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Solutions
Block 2: Vector Calculus

Unit 5: Polar Coordinates II

2:5.1(L)

The concept of a tangent line can be expressed entirely in terms
of a curve without any reference to a coordinate system. We sim-
ply look at the limiting position (if such a position exists) of a
chord drawn between two points on the curve as the two points are
allowed to approach one another to an arbitrary degree of

"closeness,"

What is true is that we often exploit a particular coordinate
system in the sense that we pick, as a parameter for measuring the
direction of a tangent line, something that is relatively easy to
compute in terms of the variables associated with the particular
coordinate system. In Cartesian coordinates, it was particularly
convenient to measure direction in terms of the angle the tangent
line made with the positive x-axis. Indeed, when the curve is
expressed in the Cartesian form y = £(x), f'(x) expresses the

direction of the tangent of this angle very nicely.

Notice, however, that talking about the "rise" of a curve versus
its "run" seems to presuppose that we are talking in terms of
Cartesian coordinates. Suppose, instead, the curve were expressed
in polar coordinates. In such a case, there is no longer any
great geometric significance to the vertical direction. Rather,
it seems that angles should be measured relative to the line that
joins our origin (i.e., pole) to the point on the curve. That is,
tne radius vector R is a natural reference line when we deal in

polar coordinates.

In terms of this new parameter, let us re-examine the concept of a
tangent line. We have a curve C and a point (ro,eo) on C. We
denote this point by Po, and we now look at a "near-by" point, P,
on the curve. Diagramatically,

5.2.5.1
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2.5.1(L) continued

P(ro+ﬂr,90+ﬁ8)
Notice here the
r +Ar complete absence
° of any reference
to Cartesian
9 /] > coordinates
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Figure 1

As P approaches Po' the line PoP approaches the position of the
tangent line, and in this respect, the angle § in the limit be-
comes the angle { between the tangent line and the radius vector.
If we now develop the geometry indicated in Figure 1, we obtain,

P(ro+ﬁr,ao+ABJ

(i) In the right triangle OPQ,

PQ = OP sin A® {ro+ﬂr)sin AB

Il

0Q = OP cos A® (ro+achos A8

(ii) POQ = 0Q - OP0 = (ro+Ar} cos A6 - ry

(iii) In the right triangle POQP,

(r0+ar)sin AB

PQ
tan § = = (1)
555 (ro+&r)cos A8 - rg

5:2.5.2
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2.5.1(L) continued

Notice that eguation (1) tells us explicitly how to compute Y for
given values of AB, and Ar. The problem is that we will
eventually want to compute lim tan §, which is equivalent to

P-+P
_ o
lim tan V.
AB+o
Keeping this in mind and recalling that we have already developed
lim Eiﬂgﬁﬁ = 1 and lim (523—%%~:—£—) = 0 (and neither of these
Af+o Ag+o

results required any special coordinate system), we now divide
both numerator and denominator of (1) by A6, where, of course,
A8 # 0.* This yields
_ [{r +Ar) ——-—-—Slzaﬁa]
iy = [_'(cos AB Ar q (2)

)+E-G-COSA

*Notice that had we begun the study of calculus with polar coordi-
nates rather than with Cartesian coordinates, the key philo-

sophical topics would have remained intact. For example, the
assumption that P_ # P guarantees that A8 # 0, only if we restrict
our study to single-valued functions. For example, if the polar

graph of r = £(8) looks like

we are in trouble since P # P, # P, yet 6 = 8  (i.e. AB = 0) for
1 2 o
all three points.

Again, as in our earlier study, we can view multi-valued curves
as the union of single-valued curves, Of course, the geometric
procedure for doing this is different from the Cartesian case,
since now we determine '"branch points" for a smooth curve by
where the radius vector is tangent to the curve,. In our above
diagram, the pieces of our curve between A and B, B and C, and
C and D, are all single valued functions of 6.

