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Solutions
Block 4: Matrix Algebra

Unit 7: Maxima/Minima for Functions of Several Variables

4.7.1x)

Since the domain of T is the disc x2 + y2 l, we first observe
that for points (x,y) on the boundary of the disc (i.e., at

2

those points for which x™ + y2 = 1), we cannot talk about T

being continuously differentiable. Namely, any neighborhood
of a point on the boundary is not contained in the domain of
T Pictorially, ¥

A

x% + y2 =1 T is not defined on the shaded
; portion.
\\\hqﬂd/// > X

If we limit our attention to the interior of the disc (i.e.,

x2 + y2 <1l) we have that T is a continuously differentiable

function of x and y everywhere in the interior. Hence T can
attain maximum and/or minimum values in the interior of our

plate only at those points (x,y) for which both T, and TY = iz
Since T = x2 + 2y2 - X (1)

we have that

Tx = 2% - 1 (2)
and

T = 4y. (3)
v Y

From (2) and (3) we see that T = TY =0 if aTd only if x =
1/2 and y = 0. At this stage we know that T{j,O) is either a
relative maximum for T in the interior of the disc, or a
relative minimum, or a saddle point. We next look at points
"near" (%,0) and compute
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4.7.1(L) continued

T(% + h, 0 + k) - T{%,O) where h and k are small. (4)
ok 4 n, k)= (e ny? & 2% - (& h) = -k # B 22

2 2 2 4

1 _ a3 2 _1_ _3
T(f. 0) = (f) + 2(0) 5 = 7 -
Therefore,

1 PR | 2 T
T(7+h' k) -T(EaO) = (‘4‘+h + 2k7) ( 4)

« B % 2K, (5)

Clearly n? + 2x2 is non-negative for all h and k (since neither

h2 nor k2 can be negative). Moreover h2 + 2k2 is zero only when

h =k = 0.

Hence, as long as not both h and k are zero, we see from (5)
that T(% + h, k) - T(%, 0) is positive, so that in any neighbor-

hood of {%,0). T(%,O) is a minimum value of T.

2
In summary, if T = x% + 2y2 - x and dom T = {(x,y) = x° % y-€ 1.}
then T has a relative (in fact, absolute) minimum at (%,0}, and

this minimum value of T is - %.
Note:

In order to be able to check our result, we "cheated" a little
and chose a problem which could be worked out rather simply
by the use of elementary algebra. Namely, given

T(x,y) = x2 + 2y2 - x

we complete the square to obtain

Tix,y) = (x% - x) + 2y°
= (x2 - x + % - %J + 2y2
- (x- P2 - P+ 2y
S.4.7.2
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4.7.1(L) continued
1
=(x—i)+2y__4“- {6}

Equation (6), although equivalent to Equation (1), suggests why

the minimum value of T(x,y) is -%-and occurs at (l} 0). In
particular, both (x - %)2 + 2y2 are non-negative, so (6) tells
us that T(x,y) > 0 + 0 - % = - %. Moreover, (x - %)2 = 0 and
2y2 = 0 if and only if x = % and y = 0.

Equation (6), however, tells us much more than this. It tells
us that T(x,y) can be made as large as we choose simply by
picking both x and y (in fact, we can again talk about the
magnitudes of x and y since both variables appear as squares
in Equation (6) ) to be sufficiently large. That is, if x is
large in magnitude (x - %}Z‘is a large positive number and if
y is large in magnitude 2y2 is a large positive number.

This observation leads us to part (b) of this exercise.
Notice that when we set T and Ty equal to zero, we got the
single candidate (1/2,0) which turned out to yield a minimum
value for T(x,y). We got no candidate(s) for maximum values.

b. What we propose to illustrate here is a counterpart of the
theory of max/min for calculus of a single variable. We
mentioned then that if f(x) was continuous on a closed
interval (i.e., one which contained its endpoints) then f£
attained both a maximum and a minimum value in the interval.
Thus, if the extreme value did not occur in the interior of
the interval (i.e., the open interval) then it occurred at

one of the endpoints of the interval.

Without going into the theory of what happens in the case
of two independent variables, it turns out that the counter-
part of a closed interval is a region which contains its

boundary, while a region without its boundary corresponds
to an open interval. In other words, the region x2 + y2< 1
is the interior of the unit circle. Its boundary is the
circle x° + y2 = 1. Thus, if we refer to {(x,y):x2 + y2< 1}
we are talking about an open region. On the other hand,

{{x,y):x2 + yzi 1} is called a closed region. At any rate,

f & oh &E o O & O & @) & P om o

5.4.7.3




Solutions
Block 4: Matrix Algebra
Unit 7: Maxima/Minima for Functions of Several Variables

4.7.1(L) continued

the theory says that if f(x,y) is continuous on a closed region

R, it attains its maximum and minimum wvalues in R.

