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Solutions
Block 5: Multiple Integration

Unit 8: Green's Theorem

5.8.1(L)

a. We have
C
so that parametrically C is given by
= cos t
y = sin t 0 <t < 2m. (1)
dx _ __. dy _

From (1) 3¢ = —sin 2 a% cos t, so

ﬁ -xzydx + yzxdy

C

2w
= o gy OX 4 2, OY
—f( xydt-!-yxdt)dt
0

2T
=-/. [- coszt sin t(- sin t) + sinzt cos t(cos t)] dt
0

2m
=f Zsinzcoszt dt
0
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5.8.1(L) continued

2.
=f %—sinZtht
0

27
— ull 1l - cos 4t
T2 ./. = 4%
0

27

N

[t - 5 sin 4t]

L4
=3 -

b. We have M = —xzy and N = yzx.

Hence,

oM _ 2
5; = -X
aN _ 2
- Y-

Since Green's Theorem

¢de + Ndy = ff(g—z = % )dA,
R

c

SO
¢ - xzydx + yzxdy = ff(yz + xz}dAR (1)
c R

where R = {(x,y) = X% + yz € Tk

S.5.8.2
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5.8.1(L) continued

The right side of (1) suggests polar coordinates, and we obtain

21Tfl 2
f (r®)rdrde
0 “Y0

¢ - xzydx + yzxdy
(o

2T 13
=f dafxdr
0 0

27 (%J

[
N =

While the actual computations involved in this exercise are
straight-forward, there are a few remarks that make this
exercise worthy of being a learning exercise. First of all,

let us observe that part (a) was sufficiently simple so that

the knowledge of Green's Theorem was hardly necessary to solve
the problem (although we readily admit that there will be times
when Green's Theorem will actually be a great computational aid).
Rather we used part (b) merely as a check, so to speak, of the

validity of Green's Theorem.

Secondly notice that without Green's Theorem we would be able to

determine that

¢de + Ndy
c

(under the usual suitable conditions) would be zero provided that
Mdx + Ndy was exact. This in turn means that My = Nx. Notice,
however, that we had no way of measuring how "close" Mdx + Ndy
was to being exact (whatever that might mean) if MY # N, .

Green's Theorem, however, now tells us what

¢. Mdx + Ndy

C

f BN o oa e
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5.8.1(L) continued

looks in terms of N - Mx' In other words, Green's Theorem does

give us a better quantitative idea of how the line integral

'¢ Mdx + Ndy

c
is affected by how "nearly equal" My and Nx are.

Finally, notice that Green's Theorem tells us, once and for all,

that the wvalue of

.¢ Mdx + Ndy

[ o

cannot depend on the parametric form of C (a fact we assumed in
the previous unit and tried to make seem more plausible through
the exercises). Namely the region R enclosed by the (oriented)*
curve C is independent of the parametric equation used to

represent C. Consequently the fact that

.?5' Mdx + Ndy = .lyiNx - My)dAR

c R

guarantees that the line integral is the same for all para-
metrized forms of C since

jgr(Nx - My)dAR does not depend on C.
R

*Again, if we change the sense of C we change the sign of
f Mdx + Ndy
c

(just as in the usual definite integral where

.fb f(x)dx = —Laf(x)dx).

a
What is important is that our form of Green's Theorem hinges

on the given orientation, were the orientation reversed the
integrand on the right side of Green's Theorem would be

(My - N)).
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5.8.2
Y
N
(0,2) Csy
< (3,:2)
04 v R 4\ 02
= > X
(0,0) Cl (3,0)
C = ClLchLJcsLJC4.
Hence 4
./Eydx = 2xdy = z : Jr 2ydx - 3xdy
c i=1 ci
= f2ydx - 3xdy +...+ f 2ydx - 3xdy. (1)
b €4
Now in parametric form we have
Cl: y = 0, x varies from 0 to 3; therefore, g% = 0
C2: x = 3, y varies from 0 to 2; therefore, %3 =0
(2)
03: y = 2, x varies from 3 to 0; therefore, g% =
c4; x = 0, y varies from 2 to 0; therefore, g% =0
Putting the results of (2) into (1) we have
3
f2ydx - 3xdy =f (2y - 3x %) dx  (along C,)
c 0
2 dx
+ f (2y ay - 3x)dy (along C2)
0
S.5.8.5
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5.8.2 continued

0
_ dy
+ f (2y 3x Ix )dx (along C3J
3
+ 0(2 8 3x)d (along C,)
Y ay N 4
2
3
=f [2(0) - 3x(0)]dx
0
2
+ [Ty - 33019y
0
0
F JrIZ(O) - 3(0)]1lay
3
0
+f[2(2) - 3(0)lax
2
2 3
=0-f9dx—f4dx+0
0 0
2 3
= - 9x 0 - 4x 0
= -18 - 12 = =30,
Now if we use Green's Theorem we have M = 2y, N = -3x; hence
Nx = -3 and MY = 25
Accordingly
.[7.(Nx - My}dAR - le: SdAR'
R R
sS.5.8.6
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5.8.2 continued

In our present case R = {(x,y): 0 < x < 3, 0 <y < 2} .

Hence,
ﬁ 2ydx - 3xdy = ff—S dap
& R
2,3
=ff - 5 dxdy
0 0
2 3
= -5 J[ dy./. dx
0 0
= - 5(2)(3)
= = 30.
5.8.3(L)

a. Our purpose here is to emphasize that the ordinary definite
integral is a special case of a line integral. Namely, given

b
[ f(x)dx (a < b)

we may write this as

ff(x)dx (1)

C

where C is the curve consisting of the segment of the x-axis
from (a,0) to (b,0). That is, C is given by

y=0,a<x<b. (2)

5.5.8.7
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5.8.3(L) continued

' Pictorially,

J—-— The curve C.