S.2.5.3
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where the denominator of (2) comes from

(r0+&r)cos &B—ro r _cos A8 + Ar cos Ae-ro ~ ro(cos AB=-1)+Axr cos AB

1X:) - A8 - AB
rQ(cos AG-1)

_ + Axr cos AB
A8 AB

Applying our limit theorems to (2), we obtain

lim (r +br) lim 1220 I
Ao tan $ - ~220 cos ﬁe-ie+o Ar (3)
AB+o ry lim (———Eﬁ———d + 1lim —+= 1lim cos A8

AB-o L6+0 ﬂ
Since we are assuming that r is a differentiable function of 6, it
follows that lim Ar = 0 and lim . Moreover,

AB+o AB=o 1
9—60
lim cos A8 = cos 0 = 1, whereupon (3) takes the form
AB>o l
_ r (1)
lim tan y =
260 r (o) + (35 (1) I
o de 6=6
o

or !
lim tan Y = N7, (4)
AB-+o (aﬁq

6=0

(o]
Equation (4) yields a rather convenient formula for finding the I
angle between the tangent line and the radius vector when the
curve 1is given in the polar form r £(68) where £ is differenti- I
able. Namely, we need only divide r by g%.
Finally, it is conventional to denote the limiting position of ¥ I
by ¥. That is, ¥ is the angle between the tangent line and the
radius vector. With this in mind, (4) becomes l
_ r
tan Y = {QE) (5)
as I
S:2:5.4
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2.5.1(L) continued

wnere, in (5), it is understood that § is evaluated at the point

(r,68) on the curve,.

While (a) was an important exercise to show that the study of
curves in polar coordinates is not dependent on any results of
Cartesian coordinates, the fact remains that in many real life
situations, any other coordinate system we happen to be dealing
with was obtained from some change of variables applied to Carte-
sian coordinates. For this reason, we often have much information
available to us in the form of Cartesian equations, and, in addi-
tion to this, we often feel more at home in terms of Cartesian
coordinates. Still another thing is that in many cases where the
equation of a curve is given initially in terms of polar coordi-
nates, we still want to know where the curve has a greatest height
relative to our horizontal reference line, In other words, there
are cases in which we might like to use polar information to ob-
tain Cartesian-type results, and vice versa.

In this exercise, we show how the formula for tan ¥ could have
been derived from our previous knowledge of Cartesian coordinates.

we know that

X r cos 6

(6)

Yy r sin ©

Assuming, as in (a), that r is a differentiable function of 6, we
may apply the product rule to (6) to obtain

D - o dr
T r sin 6 + cos © 35

(7)
dy dr

ae = r cos 9 + sin B a0

Using the chain rule on (7), we obtain

dy ; dr
dy _ as_ _ r cos O + sin 8 30 -
dx g% -r sin 6 + cos B %%

S.2.5.5
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It is worth reflecting on equation (8) for a while before we con-
tinue. %% yields the slope of the line tangent to the curve or,
more simply, what we've defined as the slope of the curve. Since
equation (8) is an identity for expressing g% in terms of r and 6,
it follows that the right side of (8) is a formula for slope (in
the original sense) in terms of polar coordinates as well, That
is, we must not feel that the traditional definition of slope does
not apply in polar coordinates, but rather, as should be obvious
from (8), the formula is rather complicated in polar coordinates.
This would serve as another motivation for inventing the angle y
had we proceeded from the point of view of part (b). That is,
recognizing that g% looked extremely complex in polar form, we
might want to find a related angle whose tangent was more readily
computed in polar coordinates. Of course, had we proceeded from
tnis point of view, it is not clear that we would have discovered
that Y was the angle that simplified things for us (as compared
with our approach in part (a) where it was almost self-evident
that we should pick Yy as our reference angle).

Quite apart from anything else, this discussion again focuses our
attention on how the basic concepts are gualitatively independent
of any coordinate system, while quantitatively, the ease of com-
pution will depend on the choice of coordinate system.

At any rate, returning to our immediate problem, we observe that

g% is tan ¢, where ¢ and | are related as below.

%

A
1)
Po{r,e} +< in polar coordinates

E (x,y) « in Cartesian coordinates
] //_¢ 3= X
Figure 3
8,256
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2.5.1(L) continued

From Figure 3, we see that

V=08
whereupon
tan y = tan(¢ - 8),. (9)
Using the identity for tan(A - B), (9) becomes
_ tan ¢ - tan 6
tan ¥ = 1 tan ¢ tan © (10)
dy _
By definition, T tan ¢. Hence (10) becomes
g% - tan 6
tan y = 3 . (11)
1+ X tan o

dx

(Notice that our ultimate aim is to express tan ¥ as a function of

r and 6. For this reason, there is no need to make a substitution
for tan 6 in either (10) or (11l) since this term is already ex-

pressed in the proper variables.)

