=1l j=1 i=1 j=1
so putting (5) into (4) vyields
= T T I
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5.1.5(L) continued

=}

=

m n m
Ziﬁ |, £+nzﬁ
mn'| 2 2| " mn 2 m2

i=l1 j=1 i=1 J=1
n 2 m
-1 i, 1 E 1
n n2 m m2
i=1 j=1
n m
_1%NY2 1 NV.3
‘321+3z:3'
i=1 j

(-]
Il
=

In Part 1 of our course, we showed that the sum of the first k
k (k+1) (2k+1)

squares was 3 , and with this information (6) becomes
- 2
E : z : X }__ + 1 | = 1 |n(n+l) (2n+41) [ . 1 [m(m+1) (2m+1)
mn 2 m2 n3 6 m3 6

J=

n (n+l) (2n+l)
n n n

LM (ml) (2m+1)
m

m m

“He e R e HEeR) o

In a similar manner [the only difference being that we use the

fact that 12 + ... + (k-1)2 (k—l)(ké(2k—1}

1, we may show that

n

i=1 2

Putting (7) and (8) into (3) yields
1 1 1 1 L 1 1 1
Hl-3)e-3)s (-2)e-2)) net oo B eed)
1 1
(362

ji %[(1-1) (i‘i)z] = %[(1‘%) (2—%)+ ( - Iln) (2-%)] (8)

Siv Bl il

B A S S EE Ea

I I B E S bE EE e
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5.1.5(L) continued

b. Letting n =m = 106, statement (9) becomes

kl - X0 02~ 2070 + @ ~ 107 (F ~ 10'6)] <M< %-Bl + 1572

=21l o

(2 +10°% + (1L +107°% (2 + 10'6ﬂ

or

la-10%2-10"% <u<ia+108e+107 (10)
Expanding (10) shows that
%[2 - 3E"° & 10‘12] <M< %{? +3(10)7% + 10"12]. (11)
Now,
2 + 3(10)°°% + 10712 = 2 + .000003 + .000000000001
= 2.000003000001,
while
2 - 3(10)7% + 10712 = 2 - .000003 + .000000000001
= 1.999997000001
whereupon (11) becomes
0.666665666667 < M < 0.666667666667. (12)

Thus, no matter what the exact mass of the plate is, (12) con-
vinces us that to five decimal places M = 0.66667.

c. To find the exact value of M [part (b) probably leads us to expect
M = %], we return to (9) and compute

un (o= He D+ e 2B

n-co
m-c

S.5,1.15
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5.1.5(L) continued

One key in evaluating (13) lies in our comments in Exercise

5.1.4(L). That is, (13) represents
o E i - 1 |ti= l) ('-l)2
> S aEen]w D afe
mn | mn n m2
i=1 j=1 j=1

and the order of taking limits might affect our answer. The point
is that

8

oo

ST, 1 510

j=1 j=1 i=

-

™
]
=

when aij 2 0 (which is the case in the present example), so we may
evaluate lim by letting n and m»>« separately, in either order.

n-—>o
m-oo

For example,

in [Ho e e Y pe D6 2] -

I+

1im { lim
n-+o | Mmoo

un (e oY rarne: o,” -

n-+o

| YT
ol
—_—
.-:.-.._

I+
=l L
—

o

I+
S|
—

+
—

[

I+
8-
S —

o

I+
3=
—

—_—
[S—]
——
Il

RIIN]

%[(110)(2i0)+(liO)(2i0)]=
Hence, from (9),

$ Mg

wlN
W

Therefore,

=
M= 3-

i1

Il I Bl S IS OE S Ea bR EE T
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N Ea N EE .

5.1.5(L) continued

The main idea, stripped of the computational details, is that our
theorems about double sums allow us (just as in the case of the
calculus of a single variable), to determine the mass M of the
given plate exactly, and that without using limits, we can find an
approximation for M accurate to as many decimal places as we may

desire.