Accepting the truth of the theory, we see that since T(x,y)

does not attain a maximum value in the interior of the disc

2 2 ; : B :
X~ + y" <1, and since it must attain its maximum somewhere on

the disc (because T is continuous on the [closed] disc), it must
be that the maximum value is attained on the boundary of the disc.
Since the boundary of the disc is % & y2 = 1, it follows that
when the domain of T is restricted to the boundary of the plate,

T is given by

2

T(x,y) = x° + 2(1 - x%) - X (7)

2 in (1). This

substitution is permissible because this is how x and y are

where (7) is obtained by replacing y2 by 1 - x

related in the boundary. Notice that in (7), x and y are no

longer independent because (x,y) was chosen to be on the curve

(circle) x2 + y2 = 1. That is, on the boundary

g(x) = x% + 2(L = x2) - X

T(x,y)

2 - x - xz, -1l< x <1. (8)

From equation (8), we have that

g'(x) = -1-2x
9
gu(xJ:_z . ()
l 2 ||l_
Therefore, g'(x) = 0«> x = -5; so since g"(-3) = -2< 0, we see
that x = —% corresponds to a maximum value of T.
. 2 2 I TRP =
Since x and y are related by x” + y~ =1, x= - 3 implies that
2 2 1_3
y=l-x =l-a-—-a-,0r
y = + % V3 .
2
Then since g (- %), from (8), equals 2 - (-%) - (-%) =
1 1 _9 .
2 + § = Z W, W have that:
S.4.7.4
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4,7.1(L) continued

T(x,y) has % as its maximum value .on the closed disc x2 + yzi 1
and this value occurs at the boundary points (- %, % v3) and

1 i
{_it ‘7@).

Notice that equations (9) tell us that g(x) has no minimum on

x2 $ Y2 = 1 for -1 <x <1. At the endpoints, we have

g(l) =2-1-1=0 (10)
g(-1) = 2 -(-1) - (-1)° = 2}

Equations (10) tell us that the minimum value of T on the circle
x2 + 12 = 1 is 0 and this occurs when x = 1, that is, at the
point (1,0). This minimum value exceeds - % which we saw was
the value of T at (%,0) in the disc. Thus, the minimum value

of T over the whole disc is - % at (%,0].

In summary, if dom T = {(x,y):x2 + y?f 1} then

N _9
Toax = T30 £ 3 v, = 4
_ 1 - -1
Thin = T 2 0) = 4

Note:

2

: ; 2
In this particular example, we can express T on {(x,y):x°+ y°= 1}
very conveniently in terms of polar coordinates. Namely x = cos 6

and y = sin 8, 0 <8 < 27 . This substitution converts
T(x,y) = x2 + 2y2 o
into

T(r,8) = c052 e + 2 sin2 e - cos @
2 2
= cos” © + 2(1 - cos” 8) - cos @

2 - cos & - c0529

il

-(c0529 + cos 8 - 2)

& & ) h B 0D B e & O & 0 B OB S om o) B e
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4.7.1(L) continued

= -(00529 + cos & + % - %)

_ 1,2 _9

= -[(cos 8 + 2) 4I

- % - (cos 6 + %}2. (11)

Since (cos 8 + %)23 0, we see from (11) that T(r,8) < % with

equality holding if and only if (cos 8 + %}2 = 0, or cos @ =-%.
But cos 8 = —% means X = —% since x = cos 8, while y = sin 8
then implies that y = + % VY3, so that we have an algebraic
verification of our previous work.
4.7.2(L)
Our main aim here is to show how messy it can be to compute
f(a + h, b + k) - f£(a,b) [where fx(a,b} = fy(a,b) = 0] 'This,
in turn, will serve as motivation for us to explore the
existence of more convenient formulae.
We have that
_ .3 3 1
f(x,y) = x~ + y~ - 9xy + 27. (1)
Hence,
2
fx(x,y) = 3x" - 9y
(2)
2
fy(x,y) = 3y° - 9x ‘

Thus, the requirement that f (x,y) = fy(x,y) = 0 yields,
from (2), the result that

(3)

-

[
Wl W=
o) "

T 2= 2 1
(3y )T = 55 Y -

W

Therefore y =

Therefore y4 - 27y = 0.

S.4.7.6
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4.7.2(L) continued

Therefore y{y3 - 27) = 0, so either y = 0 or y = 3.

From the second equation in (2), y = 0 implies x = 0, while
y = 3 implies x = 3. Therefore, the only candidates for max/min

points are (0,0) and (3,3).

To check (3,3) we must look at £(3 + h, 3 + k) - £(3,3).

(1) we have

£{(3 + hy 3 + k)

= 133 + 3% + 3(3)n? + 03
£ 33+ 3% + 33)k? + ¥3]
- 81 - 27h = 27k - Shk + 27
= 9h? + 3 + 9k? + x> - onk .

£(3,3) = 30 + 3% - 9(3) (3) + 27 = 0.

So, from (4) and (5),

3 2

£(3 + h, 3 + k) -£(3,3) = 9n% + n> + 9k? + k3 - onk.

From

B+n2+ B+x)3-9(3+h) (3 +k) + 27

(4)

(5)

(6)

Now the algebra problems begin! Notice that since h and k can

be either positive or negative, etc., it is not easy to analyze

the sign of 92 + K + 9k® + K3

small values of h and k.

If we are good at algebra we may notice that

9hZ + h> + 9k% + k° - Ohk

(h + k) (h2 - hk + k2)
+ 9(h2 - hk + k?)

w3 + k3 + 9(m? - nk + x%)

(h? = hk + k2) ([h + k] + 9)

- 9hk for all sufficiently

S.4.7.7
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4.7.2(L) continued

= [(h - % k)2 + % k2](h + k + 9). (9)
Now [(h - % k)2 + %—kzl > 0, and equals 0 only if h = % k and

k = 0, which in turn means only when h = 0, k = 0. Since we

are interested in points (3 + h, 3 + k) _near (3,3), we exclude
the case h = k = 0, since then (3 + h, 3 + k) = (3,3). So if
not both h and k are zero, the first factor on the right side

of (7) is positive. The second factor can be positive, negative,
or zero depending on how h and k are chosen - however - we are
interested only in what is happening "near" (3,3). That is, we
may assume that h and k are as small as we wish (in magnitude)
except that at least one must be unequal to zero. Under this
condition, h + k + 9 may be assumed to be positive.*

In summary, the right side of (7) is positive whenever h and k
are sufficiently small. In still other words, combining (6) and
(7), £(3 + h, 3 + k) - £(3,3) is positive whenever (3 + h, 3 + k)
is sufficiently close to (3,3) [the difference is zero when

h = k = 0, since then we are computing f(3,3) - £(3,3)].