We now put the result of equation (8) into equation (11), and we

obtain

" dr
r cos 6 + sin @ a0

-r sin 6 + cos B %g
tan V¥ = 7oF
r cos 6 + sin 8 as

1+ tan ©

i dr
-r sin 6 + cos 6 a0

- tan @

sin @

cos 0 equation (12) becomes

Writing tan 6 =

(12)
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dr
d6 _ sin 6
dr cos B

r cos 8§ + sin 6

-r sin 8 + cos §

tan ¥ = a9
. dr
r cos 6 + sin 6 as | sin 8
1+ dr | cos B8
-r sin 68 + cos 6 3e
2 ; dr .2 i dr
r cos 6 + sin 6 cos 6 as + r sin 6 - sin 6 cos @ as
R dr
_ cos 68 [-r sin 6 + cos B as

) 2. dr . .2, .dr
r sin 6 cos 6 + cos“6 a5 + r sin 6 cos 6§ + sin“# as

cos 6 (-r sin 6 + cos 6 g%}

r (sinze + cosze}

cos 6 [-r sin 6 + cos B EEJ
= dr 2 2

aﬁ-{51n 6 + cos™B)

cos 8 [-r sin 6 + cos B

dr
ag]

= e, (13)

Notice that while (b) was independent of (a), the amount of "dog
work" involved in going from (12) to (13) etc. shows that we can
obtain the correct answer mechanically, although we may be sacri-
ficing any feeling as to what is really going on in the procedure.
Part (a), on the other hand, while providing us with no connection
between polar coordinates and Cartesian coordinates, allows us to
develop tan ¢ in a meaningful way.

One final note for those of us who have become "touchy" about di-
viding by 0. The validity of the last step in going from (12) to
(13) requires that

cos 6 [-r sin 6 + cos 8 ggl # 0.

The only way this could equal zero would be

s.2.5.8
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2.5.1(L) continued
(i) cos 8 =0
or
dr

(ii) -r sin 6 + cos © 30 - 0.

If (i) applies, then § = % and V = ¢ - %. If (ii) applies, then

: o dr
r sin 6 = cos 6 3o’ ©°F
r _ cos 6
(gg} sin 6 °
de
iy

tan Y = cot 6 = tan {% - 8)

Therefore,

This corresponds to ¢ (= § + 8) = %, whence the tangent line is
parallel to the y-axis.

The main aim of this part of the exercise is to give you a better
feeling for how we use Y to trace a curve in polar coordinates in
a manner analogous to the way we use ¢ to trace a curve in Carte-
sian coordinates. In this example, we shall make no attempt to
trace the curve but rather we shall locate one specific tangent
line at one specific point on the curve. It is hoped that the
reader will be able to extend the idea to locating other tangent
lines to the curve, and we shall provide some experience in this
respect in the later exercises.

For now, we have that our curve has as its polar equation,

¥ 5= sin28 + 1, from which we deduce that g% = 2 sin 6 cos B =
sin 2¢. Hence, our formula for tan Y yields

tan ¥ = —— = sinzs i (14)
dr sin 26 :
(EEJ

Sudiov9
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2.5.1(L) continued

To compute tan ¢ at {%,%}, we need only use (14) with 6 = g. This
yields

tan | =

5
+
we 1 = = 5._ = g ° (15)
sin 3 =3 2/3
2
Thus, tan ¢y = 1.44.

The construction proceeds as follows. We know that Po(%,ga is a
point on C. Pictorially,

5
Po(I'E’

Of
Y

Figure 4

We next recall that ¥ measures the angle (measured y}th Sbo as our
reference line) between the tangent to C at Po and OPO. In other
words, with P, as vertex, we want to construct the angle Yy so that
tan Y = + 1.44,* and one side of Y lies along 6@0.

One way of doing this is to proceed along Sbo 1 unit from Por
calling this point Q. At Q, we construct a line at right angles
to dﬁo in the direction "outside" the 623%2' and locate R on this
line so that QR = 1.44 (to be precise, =¢)+ This guarantees
that < RP_Q is Y. Again, pictorially,

*We emphasize the sign of tan | to indicate that for positive values
of tan ¥, Y is measured, in the positive (counter clockwise)
direction relative to OP , If tan Y is negative, we construct U
with the opposite sense,

§.2.5.10
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2.5.1(L) continued

By construction,
5v3 5V3
6

tan {RPOQ=—€-%1=

Therefore, RPOQ = Yu

Y
»x

Figure 5

At any rate, the straight line determined by P and R is the line
tangent to C at Po’

To relate this discussion to the discussion in part (b), we have
extended the line P_R to intersect the x-axis at S. The line that
we have found makes an angle of ¢ with the positive x-axis where
tan ¢ = g%.