It should also be noticed that the solution of this problem (again
just as in the calculus of a single variable) does not require

that we know anything about taking partial derivatives of functions
of several (two) variables. To be sure, the arithmetic gets quite
complicated. Indeed, in the present exercise, the density function
is the relatively simple x2 + y2, and yet the arithemtic was
already on the verge of being overwhelming (and this also happened
in our study of a single variable; that is, when we found the area
under the curve y = xz, above the x-axis and between the lines

x = 0 and x = 1, the computation of the infinite sum was tedious).

In the next unit, we shall establish a corresponding Fundamental
Theorem of Integral Calculus for the calculus of several variables,
and find more pleasant ways of computing masses and other related
numbers.

The answer here is the same as that in the previous part of this
exercise, namely %. The reason for this is that the double in-
finite sums that we evaluated in part (c) also yield upper and
lower bounds for the volume of S. That is, if we now use p(x,y)
to denote the height of the solid S above the point (x,y) in the
xy_piff?' an element of volume of S is bounded between Eiigxiayj
and pij&xi&yj.

We shall not belabor the details here (hopefully, they will become
clearer as we proceed through the block), but we do want to point
out that there are often many different physical examples that lead
to the same double infinite sum, and that consequently, evaluating
one such sum may yield the answer to several different concrete
problems. More importantly, again just as in the case of Part 1
of our course, we should learn to understand the double infinite
sum abstractly and to think of the interpretations given in parts
(c) and (d) of this exercise as simply two rather common applica-
tions for which one is interested in obtaining the value of this
sum.

S:5,1.17
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541456

Assuming that for small ﬁAij' pij

mass of PQRS in Figure 1 of the previous exercise by saying

AM. .

(=
ol

n

o)
_—
=1
g3
S —
=l
=

.
(mn) 2

I

Therefore,

n m

o i Z__ll_

bt (0?2
i=1l j=1

n m

1 .
2 }E:lj'
(mn) i=1l  j=1

]
=
18]
-
NgE
.

n

m
Since E i=1+ ...+ n-= Ei%;ll and E j =
j=1

i=1
from (1) that

1 [n(n+l)] [m(m+l)] _ (n+1) (m+1)
M= 3 =

(mn)z 2 4nm

or, more suggestively,

m(m+1)

2

, we obtain

~ constant, we may evaluate the

(1)

(2)

8:5.1:18
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5.1.6 continued

wed E)(EY -3 (Y d)

and taking the limit in (3) as both m and n approach infinity, we
conclude that

1
M = I

In concluding this exercise, we should point out that we have de-
liberately taken certain liberties in order to emphasize how we
may arrive at the result without all of the computational details
of the previous exercise. Unless ample theory is known, however,
notice that equation (3) leaves a gap in our information that was
not present in the previous exercise. For example, in obtaining
the estimate for M given in (3), we do not have both an upper and
a lower bound for the error in determining M. Rather we have
assumed that all the error is "squeezed out" as the size of our
"mesh" goes to zero. The validity of this result lies in a theorem
(which is the counterpart of the one used in our study of calculus
of a single variable) that if the density function is continuous,
the value of M can be found by picking any point in an incremental
rectangle. That is, while picking the point of minimum density
and the point of maximum density gives us a good way to estimate

M by obtaining upper and lower bounds, the exact value of M does

not depend on the point we choose.

As far as this exercise is concerned, we should point out that this
problem is very much like the previous one, even though the density
function is different, in the sense that for positive values of x
and y, Xy is minimum when both x and y are minimum, and maximum when
both x and y are maximum. In other words, if we again refer to
Figure 1 of the previous exercise, notice that on each element of
area, the point of least density still occurs at the lower left
hand corner of the rectangle, and the point of maximum density
occurs at the upper right hand corner of the rectangle. Thus, in
this example, it is very easy to compute the upper and lower
approximations of M as a function of m and n and then take the
limit as both m and n approach infinity. These details are left
for the interested reader, but it is easily checked that this pro-
cedure "validifies" our technique of using (3) to deduce the exact
value of M.

5.5.1.19
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