Therefore, f(x,y) has a relative minimum at (3,3) and the value

of this minimum is £(3,3) = 0.

As for checking (0,0), we must look at f£(h,k) - £(0,0) =

3 + k% - 9nk + 27) - 27 = h3 + k3 - onk. (8)

2
Tf we let h = k in (8), we obtain £lh;h) - £(0,0) = 2h> ~ 9h° =
h?(2n - 9).

; 2 5 i
For small values of h, 2h - 9 is negative whole h” is positive.

Consequently, for small h (# 0),

f(h,h) - £(0,0) is negative. (9)

On the other hand, if we let k = -h in (8), we obtain

£(h, -h) - £(0,0) = h3 + (-h)> - 9h(-h) = 9n®

*See note at the end of this exercise.

S5.4.7.8
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4.7.2(L) continued

so that if h # 0,

£(h, -h) - £(0,0) = 9n% > o. (10)

We may now combine results (9) and (10) to conclude that in any
neighborhood of (0,0) there are values of h and k such that
f(h,k) - £(0,0) is positive and other values of h and k such
that £(h,t) - £(0,0) is negative. Pictorially

1. Think of this as a small
circle, blown up so that y

we can see it better. I.e.,&L 2
it is the circle 2, £f(h,h) - £(0,0) = h"(2h = 9)<0

' for our "sufficiently small" choice
2 2 2
X" +y =E of h.

where E >0 is small,

(h,h)
[
> X
hl 5
3. £(h,-h) - £(0,0) = 9h"> 0
(hr'

Therefore (0,0) is a saddle-point since in every neighborhood
of (0,0) we can find points (x,y) such that f(x,y)> £(0,0) and
other points (x,y) such that f(x,y)< £(0,0).

Our main aim in solving this problem is to illustrate that even
for this rather simple function [i.e., there are certainly more
complicated functions from E2 to E than f(x,y) = x3 + y3 - 9xy

+ 271, there was a considerable amount of algebraic manipulation
necessary if we were to determine the behaviour of f(a + h,

b + k) once we knew the points (a,b) for which fx(a,b} -
fy{a,b} =

What we shall develop in the next exercise is a formula in
terms of fxx[a,b), fyy(a,b}, and fxy(a,b) that tell us whether
f(a,b) is a relative maximum, minimum or saddle point once we
know that fx(a,b} = fy{a,b} = 0. The next exercise actually is
a repetition of Section 18.5 in the Thomas text, but with the

chunks broken up into smaller pieces.

S.,4.7:9
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4.7.2(L) continued

Note:

When we say that h + k + 9 is positive when both h and k are
sufficiently small, it might be helpful if we were sure that

we understood the full meaning of "sufficiently small". For
example, if we let h = -5 and k = -6, h + k + 9 is then

clearly negative. But for this choice of h and k, the point

(3 +h, 3 +k) is (-2,-3) and certainly we probably sense that
this point is not "sufficiently close" to (3,3).

There is an interesting geometric way to handle this problem.
Namely, since we want h + k + 9 to be positive, it follows that

h + k >=9.

If we now look at the hk-plane, we see that this is the region
which lies above the line h + k = -9, That is,

k
N

h+%k =9

(Figure 1)

With respect to Figure 1, when we talk about small values of
h and k, we are referring to a small neighborhood of (0,0)
since in this graph (0,0) names h = 0, k = 0. We may choose
this neighborhood any way we want, and provided only that the
neighborhood never extends on or below the line h + k = =9,

S.4.7.10
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4.7.2(L) continued

we can be sure that h + k + 9 is positive for all points in that

neighborhood. For example,

h+k+9 0

T for all (h,k)
gt in here
{f h

'fd¥; ) >

™

Suppose, we want the largest (circular) neighborhood of (0,0)
that permits us to conclude that h + k + 9 is positive for
every point (h,k) in this neighborhood. We need only compute
the perpendicular distance of the origin to the line. That is

(Figure

\\{:2,0}

NS

(Figure 3)

In other words, if R is the region h2 + k2 < %l then h + k + 9

is positive for every (h,k)eR.

5.4.7.11
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4.7.2(L) continued

Returning to the original problem, this means that if we draw a
circle in the xy-plane of radius 9 v2 /2 with (3,3) as center
then f(x,y) - £(3,3) is positive for every point (x,y) in the
interior of this circle. Clearly f(x,y) - £(3,3) may be
positive for some points (x,y) outside the circle, but

f(x,y) - £(3,3) cannot be non-positive inside the circle.

Again pictorially,

__‘

Ji
L4

o
(-2,-3)

/ ;

(Figure 4)

for all (x,y) in the disc (x - 3)2 + (y - 3)2< E%,

f(x,y) - £(3,3) is positive.