Here, we are simply trying to demonstrate the equivalence, con-
ceptually - not computationally - of the methods of part (a) and
part (b) in finding tangent lines to polar curves. In (c), we
maintained the philosophy of part (a). In (d), we shall maintain
the philosophy of (b).

From equation (8), we have

. dr
QX - r cos 6 + sin 6 as

dx -r sin 6 + cos 6 g%

2

In our present example, r = sin“€ + 1 and g% = sin 268. |[This part

is the same, of course, as in (c)]. Putting this into (8), yields

dy _ (sin8 + 1) cos 8 + sin 8 sin 26

dX  _(sin®e + 1) sin 6 + cos O sin 20

(16)

§.2.,5,11




Solutions
Block 2: Vector Calculus
Unit 5: Polar Coordinates II

2,5.1(L) continued

We wish to compute %% at Po’ which corresponds to equation (16)

with 6 = %. We obtain:

dyJ (%—+ 1)5/_ L—1-./3) =§/§+13
L (3-+1}-+(/‘)(2/") --g-+43

co| ~I
a

&
8

What we do now is locate P just as before. We then mark off a
horizontal segment P o9 - At Ql' we move in the direction of the

positive y-axis to R; such that [Ql ll = The line joining l

P, to R, is the requlred tangent line,

Pictorially,
R
Yy
A a
i
'7/3 P Q ¢, as well as the
: o 1l point S, are the
! same in Figures 5
] and 6.
!
|
I
P |
© [9),
9
¢ -
S P~ X
Figure 6
S.2.5.12
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Our claim is (and we hope this is quite clear) that the lines SPO
in Figures 5 and 6 coincide if these two figures are superimposed.

Doing this we find:

Y Rl
A
|
R |l
\
I\
o
N
I \
I 3
| R
|
Q
P
_+_¢_|p= 4]
Ple
e -
Figure 7

Hopefully, Figure 7 indicates that the methods of parts (a) and
(b) are two different computational techniques for finding the
same piece of information. It is important that you try to learn
to be flexible and be able to use either the Cartesian or the Polar
forms, depending upon which lends itself best to the computation

you are trying to make.

2.5.2(L)
The main aim of this exercise is two-fold: (1) We want to re-
emphasize that %ﬁvstill exists conceptually, even when we are

dealing with polar coordinates, and (2) we would like to reinforce
the technique of Exercise 2.4.4 (b), by showing how we can now add

slope to our graphing techniques.

In Exercise 2.4.4 (b), we plotted the graph of r = sin 26. One
way of getting a further check of our sketch is to check the slope

at some indicated point.

52,513
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2.5.2(L) continued

This is what we are going to do in part (a) of this exercise. We
choose as our check point Pc(%/i,") on r = sin 29,

a. From the previous exercise, we have that
dy r cos 8 + sin 6 g%
ax - -r sin 6 + cos 6 dr ° (R
de

In tnis problem, r = sin 26 and g% = 2 cos 26, Putting this into

(1) yields

dy _ _sin 26 cos 6 + 2 sin 6§ cos 28 (2)

dx -sin 260 sin 6 + 2 cos B cos 26 °

; 1 m ? dy : M
At the point Po(?/j‘ﬁ)' we find o by letting 6 = z in tZ) .
Therefore,
1 1 i B 3 1
QZ‘J ~ (7/3)(7/3) + 2(35) (3) 7 + 7.5 5 5
dx i | T T 17" I~ & =
Po ("z'/j) (7) + 2(5/3') (2‘) '4-/3 /3
= 2.89.

Graphically, this means
Here, "a" refers to an
arbitrarily chosen length.
The key is that

%Ea 5
tan ¢ = —— = 3/3.
Therefore, PoQ is tangent
to r = sin 26 at
1 ks
Po(373:5) -
8,2.5,14
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Thus, we can now "shape" r = sin 26 exactly at P . We have illus-
trated this in Figure 3 of Exercise 2.4.4.

We also sense in our sketch of Figure 1 in Exercise 2.4.4 that the
maximum height attained by r = sin 26 in the first quadrant occurs
at a point for which 6 lies between 45° and 60°. We may now
sharpen this result by using equation (2) to see where %% = 0.