A B
alill) iyl lia 5
(a,0) (b,0)

If we now look at (1) and let M(x,y) = f(x) and N(x,y)= 0 we

have that

b
f f(x)dx = fde + Ndy
a c

]
~

= o]

Hh

+

e

3

and this circular chain of steps verifies thatuéé f(x)dx may be

viewed as a line integral.

b. While equation (1) is a valid interpretation of_gb f(x)dx it
should be noted that.é f(x)dx is a line integral even when C
is not restricted to being a portion of the x-axis.

! $.5.8.8
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5.8.3(L) continued

In particular

ff(x)dx = ff(x)dx + 0dy
o

c

which clearly has the form /Mdx + Ndy with M = f and N = 0.

For example, if we wished to compute the work done by the parti-
cle P moving from (0,0) to (3,9) along the curve y = %% under
the influence of the force ¥(x,y) = £(x)1, we would have

w = -/% . 43

ff(x)i” . [dxi + dy7]
{2y

ff (x)dx*.

cC

At any rate, if we now let M(x,y) = f(x) and N(x,y)= 0, and

apply Green's Theorem, we obtain

93 £(x)dx = 93 £(x)ax + 0dy = fftg‘g’ - a§‘§}]dAR
R

Cc C

*Notice that our remarks still make sense if f = f(x,y). That
is, S f(x,y)dx is also a well-defined line integral we are con-
centrating on J f(x)dx since the result we are investigating

in this exercise holds for

?ﬁ(x) dx

but, in general, not for

¢ f(x,y)dx.
2

5.5.8.9




Solutions
Block 5: Multiple Integration
Unit 8: Green's Theorem

5.8.3(L) continued

flo o

= 0,

Il

(Notice that our integrand could not have been identically zero
had f depended on y as well as x since in that case %% Z 0)

A similar process, of course, allows us also to conclude that

¢g(y)dy = 0

c

Suppose C is given' parametrically by

£}

f(t}[
g(t) |

X

Y

ac<teb (3)

then

.[[Ml(x,y] + M, (x,y)1dx + [N] (x,y) + N,(x,y)ldy

Il

fb LMy (£(8) ,g (1) + My(E(8), g(t)1FE
a

+ [Np (£(£) ,g(t)) + Ny (£(t) ,g(t)]g{-} at
; 4
= f[(Ml + Mz)f' {£) ‘+ (Nl + Nz)g (t)ldt. (4)
a

The key point is that (4) is a definite integral involving a
single real variable, and for this type of integral we already
know such theorems as "the integral of a (finite) sum equals

the sum of the integrals", etc., so that (4) becomes

S5.5.:8.10
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5.8.3(L) continued

b b
Jf (Ml + M,) f' (t)dt + jr (Nl + N,)g'(t)dt
a a

b b b b
M £' (t)at +f M, £ () dt +f N g' (t)dt +f N,g' (t)dt

a a a a

]

Il

b b
Suem, genermae + [Tuy 0,900 @
a a

b
+f N (£(t),9(t))g" (t)at

a

b
+ f N, (£(£) ,g(£))g" (t)dt. (5)
a

If we now recall the parametric form of C from equation (3)

we see that (5) is equivalent to

Ml{x,y)dx + szix,y)dx + le(x,y)dy + sz{x,Yde. (6)
c c

c c
[Notice here the tendency to "memorize" formulas in the natural
left-to-right order* may make it easier for you to see that (6)
implies (5) rather than that (5) implies (6)]

At any rate part (c¢) should convince us that such familiar
theorems as "the integral of a sum is equal to the sum of the
integrals" apply to line integrals as well as to the usual

definite integral.

*As a more elementary example, the algebra student, given

(a + b)2, can usually write at once a2 + 2ab + b2, but given
a2 + 2ab + b2 he usually takes a bit longer to recognize

that this is (a + b)2, That is, he tends to remember (a + b)?2
= a2 + 2ab + b2 in the left-to-right order.

5.5.8.11
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5.8.3(L) continued

b. Here again we must get away from the left-to-right format and
realize that Green's Theorem could have been written in the order
_/]-(Nx - M )dag = ﬁ Mdx + Ndy. (7)

R ()
Thus, given .4: (xz + yszR, the left side of (7) suggests that

_ ol

Nx = X (8)
M. = —y2

Y

[although (8) is not unique; for example, we could have assumed
that Nx = 2x2 + y2 and MY = x2 but let us not worry about this
at the present time]
From equation (8) we obtain by direct integration that

N(x,y) = % x3 + gly)*

(9)

M(x,y) = - 3 y> + h(x)*
Putting the results of (8) and (9) into Green's Theorem in (7)
we obtain

jf (x* + y*)aag = ?3 [- +y> + h(x)lax + 3 x* + gy)ay. (19)

R

(o
By part (c) this becomes
2 2 1 .3
_lyp{x + y )dAp = S};— 3y dx + Jg& h (x)dx
R [e; c
+ ﬁ % x3dy + ﬁ' 3(y)dy. (11)
& c
*Recall that for partial derivatives §§$£l= 0, ete, if x
and y are independent variables.
S.5.8.12
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5.8.3(L) continued

Now from part (b) we know that

.gs h(x)dx = 0 = ‘gs g(y)dy

o] o]

so that (11) becomes

2 2 1l .3 1 .3
ff(x +y}dAR ﬁ -~3—ydx+?’§xdy
R

[

= %1 ﬁ - y3dx + x3dy.
(o]

Note:

Had we used N_ = 2x? + yz and My = x2, we would have obtained

=z
|

2.3 2
3 X +yx+g1(y)

M xzy + hy (%)

whereupon (7) would have yielded

ff (x2 + yz)dAR
R

3 g yzx + gl(y)]dy

Il

.¢ [x?y + hy(x)]dx + (2 x

C

p xzydx + {%— x>+ yzx}dy

[

so while

_[7. (x2 + yz}dAR is a well-defined number, there are many
R

different integrands for which

ff(x2 + yzldAR is equal to p Mdx + Ndy.
R

c

5.5:8,13
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5.8.4(L)

a.

Suppose we let M(x,y) = -y and N(x,y) = x, and then apply Green's
Theorem. We obtain

e = *
ﬁ ydx + xdy [[ (N, = M) *dAg
R

]

c

1]

Hence, as asserted

ﬁ - ydx + xdy.