1. £(-2,-3) - £(3,3) is negative but this is okay since (-2,-3)

is outside the neighborhood in gquestion.

2. For example £(0,0) - £(3,3) is positive since h = k = 9> 0
when h = k = -3. Notice that (0,0) is in the circle.

There are points (x,y) outside this circle for which f(x,y) -
f(3,3) is greater than zero. For example if h = 10 and k = 5
then h + k + 9 = 24, h = 10, k = 5 corresponds to (13,8).
Thus £(13,8) - £(3,3) is positive. However, if we took the
circle centered at (3,3) passing through (13,8) then there
would be points (x,y) in this circle for which f(x,y) - £(3,3)
would not be positive. The easiest way to see this 1s to note

S.4.7.12
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4.7.2(L) continued

in Figure 1 that the circle centered at (0,0) passing through
(10,5) does not lie above the line h + k = -9. Those points of
the circle lying below the line h + k = -9 yield points (h,k)
for which h + k + 9 is negative. That is, there are points on
the circle h2 + k2 = ( /102 + 5%)2 = 125 for which h + k + 9 is
negative. These points correspond to points (x,y) in the xy-
plane which lie in the circle (x - 3}2 + (y - 3)2 = 125. 1In
particular (-2,-3) lies in this circle and f(-2,-3) - £(3,3) is

negative.

4.7.3(L)

Perhaps the hardest part of.this problem is trying to figure out
where or how we managed to invent the function F(t) = f(a + ht,
b + kt), 0 <t <1 other than by saying that it was in the book.
The key point is that in a neighborhood of any point (a,b) for
which fx(a,b} = fy(a,b} = 0, we want to look at

f(a + h, b + k) - f(a,b). (1)

To tackle this problem we (for the time being) arbitrarily
choose an h and k, subject only to the condition that not both
h and k equal zero. Otherwise there are no restrictions; h
and/or k may be negative and either h or k can be zero provided

the other is not.

Pictorially, we have:

y T e —
Q \\ R
P (a+h,
b+k)
(a,b)
>~ X
(Figure 1)

S5.4.7.13
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4,.7.3(L) continued

Since we ultimately are interested in points near P(a,b), we
draw the line segment PQ. Since PQ = hi + k} and since (a,b)

is a known (given) point, the equation of the line determined by
P and Q is

X - a o = b -
£ = L2 (=1t (2)
or
x = a + ht
(2")
y = b + kt).

The segment PQ is obtained from (2) and (2') by restricting t to
the range 0 <t <1, since when t =0 (x,y) = (a,b) = P and when
t=1u(X:Y)=(a*h:b+k)=Q-

In summary, then

F(t) = f(a + ht, b + kt), 0 <t <1

defines f(x,y) if the domain of f is restricted to the line

segment PQ. Again pictorially,

w = f(xry)

(Figure 2)

X
1. The curve ST consists of the po1nts (x,y,£(x,y)) where (x,y)

belongs to the line segment PQ.

2. Another form of this curve is the set of points (a + ht,
b + kt, f(a + ht, b + kt)) where 0 < t < 1.

5.4.7.14
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4,7.3(L) continued

3. That is, w = F(t) = f(a + ht, b + kt), 0 <t <1, is an

equation for the curve ST.

This, then, is where

F(t) = f(a + ht, b + kt), 0 <t <1 (3)
comes from. In the "extreme" cases t = 0 and t = 1, we obtain

F(0)
F(1)

f(a + h, b + k)

so that from (4) we see that
F(l) - F(0) = f(a + h, b + k) - f(a,b). (5)

Since we shall be interested in the sign of f(a + h, b + k) -
f(a,b) in sufficiently small neighborhoods of those points (a,b)
for which fx(a,b) = f (a,b) = 0, we see from equation (5) that

we may instead study the sign of F(1) - F(0).

The fact that F(t) = f(a + ht, b + kt) for 0 < t < 1 can
be restated as follows in terms of the chain rule:

Let w = F(t) 0 <t i,l then
f(x,y)

a + ht (6)
b + kt

£
nmon

Since we are assuming that f(x,y) is continuously differentiable
at (a,b), we may use the chain rule to conclude
dw dx

F' (t) = _t = fx{x;y) a‘E + fY(K;Y]

e

» 0 <t < 1. (7)

Since h and k are arbitrarily chosen constants, we see from (6)
that dx/dt = h and dy/dt = k. Putting these results into (7)

yields

F'(t) = f4x(x,y) h + fy(x,y) k, 0 < t< 1 (8)

5.4.7.15
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4.7.3(L) continued

or writing f in terms of t [from (6)], we have

F'(t) = hfx(a + ht, b + kt) + kfy(a + ht, b+ kt), 0 < t < 1.

(8')

In particular we see from (8) [or (8')] that F"(t) exists for
all t such that 0 < t < 1 (as usual we don't talk about
differentiability at the end points of a closed interval),
while the continuity of f(x,y) in the region R guarantees the
continuity of F(t) [that is, if f is continuous throughout R
it is, in particular, continuous along any curve which is
contained in R].