For a fraction to equal 0, its numerator must equal 0. Applying

this to (2), we find that g% is 0 provided
sin 26 cos 6 + 2 sin 0 cos 206 = Q. (3)

Rewriting (3) with sin 26 = 2 sin 6 cos 6 and cos 206 =

cosza - sinzs, we obtain

2 sin © 00528 + 2 sin 8 (coszﬂ - sinzsj = Q

or :
: 2 D _

2 sin 6 (2 cos“8 - sin“8) = 0. (4)

Obviously, the case sin 6 0 in (4) is not of importance in our

present quest, Rather, the information we desire comes from
2 cosze - sinzs = 0. (5)

There are a number of ways to solve (5) (for example, replace
5in26 by 1 - cosza to get an equation involving only coszsl, but
perhaps the gquickest is to divide both sides of (5) by cosze.
(This is permissible except when cos 6 = 0. Since cos 6 = 0 at
0 = 7,
We then obtain

this value of ¢ is not near the point we are seeking here.)

sinze
2=...__.2_
cos 8
or
tan 0 = */2, (6)

S.2,5.15
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Since we are in the first quadrant, tan 6 is positive; hence, (6)
indicates that

tan 6 = /2
or
= -1
8 = tan VZ. (7)

To obtain a better numerical feeling for 6, we approximate V2 by
1.414 and use tan tables to conclude

g =547,

Moreover, using the reference triangle

r = sin 20 = 2 sin 6 cos 68 = 2 =~ 0.94.

RIN
%Su

a |-

Thus, the point we seek is (%JZ, tan-lfil, or, approximately
(0.94, 54.7°). Notice that this point is higher than (1, 45°)
even though its r-value is less,

For further drill, we now compute the point in the first quadrant
at which r = sin 28 has a vertical tangent (i.e. the point at
which the curve rises the most rapidly).

In this case, %% = « (= tan 90°) and in terms of equation (2),
this means our denominator is 0. Thus,

-sin 2¢ sin 68 + 2 cos 6 cos 286 = 0. (8)

This means

§.2.5.16
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2.5.2(L) continued

-2 8in%0 co8 0 + 2 cos 6 (cos 6 - 8in%e) = 0

2 cos 6 (cosze -2 sinze) =0, (9)

The solution of (9) obtained from cos 6 = 0, so that 6 = g, indi-
cates that the curve is tangent to the y-axis at (0,0) as it
enters the fourth quadrant from the first. i.e.

y

The other factor of (9) yields

2 sinze = 00528

or

+/2 sin B = cos §
Therefore,

sin 6 _ , 1

cos O /2'

Therefore

tan § = = = 2/Z ~0.707

(since, again, 6 is in the first quadrant).

When tan 8 = , Wwe have

A
vz

S.2.5.17




Solutions
Block 2: Vector Calculus
Unit 5: Polar Coordinates II

2.5.2(L) continued

Y3

V2

r = sin 20 = 2 sin 6 cos 8 = 2

12,
/373

Thus, the other point we seek is

11,

2 =
(5v/2, tan
3 /z

or letting 7% = 0.707, we have approximately

2

(0.94,35.3°)

[wnich is symmetric to (0.94,53.7°) with respect to 6

In any event, it should now be clear how %% (slope) can be used to

help us sketch polar curves,

(0.94,53.

7%

y Horizontal

% Tangent
(maximum
height)

(1,45°) where

curve is most like a circle

here

(0.94,35.

Vertical
Tangent

3°)

dr

dae

.

= 0, the

S.2.5.18
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Here we want to emphasize that polar coordinates do not require
reference to Cartesian coordinates and also to have you see that
some calculations are easier to make in polar form than by con-
verting to Cartesian form.

We have already seen that

tan ¢

[
|
‘-r
5
%]
€

(1)

Equation (1) now allows us to construct the tangent line to

r = sin 26 at any point (r,6) without ever referring to the angle
¢. Again, by way of review, if we again pick {%/?,1), we may ob-
tain from (1) with 6 = ¢

tanw=]f'tan-g-=g=0.866.

Thus,
Y
A
-
Q 662 o Again, "a" refers to an
02 6 =% arbitrarily chosen length,
so that
P A < _ 0.866a
o v,a tan Yy = R
= 0.866
\
i > X
Figure 1

5.2.5.19
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. y : >
Notice how our constructions are made with respect to R and Po and
make no reference to Cartesian coordinates.