[o]

o=l
Il
[

b. The main aim of this part of the exercise is to show that while

Green's Theorem was helpful for solving part (a) we could have

obtained the same result without it.

Without trying to be extremely rigorous here, the key idea is
that we now pick a triangle as our basic element of area.

Thus,
*Notice that having N(x,y) = x and M(x,y) = -y is quite
convenient but unnecessary. What seems to be the crucial
thing is that Nx = My is a constant.

525814
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5.8.4(L) continued
Now from our knowledge of vector geometry, the area of

AOB = %—'gB X SAI

1 g T e +
= |[(xk + ﬂxk) i+ {yk + ﬁyk) 7] x {xkl + ykj] |
1 2 =¥ + +
=5 I{xk + ﬂxk) Yy (1L x ) # (yk + ﬁyk}xk{j x 1) |
=L |z, + ax )y, = (g, + sy )x 1@ x D
= *x Xk Yx Yy T+ S W= B 3
o
=37 |Yk‘5xk - Xelhyy| - (&)

Thus, our element of area written in differential form is
|3 (ydx - xdy) |
which checks with the form in part (a).

Again our main aim in part (b) is to show that one could have

arrived at

ﬁ- ydx + xdy

c

AR =

b =

without recourse to Green's Theorem, even though Green's

Theorem is convenient.

2845

Parametrically the ellipse C is given by

I

2paael 0 <t < 2m (1)

b sin t

5.5.8.15
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L 3

5.8.5 continued l
Hence by the previous exercise I
A = 1
R= 3 - ydx + xdy I
C
2m
1 . J
=3 ./- (-y a% + x g%) dt,
X ]
or by (1),
1 27 II
AR =& [-b sin t(-a sin t) + a cos t(b cos t)]dt
° ]
2T
= -;— ab(sinzt + coszt}dt I
0
27 II
= % -/. ab dt
° ]
= % [2 mab] M
= mab.

[Had we elected to solve this problem without line integrals

we would have had to evaluate

4f§¢a2—x2dx
0

which is certainly far from an overwhelming task, but our main

aim in this exercise is to emphasize the formula

ﬁ _ ydx + xdy = 2fﬁAR ]

c R

5.5.8.16
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5.8.6

Recall that a connected region R is simply connected (by definition)
if and only if its complement is connected. Clearly, then, the

region R below is not simply connected.

The shaded region denotes the complement of R and since this

shaded region consists of two disjoint pieces it is not connected.

Hence, R is not simply-connected.

Suppose now we slit R by deleting the line AB.
B

Let Ry denote the region obtained when the line AB is deleted

from R. Certainly R and R, are different regions since the

points on AB belong to R but not to R In fact, Ry R

= #

The point is that R, is simply connected because its complement is

connected. Namely, the complement of R

complement, is the shaded region.

17 since AB is part of the

S.5.8.17
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5.8.6 continued

The portion AB connects the 2 pieces which were not connected
when we were dealing with the complement of R.

The key point is that we may think in terms of oriented
boundaries for simply-connected regions quite easily. For
example with regard to Rl we may start at B follow c, until we
return to B, then proceed along AB to A, whereupon we follow

Cl in the opposite sense (since oriented boundaries require

that we move in the direction that keeps the enclosed region

on our left) until we return to A, and then we close our boundary
by returning to B along AB.

To see this more clearly let us exaggerate our region Ry by
pretending that AB has thickness. That is, view R, as

B' B

v

keeping in mind that A = A' and B = B' (i.e., A and A'
coincide as do B and B'). The arrows indicate the oriented

boundary.

Now since Mdx + Ndy is exact in the region R, as well as

on its boundary, we conclude that

gzimdx + Ndy = 0 (1)

C

5.5.8.18
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5.8.6 continued
where C denotes the boundary of R1 (not R).

If we let C3

- C3 and we have that C = ClLJ(-C3}LJ(-C2)LJC3.

that is

-

In the "true" diagram we are saying that

start ——>B
here and

follow

the
arrows

In any event we have

denote the directed segment AB then BA is denoted by

not Cl since in the given
qproblem C, denotes the same
curve but with opposite sense

@de + Ndy = f Mdx + Ndy + f Mdx + Ndy + f Mdx + Ndy

c Cl -03

+ f Mdx + Ndy.
S

(2)

5.5.8,19
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5.8.6 continued

The key structural property of line integrals which we now invoke

is
fde+Ndy=- fde+Ndy.
c

-C

In particular

fde+Ndy=- fde+Ndy
sy -C4

so that

fde+Ndy+ fde+Ndy=0*

c,y -cjy
and

fde+ Ndy = - fde + Ndy.
ey €2

Combining these facts with (1) and (2) we obtain

0= ﬁ Mdx + Ndy = f Mdx + Ndy - f Mdx + Ndy,
e cy c,

whence

f Mdx + Ndy = f Mdx + Ndy.
! 2

*This is the crucial step that allows us to replace R by Ry for
even though R # R, we are integrating around the boundary and C
is the only place where the boundaries of R and R, are differen%.
The fact that this contribution to the line integral vanishes

is what allows us to conclude that no error is introduced when

Rl is used to replace R.

S$.5.8.20
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5.8.7 (L)

The previous exercise supplies us with a very powerful result

about exact differentials and line integrals (and this will come

again later in the context of complex variables). With reference

to the present exercise, we observe that the given line integral

would be particularly convenient to evaluate had our oriented

curve been, for example, the circle of radius 1 centered at the

origin.