Thus we may use the mean value theorem for functions of a

single variable to conclude that there exists a number ty
< 1, such that

where 0 < t

1
F(1) - F(0) _ _,
1-0
or
F(l1) - F(0) = F'(tl). (9)

Substituting the results of (5) and (8') into (9), we see that
there exists a number tl' 0 < tl < 1, such that

f(a + h, b + k) - f£(a,b) = hfx(a + htl' b + ktl}

+ kfy(a + ht L & ktl]. (10)

ll'
Equation (10) is known as the mean value theorem for functions
of two independent variables. In summary, if f(x,y) is con-
tinuously differentiable in some neighborhood R of (a,b) and
(a + h, b + k) is any other point in R, then there exists a
number tl' 0 < t < 1 such that

f(a + h,b + k) - £f(a,b) = hfx{a + htl’ b # ktl)

b + ktl).

+ kfy(a + htl'

S.4.7.16
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4.7.3(L) continued

Pictorially, using the same diagram as in Figure 2, this means

w = f(x,y)
N

(Figure 3)

1. Slope of the line ST is equal to Aw/At = f(a + h, b + k) -
f(a,b)/1L - 0 = f(a + h, b + k) - f£(a,b).

2. In the tw,-plane there is a point P on the curve ST at which
the slope of the curve equals the slope of the line (the

"ordinary" mean value theorem).

3. The point P, is the image under F of -some point P, on the

1
line segment PQ.

4. This point Py has the name (a + htl’ b + ktl) = F{tlj for some

0 < tl €

T pa—
5. F {tl) = hfx(a + ht,, b + ktl) + kfy(a + ht, b + ktl)

[from equation (8')].

6. Equating the two slopes yields equation (10).

S.4.7.17
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4.7.3(L) continued

So far, h and k are arbitrary constants. If we now restrict our
attention to sufficiently small values of h and k we have that
the points (a + ht, b + kt), 0 < t < 1 must be near (a,b) since
all these points lie on the line segment PQ which joins (a,b) to
(a + h, b + k). 1In particular, since fx and fY are continuous

at (a,b), fx(a + ht, b + kt) and fx(a,b} must have the same sign
unless fx(a,b} = 0.* Similarly, unless fy{a,b) = 0, we have that
fy(a + ht, b + kt) and £ _(a,b) have the same sign. Consequently,
unless both fx(a,b) = 0 and fy{a,b] = 0, we have from (10) that

sign [f(a + h, b + k) - f(a,b)] = sign [hfx(a,b) + kfy(a,b)]{ll]

[For example if fx(a,b) = 0 but fy(a,b} # 0, we can make

fx(a + ht, b + kt) as nearly equal in magnitude (although not
necessarily in sign) to 0 as we wish, whereupon the sign of

f(a + ht, b + kt) - f(a,b) is determined by the sign of kfy(a,b)].

7 2 5

Since f(x,y) = x3y5 - yG * o = 2%y, fx(x,y) = 3x"y~ + 7x6 - 2y

and £ (x,y) = 5x VY - 65 = 2%

Hence,

fx(l,l} = 8 and fy{l,l) = -3, so from equation (1l1)

sign[f(1 + h, 1 + k) - £(1,1)] = sign[8h - 3k]. (12)

In particular (1.01, 1.02) is of the form (1 + h, 1 + k) with
h = .01 and k = .02, so (12) becomes

#Graphically if f is continuous at x = a, and f(a) > 0 we
have = f(x
f(a) + € 3 (=)

f(a) <

f(a) - g h

b a c

1. Pick € so that f(a) - €> 0

2. Then f(x) >0 for all x e[b,c]

A similar argument applies if f(a)< 0. But if f(a) = 0, any
neighborhood of f(a) may contain both negative and positive
values so we cannot be sure of the sign of f(x) for xe [b,c].
In general we are saying that if f is continuous at x = a then
in a sufficiently small neighborhood N of x = a, f(x) and f(a)
have the same sign for all xeN except possibly when f(a) = 0.
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4.7.3(L) continued

sign[£(1.01, 1.02) - £(1,1)]

n

sign [8(.01) - 3(.02)]

sign [0.02], which is positive.

Since £(1.01, 1.02) - f£(1,1) is positive

Fl( 101 30205 E(3:1)

Notice that equation (11) does

not tell us the size of

£(1.01, 1.02); it is a very gqguick way [compared with computing

£(1.01, 1.02)] for determining
exceeds f(1,1).

whether or not £(1.01, 1.02)

e, In the event that fx(a,b] =‘fy(a,b) = 0, we have already seen
that equation (1l1l) does not apply. This is, to say the least,
a bit distressing since we are particularly interested in the
sign of [f(a + h, b + k) - f(a,b)] when we have a point (a,b)

at which £, (a,b) = £ _(a,b) = 0.

To overcome this problem we

use the extended mean value theorem (or Taylor's Theorem with

remainder [for review see Section 18.4, Thomas]), which says
that if F(t) together with its first n = 1 derivatives are
continuous on an interval containing 0 and 1, then there exists

a number tl' 0 > t1 > 1 such that
(n) n (n+1) n+l
F(t) = F(0) + F'(0)t + ... + & (Ot  F 53 s e (13)
n! (n + 1)!
Letting t = 1 in (13) yields
(n) (n+1)
Fil) = P0) + F(0) + ouu + L0V 5 F (t1)
n! (n + 1)!
or
(n) (n+1
FEL) = RO = FO0) 4 ... 4 BanO) S B Xew) , some t, where

Part (c) was the special case of (14) where n = 0. We next try
to see what happens when n = 1. When n = 1, equation (14) tells

us that there is a number 0 < t1 < 1 such that

S.4.7.19
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4.7.3(L) continued

F(l) - F(0) = F'(0) + F"(t3) . (15)