Now, keep in mind that tan ¢ exists independently of any concept
of ézu In our present context

dx
|
9 ¢
so that
‘ ¢ = (8 + y)
! whence

tan 6 + tan Y

tin g =tan B e ) =@ B O

From (1), this becomes

tane+%‘-tan28
tan ¢ =

1 - (2)
1 - > tan 6 tan 26

In other words, aside from the fact that § is a natural angle in
polar coordinates, the point is that if we even need tan ¢, it is
easily obtained from tan Y, as shown in our derivation of equation
(2).

For example, with 8§ = %, (2) yields

1 1

T 1 m — 4+ =¥3
. ¢=t““€+ft‘m§=/§ 2 _ 2+ 3
l—%‘-tan"—g-tan% 1-%-1?’3 2Y3 (%)

i:%/s
' V3

| S.2.5.20
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2.5.3 continued

as in the previous exercise.

2.5.4
. dr . . .
a. From r = sin" 6, we have that a0 2 sin 6 cos 6 = sin 26.
Therefore,
i 2
- r .. sin@
tan 3 = dr  sin 26 ° (1)
do
When 6 = %, equation (1) becomes
s:i.n2 % 1
tan y = e 0 3 (2)
sin j
Therefore,
V= tan~t % ~ 26.5°,
ik 17
b. From (a), tan ¢ = > Hence, at PQ(ZWZJ
T R ™ — 1l —
8 = & @ OrR = 7 P_Q. Therefore,
tan y = %, as required.
P
° @ Therefore, P_R is tangent to
oot L, i
LI A r = sin"6 at P_(5,7) .
> 6 = 0
Figure 1
c. From Figure 1, ¢ = 45° + ¢ = 45° + 26.5° = 71.5°. Therefore,

tan ¢ = 3.

S.2.58:21
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More analytically,

tan 6 + tan Y
1l - tan 6 tan ¢ °

$ =0+ ¢y > tan ¢ = tan (8 + YY) =

Picking 8 = % and using (2) yields
tan X + % | e
_ " 7
tan ¢ = —— = T = 3
1l - (tan I) '2‘ 1 - 7

(exactly, not approximately!).

2,5,51L)

Our aim here is to show how arc length is computed in polar coor-
dinates. An "intuitive" proof is suggested by our diagram in
Exercise 2.5.1(L), namely,

ds = P P

where for small 46, rde
approximates PQ

Figure 1

As drawn, Figure 1l yields

_ rdb6 _ de, _ :
tanUJ—'-a—i_—"r{d—r'}-'('g_f‘}-
de

which checks with the "rigorous" answer obtained in Exercise 2.5.1.

If we accept Figure 1, triangle POQP yields

ds?® = (rde)? + ar? (1)
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2.5.5(L) continued

and if our curve is in the form r = £(8), so that ar is convenient

de
to compute, (1) takes the form B
2 2
ds 2 dr
(a‘@”} Gy {EJ (2)

where (2) was obtained from (1) by dividing through by (ds)z.

From (2),

2 dr
A i +(C_1§-

I

) . (3)

Q-lﬂa
|

The trouble with (3) is that it was obtained by taking liberties
with "small" amounts. In Part 1 of our course, we saw that the %
form often entered in subtle forms and as a result, operations
which seemed "obvious" were, in fact, false. So (3) was derived

under rather nebulous conditions.

On the other hand, to derive (3) rigorously is a difficult chore
(just as it was when we tackled it under the heading of Cartesian

coordinates in Part 1).

Thus, the aim of part (a) of this exercise is to show how we can
convert information in Cartesian coordinates into corresponding
information in polar coordinates, thus utilizing familiar know-
ledge to obtain the unfamiliar. It is important to notice, how-
ever, that, while this approach is conceptually simple, ultimately,
the serious student would like to verify that certain properties

of curves can be expressed in any coordinate system without refer-
ence to any other system.

We already know from Cartesian coordinates that

ds _ dy
== /1 + (E§ “ (5)

In our problem, r is given as a function of 6; hence, x and y may
also be viewed as functions of §. That is, we may differentiate
both x = r cos § and y = r sin 6 implicitly with respect to 6,
and as in equation (8) of Exercise 2.5.1, we would obtain

8255523
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2.5.5(L) continued

d . dr
QX _ 3% _ r cos 6 + sin 6 35 ©
dx gg -r sin 6 + cos 6 %%
Squaring (6) yields
2 x> cos?6 + 2r sin 6 cos 0 9L % sin26 (d—’E)z
dy,“ _ € as as
{dx) - 2 2 &
r sin28 - 2r sin 6 cos 6 %g + c0328 {%%J
whereupon
2 .2 dx 2, dr,?2
r- sin 6 - 2r sin 6 cos B8 a6 + cos™ 0 (ag
7 2 . dar 2. .dr, 2
2 + r°” cos" 8 + 2r sin 6 cos @ 36 + sin“@ (EF
dy, " _
= (dx) - 2
(r2 sinze - 2r sin O cos 8 §§)+ coszs (gg)
2