In this event we would have

Clz X = CoOs t' 0 i + i o
= sin t
Hence:
%% = - sin t, g% = cos t
x2 + y2 = 1
Then
m
2 2 dt
X"+ y
cq 0
2m
- f (sinzt + coszt)dt
0
2m
- [T
0
= 2 .
S:8:8.:21




Solutions
Block 5: Multiple Integration
Unit 8: Greens' Theorem

5.8.7(L) continued

The trouble is that we do not want the integral around Cl

rather around C, where

2,7
C C.—4—+9=1

but, according to the previous exercise, since

- zdx + xdz

x2 + y2

is exact on and between the curves Cl and C [recall that

- ydx o ydx

P2 P2

is exact everywhere but at (0,0)], we may conclude that

f - yvdx + xd _ - ydx + xdy
c 32 + Yz 32 + Y2
€1

but

5+5.8.22
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5.8.7(L) continued

Consequently,

- zdx + xdz
= 27
x2 " 2
o y

while we shall not belabor the point here, it might be worthwhile
for you to try to compute

ﬁ.- zdx + de
2 2
< X" + y

directly. For example you might represent C by

a cos t

b sin t} Bzt

Il

in which case

J;i - ydx + xdy

X5+
c Y 0

2T
= ey dt
o 2 2 S
0 a

t

Il

j'z“—ab coszt - ab sinzt a

azcoszt + bzsinzt

cos“t + b“sin“t (1)

and the complexity of the integrand in (1) should make it
clear why the method used in this exerciseis desirable.

5.8.8
- M(X;y) = =l
(x - 2)2+ y2
N(XJY) ] x> g 2
(x - 2)"+ y

Therefore,

5.5.8.23
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5.8.8 continued

oN _ [x - 2)2 + v21(1) - (x - 2)[2(x - 2)]

X 2
Bx - 2)2 + yz]
2 2.2
[(x = 2)7 + y71]
2 2 :
M _ [(x - 2)°+ y71(-1) - (-y)[2y]
Y [(x - 2)2 + y%12

2 2
_ y© = (x = 2) ) . (2)

T lx - 2)2 + y212

Comparing (1) and (2) we see that %g = %% except when x = 2 and

y = 0 (since then neither (1) nor (2) is well-defined in the

sense that both are % forms) .

In summary then

- ydx + (x - 2)dy
(x - 2)2 + Y2

is exact in any region R which does not contain the point (2,0).

b. Since the region enclosed by Cl{including the boundary Cy itself)
does not contain (2,0), we obtain from Green's Theorem, using the
fact that
WMy ?5 g s g 8 0% oy, (3)

* U (x-2)° +y
1
G We cannot use Green's Theorem to evaluate
.p - ydx + (x - 2)dy
2 2
(x - 2)° + vy
€2
5.5.8.24
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5.8.8 continued

since (2,0) is included in the region enclosed by C,. We could try
to evaluate the given integral by "brute force" letting C2 be

written parametrically as

4 cos t
S 2

y = 4 sin t
and we could then "hack out" the given integral. (Feel free to

try this approach and see how you make out.)

On the other hand, we can take advantage of the technique of the

previous exercise and observe that the oriented curve C3 centered
at the "trouble spot" (2,0) with radius, say, 1 is enclosed by C2
and our integrand is exact in the region between C2 and C3 as well

as on the boundaries of the curve. Hence

ﬁ—ydx+(x-—2)dy _ ﬁ - ydx + (x = 2)dy (4)
(x - 22 + y° (x - 2)2 + y°

) .

The reason for choosing C3 is that it simplifies the integrand.
For example, the Cartesian equation for C, ig (¥ = 2)2 ¥ Y2 =1

in which case

.9§ - ydx + (x - 2)dy
2

Cq (x - 2)2 + vy

immediately simplifies to

ﬁ—ydx+(x—2)dy. | (5)

Ca

To evaluate (5) without too much mess, the polar representation

for C,y should be used. Namely

2 + cos t

0
Il

sin t =g 2

=
Il

5.5.8.25
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5.8.8 continued
Pictorially,

Y
AN

P(2 + cos t, sin t)

|
vyl sin t
}
|
L f 3 — X

3 2 \. ¥C0S tJ

Then,
dx = - sin t dt
dy = cos t dt

X -2 =cos t

and we have

f - ydx + (x - 2)dy
%3

Il

2
./'1(- sin t) (- sin t dt) + cos t(cos t dt)]
0

27
=f [sinzt + coszt] dt
0

2m
- [T
0

2m . (6)

Combining the results of (4), (5), and (6) we have

ﬁ - ydx + (x - 2)zdy S . (7)
(x - 2)%2 +y

€3

5.5.8.26
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5.8.8 continued

Comparing (3) and (7) we see that

ﬁ-—ydx+(x-2)dy F ﬁ - ydx + (x - z)dy
2 2

2 2
c, (x - 2)° + vy o (x - 2)° + ¥

d. This does not contradict the result established in Exercise 5.8.6

because

- ydx + (x - 2)dy
2

(x - 2)% + y

is not exact at each point in the region enclosed between Cq

and C2.

Summarized pictorially, Yy

-
N
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5.8.8 continued

Po is not enclosed between C2 and C3, and Po is the only point at
which our integrand is not exact.

Hence,
-25 - .gs = 2.
2 3

PD is enclosed between Cy and C, and therefore .gg need not equal

E )
2

5.8.9

We have from Green's Theorem that

ﬂ 3 (u ) a(—uyu)
-¢3 - uyudx + u_udy [ A = 5y ]dAR
R

[ =

I

]

fﬁuxux +uu o+ uyuy + uuyy)dAR

R

2 2
fﬁ(ux + u, ) +ulu, + uyy}]dAR- (1)
R

Now, since u = v - w and v=w on C, we have that on C , u= 0 and

hence
ﬁ - uudx + u udy = ﬁ ul-u dx + u dy]
C Cc
= p 0[—uydx + uxdy]
C
= 05
8.5.8,28
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SR Uh 0B @A &2 &N @A eh @A & M T =

&l m e

5.8.9 continued

Moreover, since Vs + vyy = 0 and Won + w YE 0 in R it follows
that u  + uyy = AN = T {vyy - wyy)

= (vxx + Vyy) - (wxx - wyy)

=0+0

= 0 in R.

Substituting these results into (1) yields

_ _ 2 2
0 —ﬁ' - uyudx s uxudy = ./’_/.(ux + uy )dAR. (2)

(e R

Since ux2 + uy2 > 0 (i.e., the sum of real squares is non-
negative) then

m

2 2 2 2
fﬁux + u, )dAR > 0 and equals 0 ¢» u,~ + u, 0.