From equation (8) we have already shown that F'(t) = hf + kfy
where x = a + ht, y = b + kt. Using the chain rule again,

this time on F'(t), we obtain

X+ [P (8)]

[F'(t)]x dt Yy

F" (t)

Il

32

h[F'ft)]x + k[F'(t)]y

30 il .
= h 5o [hf, + KE ] + kgolhf, + kE ]

h[hfxx + kfyx] + k[hfxy # kfyy]

_ G2 2
= h fxx + 2hkfxy + k fyy‘

Putting these results into (15) and recalling that F(1l) - F(0) =
f(a + h, b + k) - f(a,b), we see:

f(a + h, b + k) - f(a,b) = hfx{a,b) - kfy(a,b)
Fezigd
- f[h fxx(a + htl, b + ktl}

- 2hkfxy(a + htl, b + ktl)
9
+ k fyy(a + htl, b + ktlil.

Then, since fx(a,b) = fy[a,b) = 0, we obtain

f(a + h, b + k) - £(a,b) = %[hzfxx(a + hty, b+ kt))

+ 2hkfxyta + htl, b + ktl)

2

x 16

+ k fyy(a + ht,, b + ktlll (16)
i i i b) t

We now invoke the continuity of foxr fxy' and fyy at (a,b) to

conclude that if h and k are sufficiently small and if at

least one of the numbers fxx(a,b), fxy{a,b), fyy(a,b) is

unequal to zero, then the right side of {16} has the same

S.4.7.20
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4.7.3(L) continued

4 2 2 )
sign as h fxx(a,b) + 2hkfxy{a,b) + k fyy(a,b) [if fxx(a,b) =
fxy{a,b) = fyy{a,b) = 0 we would have to try n = 2 in Taylor's
Theorem with Remainder, etc.].

In other words, if fx(a,b) = f (a,b) = 0, then unless

2 2 _
h%f,, (a/b) + 2hkE (a,b) + K°f (a,b) = 0

sign[f(a + h, b + k) - f(a,b)] = sign [hzfxx(a,b} + 2hkf, (a,b)

2
+ 2hkfxy(a,b} + k fyy(a,b)].
(17)
[If h2f + 2hkf + sz Ja,b)= 0 we must look at the term
XX Xy v
involving f''' (t) etc. just as in the case of a single variable].

From the result in part (e), we would like to analyze the sign
2 2
of h fxx(a,b) + thfxy(a,h) + k fyy{a,b}.

[Keep in mind that h and k are the "unknowns". fxx(a,b),

fx (a,b) and fyy(a,b) are fixed constants determined by f and
(a,b)].

2 2

Let g(h,k) = h fxx(a,b} + 2hkfxy(a,b) + k fyy{a,b).

Then

- we 2 2
g{h,k)fxx(a,b) = h ﬁxx (a,b) + 2hkfxy(a,b)fxx(a,b} + k fyy

(arb)fxx(a:b)

2

]

2
h fxx (a,b) + 2hkfxy(a,b)fxx(a,b)

2

& X2 2(a,b)* = X% %(a,b) * kK>
Xy Xy

fyy(a,b)fxx(a,bl

2 2
[hfxx(a,b} + kfxy(a,b]] + k [fxx(a,b)fyy(a,b)

2
= fxy (a,b)]. (18)

* Again we have employed the usual trick of completing the
square,

5.4,7.21
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4.7.3(L) continued

On the right side of (18) we see that our first term, being a
perfect square, cannot be negative. Hence the right side of
Sk 2
18) must b - i
(18) mus e positive as soon as [fxx(a,b)fyy(a,b) fxy (a,b)] is
positive.

We now analyze (18) by cases.
i 2
Case 1: fxx(a,bjfyy(a,b) - fXY (a,b)> 0.

In this event the right side of (18) is positive. Namely
[hfxx(a,b} + kfyy(a,b)]z, being a square, is non-negative, k2
is non-negative. Hence if k # 0 we have

2 2 2
[hfxx(a,b} + kfyy(a,b]] + k [fxx(a,b)fyyta,b] - fxy (a,b)]> 0

> 0 >0 >0

If k = 0 then h # 0 since (a + h, b + k) # (a,b), so in this case
the right side of (18) is [hfxx(a,b)]2 which is positive unless
f__(a,b) = 0. But in Case 1 f__(a,b) cannot be zero since in
XX XX, 5 _ _
that even fxx{a,b)fyy{a,b} - fxy (a,b) equals *fxy (a,b) which is
non-positive, contrary to our assumption that f__(a,b)f __(a,b) -

5 XX vy
fxy (a,b) > 0.

So in Case 1 the right side of (18), under any circumstances,
must be positive. Hence, so also must the left side of (18) be
positive.

Now the sign of g(h,k) [=h’f_ (a,b) + 2hkf, (a,b) + szyy(a,b)]
is the same as the sign on the left side of (18) (i.e., positive)
provided fxx{a,b) is positive; it is negative if fxx[a,b) is
negative, and the case fxx(a,b] = 0, as we mentioned earlier,

cannot occur.

When g(h,k) is always positive, so also is f(a + h, b + k) -
f(a,b) [this follows from (17)] and in this case f(a,b) is a
minimum, Similarly if g(h,k) is always negative so also is
f(a + h, b + k) - f(a,b), so in this case f(a,b) is a maximum.