= . (7)
; dr
("'r sin B + cos B8 a—s—)

Putting (7) into (5) yields

f 32 dr
ds e

5= = . (8)

dx (-r sin 6 + cos § %%)
By the chain rule, g% = g% g% and, since we have already seen that

%% = -r sin 6 + cos 6 %%, we see from (8) that
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2.5.5(L) continued

/ 2
e+ {g—’g-)

*
ds ds dx ( ; dr)
= 22 = -r sin 6 + cos &6 =—
46 ax a8 -r sin 6 + cos 9 ar dg
de
Therefore,
* %
2
and this agrees with (3).
b. If r = sec 8, then dr - sec 6 tan 8. Therefore, applying (9)

to the curve r = sec 6, 0 g 6 & %, yields

/secTB + se026 tanzﬁ

sec O*** /] + tan“©

and since 1 + tan29 = seczs, we finally obtain

= sec 0

Q1D
|
|

Therefore,

*In obtaining (7), we let -r sin 6 + cos 0
2

2
db

r

In.

3 denote the square root of

Ler]

r sinzﬁ - 2r sin 0 cos p X 4 c0528 (%%- . We could just as legally

have chosen r sin 6 - cos 8 %%. The effect of this would be to

change the sign in (9). 1In this event, we would have used absolute
values anyway since we think of s increasing as 0 sweeps through

the plane.

**Earlier, we mentioned that allowing r to be negative caused some
nasty consequences in polar forms ©f curves, One very nice result

in (9) is that r always appears as rz, whereby we may neglect

worrying about whether we are dealing with r or -r since r2 = (—rz).

***%Technically, we should write |sec 9[ since %% is non-negative. In
m
this problem, no harm is done since 0 £ 0 g % implies sec & > 0.
8.2.5.25
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2.5.5(L) continued

m

T
s = f seczﬁ dé
0

@
=

]
=

(10)

The more astute student may have noticed that we rigged this prob-
lem in the sense that the polar equation r = sec 6 represents the
line x = 1 in Cartesian coordinates. We did this so that we would
have a nice example to show that equation (9) really does yield
arc length in the usual sense., Namely,

e
=

ke

x=1

That is, (10) represents the length of AB and the above diagram
shows that (10) is trivially true.

2:5.6

While this is not meant as a learning exercise, there is a chance
that you fell into a trap that confuses you. (If you didn't, take
the following note lightly.)

5.2.5.26
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2.5.6 continued

Since r = 1 + cos 6, %% = -sin 6. Hence

(1 + cos 8)% + (-sin 6)2

1+ 2 cos 6 + cosze + sinze

1+ 2 cos 6 + 1

2 + 2 cos 6. (1)

-
Since our curve is traced out exactly once as 6 varies continu-
ously from 0 to 27, we may use (1) and write

27 27
s = f V2 ¥ 2 cos 6 46 = V2 f V1 + cos B de. (2)
0 0

To handle (2), we recall that cos % =% /};j_%gg_ﬂ . Notice that
here the ambiguous sign is necessary since, for example, if

mT < 6 £ 2w, then % < % < m, in which case cos % is negative.

Thus, if you, as we so often do, merely wrote cos % = /i~i—§9§—g,

or ¥2 cos % = /1 + cos 0, equation (2) would have become
2w P 8 2m
s=2f cos-i-ds=4sin§ =0 (3)
0 0

which is obviously incorrect.

What we should have done, remembering that arc length was non-
negative, was to write (3) as

2m 0
s =2 f |cos =| as. (4)
0

Notice that (4) is compatible with (2) in the sense that since
Y1 + cos £ means the positive square root, the integrand in (2) is

never negative.
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It is possible that you avoided this pitfall by "lucking out."
That is, if you had used symmetry and computed s by

m
5=2f V2 + 2 cos 6 48 (5)
0
4 8
=4 [ cos §ao (6)
0
m™
= 8 sin g
0
=8

you would have obtained the correct answer. The reason is that
] 6 . 8 s
for 0 < 8 < ™, cos 3 = | cos §| since 0 ¢ 5 < 3.