R
Hence from (2) we conclude that ux2 + uy2 =0 or, in turn,
u, = uy = 0 (3)

Since uxE‘uy= 0 implies u = constant we know that u = v - w =
constant. But v = w on C means that u = v - w =0 on C, and
since u is a constant the fact that it is 0 on C means that it is
C throughout R.

Thus v = w throughout R as asserted. In other words Green's
Theorem gives us a proof that if C is the boundary of R and

if

32w i 3w
2

]

X Iy

in R then w is uniquely determined once we know its behaviour
on the boundary, C, of R.
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5.8.10 (optional)

a. We are given

f M(x,y)dx + N(x,y)dy

c
where C = ClLlchJC3kJC4, and
y
N c
(a,d) 3 (b,d)
<
Cy4 ¥ R c,
S
>
(a,c) cy (b,c)
X
Parametrically we have
Cl: y =c, a< x< b (therefore, dy = 0)
C2 X =b, ¢ < y< d (therefore, dx = 0)
C3' y = d, x varies from b to a (therefore, dy = 0)
Cy x = a, y varies from d to c (therefore, dx = 0)
Hence
J ;
M(x,y)dx + N(x,y)dy -——f M(x,c)dx + N(x,c)0
c
1 a

b
= f M(x,c)dx*
a

(1)

b
*Cince ¢ is a given constant (as are a,b, and d)f; M(x,c)dx
is an ordinary Riemann (definite) integral.

S.5.8.30
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Block 5: Multiple Integration
Unit 8: Green's Theorem

5.8.10 continued

Similarly

d
‘L- M(x,y)dx + N(x,y)dy = [ M(b,y)0 + N(b,y)dy
2

a
- f N(b,y)dy (2)

C

a
_[ M(x,d)dx + N(x,d)0

a
[ M(x,d)dx

M(x,y)dx + N(x,y)dy

b
- - f M(x,d)dx* (3)
a
C
f M(x,y)dx + N(x,y)dy = f M(a,y)0 + N(a,y)dy
Cy d
C
= f N(a,y)dy
d
d
- - f Naway (4)
C
Thus, utilizing results (1), (2), (3), and (4) we have
4
ﬁde+Ndy= 52 f Mdx + Ndy
i=1 (o]

i

*A11 we are doing here is using the usual fact about the definite
integral that

Ig f(x)dx = - 2 f(x)dx.

As will be clear soon we use the form fb rather than J;a so that
(1) and (3) may be combined more conveniently.

fl ) A fa 'a ™
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5.8.10 continued

b d b d
f M(x,c)dx + f N(b,y)dy - f M(x,d)dx - f N(a,y)dy
a c a c

]

d b
f [N(b,y) - N(a,y)ldy + f M(x,c) - M(x,d)]adx. (5)
c a

Result (5) is self-contained in its own right, but since our aim

is to identify

ﬁ Mdx + Ndy
C

with a double integral we observe that

ax

b
N(b,y) - N(a,y) = 4{ gl\}—il':—’x-)dx (6)
=a

[i.e., F %% dx = N + gly) so that éb 3N 4x = N(b,y) + gly) -

ax
[N(a,y) + g(y)] N(b,y) - N(a,y)]

and

 amM(x,y)
M(x,c) - M(x,d) = R dy
=d ay

d
=-f BM ;7). gy, (7)
c ¥

Putting the results of (6) and (7) into (5) we obtain

d b b a
M
ﬁde + Ndy = f [ f g_i dxldy + f [- f o dyldx, (8)
c a a [o]

and if we now assume that %% and %% are "sufficiently well

behaved" to justify changing the order of integration, we
have

d

b b
aN aM
g;) Mdx + Ndy = ‘ f +— dxdy - f f +— dxdy
c Ja X a Jo %

5.5.8.32
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Block 5: Multiple Integration
Unit 8: Green's Theorem

5.8.10 continued

d b
f f (S—E—S—M)dxdy
c “a y

aN oM

and this establishes Green's Theorem for the special case in which

R is a rectangle with its sides parallel to the coordinate axes.
We have

cC = ClLJC2LJC3

(a,d) ::

2 (b,d)

"

(a,c)

Parametrically we have

Cl: y = f(x) a<x<b
C,: y =4, x varies from b to a* (9)
Cy: x=a,y varies from d to c.

*Since b> a we cannot write b < x < a so we say "x varies from b

to a". Now the "purist" would prefer to use only mathematical
symbols and for this reason one finds that 02 (or any curve of this
nature) is often written in the parametric form

y o= 4 _

twh - g BCXEZXD a.

Notice in this form as t varies from 0 to b - a, x varies from

b -0 (=Db) to x =b - (b - a) = a, and we obtain the same result

as in our verbal form. Since we feel that "x varies from b to
a" is sufficiently precise for our purposes, we have not resorted
to the more rigorous parametric form.
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5.8.10 continued

In any event

ﬁ Mdx + Ndy
c

I
&‘-\
&
»
+
o~
2
Qu
<
*

but since dy = 0 on C2 (i.e.,y is constant on C2} and dx

C3, we have

ﬁde+Ndy=f de+f de+f Ndy+[Ndy.
G C c c

1 2 1 3
From (9)
b
f Mdx = fM(x,f(x}dx
fo) a
1
and

a
f de=f M(x,d)dx
c, b

b
- f M(x,d)dx
a
so that

b b
f Mdx + f Mdx f M(x,f(x))dx - f M(x,d)dx
o (e a a

1
b
f M(x,f(x)) - M(x,d)]dx
a

b f (x)
f [ j; amg;.x)dy]dx
a

Il

28]

= 0 on

(10)

*We split the line integral this way to take advantage of

those portions of C on which dx = 0 or dy = 0.