In summary of Case 1, then

S5.4.7.22
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4.7.3(L) continued

_ - _ 2
if fx(a,b) = fy(a,b} = 0 and fxx(a,b}fyy(a,b) fxy (a,b)> 0
then f(a,b) is a maximum if fxx(a,b)> 0 and minimum if fxx(a,b)
0 [the possibility that fxx(a,b] = 0 is excluded by the premise

2
that fxx(a,b)fyy(a,b) - fxy (a,b)> 0].

2 2
Case 2: fxx(a,b)fyy{a,b) - fxy (a,b) <0

Now the last term on the right side of (18) is negative while
the first term is positive. Hence the sum may be either
positive or negative depending on the magnitudes of the
individual terms. For example, with k = 0, the right side of
(18) is [hf_ (a,b)1° which is positive. On the other hand the
first term on the right side of (18) is zero if

ho_ fx (a,b)

= - . Aiss
fxx(a,b)

or if

Kk _ fxx(a,b}

h —_
fxy(a'b)

Not both fxx(a,b) and fxy(a,b) can be zero, also

2 ; :
fxx(a,b)fyy(a,b) - fxy (a,b) could not be negative. So if
we pick h and k to obey this ratio (and notice that holds
for small values of h andk the right side of (1f) is
negative.

In other words, when Case 2 applies f(a + h, b + k)- f{a,b)
takes on both positive and negative values in any neighborhood
of (a,b). That is

2
If fx(a,b] = fy(a,b} = 0 and fxx(a,b]fyy(a,b) - fxy (a,b)> 0
then (a,b) is a saddle point of f.

As a partial check notice that our "intuition" indicates a

saddle point if fxx(a,b) and fyy[a,b} have opposite signs.

S.4.7.23
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4.7.3(L) continued

Namely, the "slice" x = a yields a minimum (maximum) at (a,b)
but the "slice" y = b yields a maximum (minimum) at (a,b).
Notice in thls case that f (a b)f {a b)< 0 so that £y (a,b)
fyy(a (b) - £ {a b)< 0, as 1t shou;d be.

A word of caution, however, notice that even though f {a b)

and f {a b) may have the same sign [so that f (a b)f (a,b}> 0]

it may happen that f {a b) is sufficiently larqe so that
{a,b)fyy{a,b) - fxyzta b) is not positive. Thus, merely

knowing the signs of fxx(a,b) and fyy(a,b) is not sufficient to

determine the sign of f(a + h, b + k) - £(a,b).

3 & a5 %V . 2
The only remaining possibility is when fxx(a,b)fyy(a,b} - fxy (a,b)

= 0 [of which a special case is fxx(a,b) = fyy(a,b] = fxy(a,b) = 0].

In this case
sign {fxx(a,b)[f(a +h, b+k) - f(a,b)]1} = sign {[hfxx{a,b}

2
+ k b
fyy(a ]] } v

sign[ Af] = [sign fxx{a,b]] unless hfxx{a,b} + kfyy{a,b} # 0.

Choosing h and k so that hfxx{a,b} = kfyy(a,b} = 0 means that
we cannot determine the sign of Af. 1In summary

= - £ 2 -
1f £ (a,b) = £ (a,b) = 0 and £ (a,b)f_ (a,b)-£ “(a,b) = O we

cannot conclude whether f(a,b) is a maximum or a minimum.

4,7.4 (optional)

Letting F(t) = f(a + ht, b + kt), 0 < t ¢ 1, we already have

a.
that
F'(t) = hf + kfy l where all partials
5 2 are computed at
Bl = b S thfo ¥k fyy ‘ (a + ht, b + kt)
S.4.7.24
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4.7.4 continued

P ) = AEM(E))Ax, A(E"(t))dy
9x dat gy dt

I (F"(E)), 4 a(F"(t))
ax 9y

= h

2 2
h[h“f + 2
(e hKE o+ KOE

+ k[h2f 4 2hkE__ + k%]
XXy Xyy yyYy

£+ 3n%kf__* + 3hk2f _ * + k°f
XXX XXy Xyy

I}
=

YYY

Therefore,

o = 3 2‘ 2
F'"Y(1) = h fxxx(a,b) + 3h kfxxy(a,b} + 3hk fxyy(a,b)

+ kK°f__ (a,b).

YYy

Therefore since f(a + h, b + k) - f(a,b) F(l) - F(0), we

have F(1) = F(0) + F'(0) + 2 (0, E2(0)

+

or

f(a+ h, b + k) - f(a,b)

[hf, (a,b) + kf (a,b)]
£y (arb) + 2hKE (a,b)

+ k fyy{a,b)]

1 3 2
+~§I[h fxxx(a,b) + 3h kfxxy(a,b)

+ 3hkZf + k3¢

DY+,
Xyy YYY(a )]

[Notice that the terms suggest the binomial coefficients
obtained by expanding (h + k)3 and each term is multiplied by
a mixed partial derivative. The derivative is obtained by

*If all this partial derivatives exist it is customary to write,
say, f to denote f In other words the results
about Hiked partials e§§end§ §o any order derivative.
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4.7.4 continued

differentiating with respect to x a number of terms equal to
the exponent of h while we differentiate with respect to y
the number of terms equal to the exponent of k. For example,
the 4th degree term would be '

h*f(a,b) + 4n3kf(a,b) + 6h%k%f(a,b) + 4hk f(a,b) + k2f(a,b)]
XEXX XXXY XXYY XYYy YYYY

where we are assuming, of course, that the necessary continuity
is present to allow us to differentiate in the order we please.

fix,y) = e*cos vy

fx = excos Y fY = —exsin y

fx{0,0)x= 1, fy(0,0} = 3 . N

fxx = e"cos y, fx = -e"sin y, £ = -e"cos y

fxx(0,0)x= 1 fxny,O) = 2,.fyy(0,0) = -1 ; .
fxxx = e cos ¥y, fxxy = —-e"sin y, fxyy = = e’cos Yy, fyyy= e"sin y
fxxx(0,0) =1, fxxyt0,0) =0, fxyny,O} = =1, fyyy(0,0) = 0.