As a final note, observe that (4) and (6) are equivalent since

|cos %] = cos % if 0 £ 8 ¢ 7, while |cos %] = -cos % if v < 6 < 2m.
Hence, (4) would become
T 6 27 6
s =2 f |cos fl ae + f | cos -2—] ds
A 0 m
r ul 5 2T 6
=2 f cos-z-de- f cos-fde (7)
LO it
Therefore,
m 6 m 0
s=2f cos-:-z—d9+f coside,
0 27

m ™
and since Jf cos g de = Jf cos L de (they are lengths of congru-
2m 0

28]

ent curves), it follows that

S.2.5.28
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2.5.6 continued

m
s = 4./. cos
0

as asserted in (6). Notice also that had (6) not been derived,

de

N @

the correct answer would have followed from (7).

The main caution is to beware where the integrand is algebraically
negative when adding positive gquantities.

2.5.7 l

a. Obviously, we know that since we have a circle of radius %, the
. i ; ;
answer is clearly 7 Pictorially,

Yy
A

r = sin 0

(0,3)

Y
"

Figure 1

The warning is to remember how 6 is measured! To obtain the curve
in Figure 1, 6 need only vary from 0 to m. Indeed, with this ob-

servation, we obtain, as expected,

™ ™
f r2d9 = % f Sin29 dae
0 0

Y
il
| -

1 m
=If (1 - cos 26)dse

0

m

_ 1 _ sin 2
=g 18 26) 0
m
=T (1)
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2.5.7 continued

However, had we mechanicaily written

27
f r2de
0

we would have obtained

B
]
| =

1 2m
A= 7 (6 - sin 0)

Il
(ST

(2)

0

which is twice the desired answer. (In terms of our optional
supplementary notes, the back-map of r = sin 8, 0 € 6 < 27, covers

the circle twice.) If we desire to use (2) as the correct answer,
we must imagine that each time the curve is traced out, it is

covered with a thin shield and the next copy is made on the shield.

In our present example, as 6 varies from 0 to 2w, two circles,
which happen to be congruent, are traced out.

b. Just as in the Cartesian case, we must know where the curves in-
tersect. In this case,
Y
N =TI
r = sin 6 ’ 4
C
7 X
r = cos 6
C,
We note that S is that portion of C, between 6 = 0 and 6 = %.
Thus,
U r
4 4
A, = l‘-f rzds = X f sinze d0 (since for C,, r = sin 8).
S 2 0 2 0 1
5,2.5.30
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2.5.7 continued

On the other hand, R is that portion of C, between 6 = % and 6 = %.
Therefore,
L
2
AR=%f coszede.
LS
4
Therefore,
X X
4 2
A=%~f sinzed9+% cos™ 6 db
0 ¥
4
or
x I
1 [ Y
A=?f (1 - cos 29)d8+3f (1 + cos 28)de
0 T
4
K.J =
4 2
= % (g — % sin 26) + % (6 + % sin 26)‘
0 I
4
1 m_L 1 [ - (Tl
=7 4 2"*4[‘2*0’ ‘4*23‘]
=.-E.——l+1—.“_-£
16 8 8 16 8
B P |
& 2
¢. From Exercise 2.4.6 (b), we have that the graph of r = sin %
is given by
5.2:5.31
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2.5.7 continued

and we desire the area of the shaded region.

Now we must be careful of where we are. We notice that C1 was

traced out as 6 went from 0 to %. Thus, the area enclosed by C

in the first quadrant is given by

1

m

daeé

]
|-.J
]
N =
[N]
w
(=
=
1,8
| @

: _ _._ B
(i.e. for Cl as well as Cz, r = sin I)'

On the other hand, 02 was traced out as 6 went from 271 to %F.

Hence, the total area enclosed by C, in the first quadrant is

51

2
A2 = %— f sin2
2T

de

| @

and since the region we want is inside c, but outside Cl, our
answer is given by

S.2.5.32
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51 il
2 2
-1 20 4. L 2 8
A2~A1—§- sin 4d8 ,2f sin 4de
2m 0
Ll T
2 2
=lf (1 - cos g)de—lf (1 - cos Yas
4 2 2 4 0 2

I I [
| = | =

|
| =

s &
2

m

(6 = 2 sin %)

5m |
[(—2— - 2 sin T)

5- = 3] -

[(% +/2) -
V2.

T
(5 =

i
—
8]

N

—2sin%)—o]
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