5.5.8.34
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Unit 8: Green's Theorem

5.8.10 continued

b pd
_ f f MY gy
a Jf(x) Y
M
- L-f W dAR. (11)

In a similar way we evaluate

f Ndy + f Ndy
C

S5 3

Il

but to take advantage of the fact that dx is absent from these

integrals, we rewrite C parametrically as
-1
x=f "(y), c<y<d

and this is possible because we have restricted f to being mono-

torically increasing (hence, 1-1).

We then obtain

? -1
/ Ndy f N(f “(y),y)dy
(o] a

.
c
f N(a,y)dy
3 d

dlp Ndy
d
= f N{ary)dy.
(]

I

Hence,
[ Ndy + f Ndy = j‘dIN(fnl{y),y) - N(a,y)ldy
1 €3 €

L)y an)
[-/” ——EELX—-dx]dy
C a

faN
— dA_.
R IxX R
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5.8.10 continued

[i.e.,

X = a X=Db

Combining (11) and (12) with (10) we have

aM aN
Mdx + Ndy -f_-dA +U—dA
¢L‘ R oy R g EPS R

_ fan_g
- -/i (5% dy )dAg

R

I

which proves Green's Theorem for regions of the form

y = constant

y = £(x) with f monotonic

X = constant

The key point is that every line integral of the form

ﬁ Mdx + Ndy
c

may be viewed as a sum of integrals around regions as described

in (a) and (b).

For example,

S.5.8.36
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Solutions
Block 5: Multiple Integration
Unit 8: Green's Theorem

5.8.10 continued

{

On the dotted common boundaries the integrals cancel since each
boundary is traversed twice, with opposite orientations and this

establishes the proof of Green's Theorem in general.

5.8.11 (optional)

(b,B)
Cs

(b, a)
fMdr+Nd9=fMdr+Nd9+fMdr+NdO+fMdr+Nd9
&4 Cl C2 C3

+ Mdr + Nde
C4
=fMdr+fMdr+[Mdr+fMdr
| €2 3 C4
+ Nd9+[Nd9+de9+de9
€1 2 €3 €4
(1)
Now (polar) parametric forms for Cl' C2, C3 and C4 are:
$.5.8.37
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Block 5: Multiple Integration
Unit 8: Green's Theorem

5.8.11 (continued)

C 8
CZ: 3 o]
G5z 1@
e r
Using

(o]

C

¢, a <r < b, (therefore, @@ = 0)
b, a 2] b, (therefore, dr = 0)

B, r varies from b to a, (therefore de

| A
IS

a, 8 varies from Bto o, (dr = 0)

the results of (2) in (1) we have

jzi M(x,8)dr + N(r,e)de

J;j‘M{r,Q)dr + N(r,e)de

1

+

2

=%

+ Il + 1
s:\.h'p\.'m‘.

B 8
N(b,8)de —f N (a,
o

=0)

-/- M(r,8)dr + le M(r,0) dr
E 3

f N{r,91d9+f N(r,e)de
c

b a
M(r,o)dr +~/‘ M(r,R)dr

b

B g
N(b,98)de +fN(a,9}d9

a

b
M(r,oa)dr - f M(r,B)dr
a

6)de

b
f [M(r,a) - M(x,B)ldr

B a
g fﬁ [N(b,8) - N(a,0)]1do
o

& 0

(2)

ar

N(r,0) 4,140

b rB B b
- f j‘ BM(r,0) 404y, +f f BN(r,8) 340
09 or
a Jo o Ja

(2

)

S.5.8.38
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Unit 8: Green's Theorem

LB |

5.8.11 continued

Under the assumptions that both g and iﬂ are (piecewise-)

continuous the integrals in (2) may have their order of inte-
gration reversed (and since the limits of integration are

constants, this merely involves reversing the integrals), so

that
§) b M
Mdr + Nde f f — drde f f 5 drdé
o Ja
B b
ff ( gﬂ 3— )drde. (3)
o Ja

Equation (3) is Green's Theorem in polar coordinates. The

I

I

subtlety in (3) lies in the fact that the element of area in
polar coordinates is not drd® but rather rdrde.

Thus, if we wish to rewrite (3) as an integral involving dAR

we must say

g
- {‘b 1 , aN  aM
c o Ja

where we obtained (4) from (3) just by multiplying and dividing
the integrand on the right by r.

Since the limits of integration on the right side of (4) define
the region R, equation (4) becomes

= 1 N o

A comparison of equations (3) and (5) seems to make the following

generalization plausible: If we are using u and v as coordinates

where
u = u(x,y)
= vix,y)

is invertible and if C enclosed the coordinate rectangle bounded

between the pairs of curves u = a, u=b and v = ¢, v = d (where

8.5.8.39




Sclutions
Block 5: Multiple Integration
Unit 8: Green's Theorem

5.8.11 continued

a <b, c <d) then mimicking the procedure of the last two exercises

d b
P M(u,v)du + N(u,v)dv = f f (%—I& - g%}dudv. (6)
Cc u=a

However the element of area in uv-coordinates is not dudv but
rather

9(x,vy)
}?Tﬁf%Tl dudv.

Hence, to write equation (6) in a form which emphasizes dAR we
f__ _ M, [3(u,v) B(X,y}[
./( W | Ty |a{u,v} dudy
3 (u,v) aN oM
.IZIWB I(x,y) Fu - oy By (%)

Now what is sure is that much of our work with line integrals

have

P Mdu + Ndv

I

is restricted to Cartesian coordinates whenever possible since
other coordinate systems are much more unwieldly. Yet there are
time when we are forced to use other coordinate systems. In
these cases it is obvious that our basic formulas must be

stated in such a way that the concepts are stated correctly,
even though the form which expresses the concept might well

vary with the coordinate system.

In any event,much of the work done in vector analysis (and
several of these topics are discussed in Chapter 17 of the text)
involves stating Green's Theorem (especially with regard to
such important physical applications as work and fluid flow)

in a form that does not depend on the particular coordinate
system being used in the plane. Analogous results hold in
3-space where we find that Stoke's Theorem is the analog of
Green's Theorem, and reference is also made to the Divergence
Theorem - results that we do not wish to discuss in our course
since in many respects they become a complete course in

themselves.

5.5.8.40
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Unit 8: Green's Theorem

5.8.11 continued

The point is that Green's
in the form

f E.d§=_£f(iv’x§)

where

Theorem in vector language is written

. dKR (8)

ds = dsu (4 is a unit tangent vector to C)

and

dﬁR = dARK (ﬁ the usual unit vector perpendicular to the xy-

plane). [Notice, by the way, that even when other coordinate

systems are used to describe the xy-plane, k is still the unit

vector perpendicular to the plane.]

3 x P is called the curl of F and in Cartesian Coordinates

s i § 9
v 1 53 + k T

-

Q2

e
+

so that by definition the

defined by
_# 9f + of 9f

operator V in Cartesian coordinates is

(the gradient of f)

VefF= @ 0 4 3 8 B 5% ) (Ifl + Efz - if3) where F =

3

ey
(S
4

) =0
X Iy 9z
£

1 £ 3
of of

= e
oy 92

(the curl of F).

> + >
1f1 + Jf, + kf3

(the divergence of F)

3f3 af af
X 3y

5.5.8.41
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5.8.11 continued

Note #1

Do not confuse fx and fl' etc. fx refers to the partial
derivative of a scalar function f(x,y,z) while f1 refers to the

I—component of a vector function ?(x,y,z).

Note #2

In polar coordinates, for example, notice that the gradient
of £(r,0) is not £ 4. + folg(+ £,4,) (where U, = K). Rather
we saw in Block 3 that in this case Vf = £+ I £ (+ £.K).

Thus, while the definition of Vf is independent of any coordinate

system (i.e., Vf is defined by the identity g§-= v - Gs} its

form does depend on the coordinate system.

In summary, the, returning to (8) the general form of Green's

Theorem in vector form is

ﬁ (F - d)as = ff{( V x F) - Klaag.
: R

[

Further pursuit of this topic is left to the individual interest

of the student.

S.5.8.42
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Solutions
Block 5: Multiple Integration

Quiz

1. The notation

-ISJ[Sx
0 x2

indicates the region in which 0 < x < 3 and for each such x,
y varies from the curve y = x2 to the curve y = 3x.

Thus,

Y <

3.9)

|
[
I
[
[
I
|
L

v
"

(0,0) (3,0)

(Figure 1)

To interchange the order of integration, we rewrite Figure 1

using a horizontal element of area.

That is,
-4 (3,9)
—x = Vy
=¥
(0,0) %
(Figure 2)

$.5.0.1
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Block 5: Multiple Integration
Quiz

1. continued

From Figure 2 we see that y may be any number such that 0 2 ¥ <9
and that for a fixed value of y, x varies from % to Vy.

Hence,

3 3x 9 vy 5
f xy dy dx = f f xy dx dy.
0 2 0 %

3

S~

3 3x 2
f [ xy dy dx
2
0 X

3x 2
[ f xy“dy]dx
Y=x2

3x
2
y=X

= f[ 1z - L 2% 3ax
L L3 3

3

dx

I
6“—-b

1.3
3 X

=% (27x4 = x7}dx
3

3
_Ll e x|,
"3 5 8 *=
-1 @mm® 3%
3 55 8
_g . 3N
3 5 8
I
B 5 8
- 37,1 _1
—3(5 8)
= ale 3
i
* a0

5.5.0.2
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Block 5: Multiple Integration

Quiz

i

2

continued

vy
fg '[1 xyzdx dy
0

(a)

3

Our region R

1}
5‘-—3
Qo
;'ﬁ
<
"
=z
o
o
=,
2

1]
é?-—\
0o

NI
"

[¥]
L]

¥

4 4
-1 e i
—2‘/0-(17 9}dy
1.1 .4y ’
=zlzy -3 =0
LB B
T2 ! 45
S N T
=2 7~ 75
4
- I
=7 3]
_ ot
40
=‘3_8
a0 °
is given by
¥ X

5:5.Q.3
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Block 5: Multiple Integration
Quiz

2. continued
and is defined analytically by
R= {(r, 8):0 <6 < 21 and for a fixed 8, 0 < r < 1 + cos 6}
We also know that the density of R at any point is equal to

the distance of that point from the origin; and using polar
coordinates this distance is denoted by r.

Hence, the mass is given by

21 _l+cos ©
[f
R

f r(rdrde)
0

0
m l+cos @
- [ f r?ar]de
0 0

2T
= f %—(1 + cos @) 3ae
0

2m
(1 + 3 cos & + 3 cosze + cos39)de

Il
W=
é‘-\

m
[1L+ 3 cos 6 + %{1 + cos 20) + cos @(l-sinZ2@)]de

wl[il-'
CH\:

27

=1 (§-+ 4 cos & + 3 cos 23-—sin29 cos ©)de

3 0 2 2

27

_1 58 , < - i . T S
= [ 5 4 sin ©& + 7 Sin 26 -3 sin e
=1, 5(2m
- om

3

5.5.0.4
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Block 5: Multiple Integration

Quiz

2. continued

(b) The volumeis given by

_/f;/x2 + y2 dy dx,

R

which in polar coordinates is

ffr(rdr ae) ,
R

and this is the same integral as in part (a). In other words,

part (b) is simply another interpretation of the integral in

(a) ; consequently, the answer to (b) is also %? .

3. (a) By linearity the fact that (2,-1) maps into (1,0) implies
that
(2u, -u) maps into (u,0) (1)

while (-3,2) maps into (0,1) implies

(-3v, 2v) maps into (0,v). (2)
Again by linearity, (1) and (2) imply that

(2u, -u) + (-3v, 2v) maps into (u,0) + (0,v);

or

(2u - 3v, -u + 2v) maps into (u,v). (3)

Thus, if (x,y) maps into (u,v), it follows from (3) that

X
¥

2u - 3v (4)

-u + 2v

Solving (4) for u and v in terms of x and y yields

5.5.Q.5

|




Solutions
Block 5: Multiple Integration
Quiz

3. continued

X = 2u - 3v
2y =2u + 4v

or v

X + 2y

I

2x + 3y

2x = 4u - 6v SE i
3y -3u + 6v

—— E—

In other words, our mapping is defined by

——_—

]

2x + 3y
x + 2vy.

0

(b) Letting u = 2x + 3y and v = x + 2y, we have that

I

2x+3y _ u (x,y)

= cos(x + 2y)dAF - }f e cos Vv dAa
|
X b'4 .
u Ly N |
= ﬂe cos V dv du.
5 Yy Yy

Hence, by (4),

[fezx"'?’ycos(x + 2y)dAR
R

r.1 2 =3
j eucos v dv du
o Y0 -1 2
1
u
ff e cos v dv du
0 Y0
[fcos v dv) [fleudul
0 0

n

La

sin 1(e1 - e

= (e - 1)sin 1.

5.5.0.6
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By symmetry we may assume that the base of the cylinder lies in
the xy-plane and that the cylinder is cut from above by the

hemisphere

2 =+ /ﬁaz = x2 o y2 7

and then double the resulting solution.

Since our region R in the xy-plane is the circle of radius o

centered at the origin and since our "top" is the surface

2= J1a® - %% - y°

We have that the volume in question is given by

j;f%ﬂaz - x2 - y2 dAR

and, if we elect to use polar coordinates, this integral

becomes
2T ..a
f f /4a2 - ::2 rdrde;
0 0

whereupon the answer to this exercise is given by

2T ~a
2 f f 4a2 - r2 rdrde
0 “0
2T ~a
- zf [f 2a® - 2 rdrjae
0 0

27 3 |a
= - 142 - £%92 de
ZJ; [ 3(43- xr } =)

2T 3 3
= - %._[. [(4a2 - az}z - (4a2 - 0)2]d9
0

5.5.0.7
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Quiz

4. continued

Wit

a3 3
-f [(4a%)? - (32%)2 jae
0

W
w

=2 1(4a%? - (3a%)?)2q

Wi

3
= %;-[8a3 - 32 a3]

3
A8 (8 -3 ,3).

I

5. (a) Since

d(2xy) _ 8{x2 + cos y)
ay 9x

= 2x,

it follows that 2xy dx + {x2 + cos y)dy is exact. In particular,
Ty = 2y = £ = xzy + g(y) - fy = x% + g'(y).

Then, since fy must also equal x2 + cos y, we obtain

x2 + g'ly) = x2 + cos y

or

g'(y) = cos y.

Hence,

g(ly) = siny + c,

whereupon

xzy + gly) »
xzy + sin y + c.

o Fh
o

That is,

$.5.0.8 !




Solutions
Block 5: Multiple Integration
Quiz

5. continued
2 . 2
d(x°y + sin y + ¢) = 2xydx + (x~ + cos y)dy.

(b) Since 2xydx + (x2 + cos y)dy is exact,
(1,1)

J. 2xydx + (x2 + cos y)dy

(0,0)

doesn't depend on the path which joins (0,0) to (1,1).
particular, using (1), (2) becomes

{1.,1)
f dlx’y + sin y + ©)
(0,0)
(1,1)
a= (xzy + sin y + c) (0,0)
(1 + sin 1 + ¢) - (0 + 0 + c)
=1+ sin 1

6. (a) The path c, may be expressed parametrically as
- t( t varies from 0 to 1.

Hence, vy = x = t and dy = dx = dt; therefore,

l (sin x - y3}dx £ (x> - e¥)dy
1

= (#in € = £)de + (&> = «Hae
0

(1)

(2)

In

and this answer applies to any path which joins (0,0) to (1,1).
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Block 5: Multiple Integration
Quiz

6. continued

f{sin t - ebat
0

il

-~ cog t = et

I

t=0

(= cos 1 - el) - (- cos 0 - eo}

- cos 1 -e + 2.
(b) cy is given, for example, by

—tz
- ‘ t varies from 0 to 1.
x =t

Hence, dx = dt and dy = 2t dt. Consequently,

-/-(sin X - y3}dx + (x3 - e¥)ay

€2

2
f(sin £ = 8 ae ¢ (&3 = ¥ y2tdt
0

] 6 4 w2
= (sin £t - t° + 2t° - 2te )dt

2 1
— k.7 2 .5 _ .t
= cos t 7 t + 5 e =5
= (- cos 1 - % + % - el) - (- cos 0 - eoj
= - cos 1 + 2 = e + 2.
35

(c) The answers to (a) and (b) are different which implies
that

(sin x - y3)dx - (x3 - e¥)ay (1)

$.5.0.10




Solutions
Block 5: Multiple Integration
Quiz

6.

continued

is not exact. Had (1) been exact, we would have to obtain the

same answer for (6) as we did for (a) since then the integral does

not depend on the path which joins the given points (0,0) and
(1.1 -

By Green's Theorem, we know that
- ON _ M
fdei—Ndy— ff(ax adeA.R (1)
R

where R is the region enclosed by c.

In this particular example,

M[ = M(x,y)] = sin x - y3
(2)
N = x3 - e%
Hence,
M _ ., 2
A
and
ON _ 2
ﬁ—Bx
Consequently,
oN oM _ Z L Rob ey 2 2
Frdl o 3% (=3y°) = 3(x° + ¥°). {3)

Moreover, since c is the circle of radius 1 centered at the
origin, R is the region defined by

R = {{x,y}:xz + yz

< 1} (4)
or, in polar coordinates,

R={(v,8): 0 <r<1, 0< 86 <2n}. (5)

§.5.0.11




Solutions
Block 5: Multiple Integration
Quiz

7. continued

Thus (1) becomes

f’ (sin x - y3)dx + (x3 - Y)f.’iy

= [[3(}(2 + yz}dAR.

R

which, in turn, becomes by the use of polar coordinates

2m Pl
f f 3r2(rdr ae)
0 0
r2n i B
J [ f 3r3dr] de
0 0

27 i
= f i_r“ de
r=0
0
2T
- 3
= 4de
0
-3
_3n
> -
S.5.0Q0.12
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