Therefore,

f(h:k} = f(ofo) = [fxtoao)h + fy{oro}k]

1.2 2
+ 3, (%6 (0,0) + 2nkf, (0,0) = k°£,_(0,0)]
1 .3 2 I
+ 3, (0,0,00 + 3nPke (0,004 3nk’E,
3
+ k°f 0,0)].
Therefore, yyy( )]
B 2 2
elcos k = 1 = [1h + 0k] + [1h% + 0(2hk) - 1k°)
21
, n® + 32Kk (0) + 3hkZ(-1) + k3(0)]
31
Therefore,
1,.2
Pcos k= 1 +h + %hz- %kz + %hB - 1 nx* .
S.4.7.26
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4,7.5

a. We have the surface w = f(x,y) where

3 3

f(x,y) = x7 -y~ - 2xy + 6. (1)
Then
2

fx(x,y} = 3x° - 2y (2)
fy(x,y) = ~3y2 - 2x (3)
fxy(x.y) = -2 (4)
fxx{x,y) = 6X (5)
f = -6y. 6
Yy(ch) Y (6)
Setting fx and fy equal to zero in (2) and (3) yields

3x2 -2y =0 ory-= % x° (7)
-3y2— 2x =0 or x = ~%—y2 . (8)
Substituting (8) into (7) we obtain

3. .3.2.2

y = 5[—§y ]

or

27¢% - 8y = 0.

3 2
Therefore, y(27y~ - 8) = 0, therefore y = 0 or y = 3-
. . ; 2 . . 2

From (8), y = 0 implies x = 0 while y = 3 implies X = -3 .
Hence the only candidates for max/min points of f(x,y) are

(x,y) = (0,0) and (x,y) = (-3, 5.

From (4), (5), and (6) we have

fxy(ﬂ,O) = =2, fxx(0,0) =0, fyy{o,ﬂ} = 0.

Therefore £._(0,0)f. (0,00 - £ 2(0,0) = 0 =(-2)°

erefore £ (0, yy '0” Xy y =
S.4.7.27
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4.7.5 continued

= -4
< B3

Hence by the criterion of Exercise 4.7.3(L), f has a saddle point
at (0,0). From (1), £(0,0) = 6. Hence the surface w = f(x,y) =

50 = y3 - 2xy + 6 has a saddle point at (0,0,6).

Also from (4), (5), and (6) we have

2 2y _ 2 2y .. _2 2, _ _
fxy{— Er j) = _2r fXX( "‘3': 3‘) = 4: fyy{ 3f 3} 4-
Hence

2 2 2 2 P T .
Fol™ 3o BIT_I= 59 5) ~ € 0= 30 B = FRIE0-2)

16 - 4 > 0.

This coupled with the fact that f {—%,%} < 0, tells us that f

3

has a maximum at (—%;%). Since w = X~ = y3 - 2xy + 6, at (—%,2

g)

3 3
= (=2Y _ (2Y . 5¢=2,,2
w—(3) (3) 25 2 + 6

8 _ B .8
=ogCgrrtg*6
C . 8 170
=6 F 355 =S5

Hence, the surface has a relative maximum (high point) at
-%,%,%;g . [There is no absolute maximum. For example, if we
let y = 0 (i.e. the intersection of our surface and the xz-plane)

we obtain the curve

so that w increases without bound as x increases without bound.]
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4,.7.5 continued

b. With w = f£(x,y) = x> +y° + 3x% - 3y2 + 8, we have

£ _ 2

x{x,y) = 3x° + 6x (1)
2

fY(x,y} = 3y° - 6y (2)

fxytx,y) =0 (3)

£ (X:¥) = 6% + 6 (4)

r = - . * 5

fyy(x y) 6y - 6 (5)

From (1) and (2)

1]

fx(x,y} =0 =+ x 0 or x = -2

(6)
fy(X.y} =0+y=0o0ry-=2
From (6) we see that £ .(x,y) and fy(x,y) are simultaneously
zero +> x = 0 and y = 0, or x = 0 andy = 2, or x = -2 and y =0,

or x = -2 and y = 2. That is, the only candidates for max/min
points of £ are (0,0); (0;2): (-ZrO} and ("2112)-

From (3), (4), and (5), we have

2 = — -
fxx(o'O)fyy{o'O) = fxy (0,0) = 6(-6) 0 = -36 < 0.

Therefore, (0,0) is a saddle point of f. Moreover, £(0,0) = 8,
so therefore (0,0,8) is a saddle point on our surface. fxx(0,2)

2 _ L3 B
fyy(ofz) - fxy (0,2) = (6) (6) 0% =36 >0, and £__(0,2) =

6 > 0.
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4.7.5 continued

Therefore (0,2) is a relative minimum point for f

3 3

£(0,2) =05 + 22 + 3(0)%- 3(2)%2 + 8 = a.

Therefore (0,2,4) is a local low point on our surface

2 o faNired o AR o
fxx(-2.0}fyy(-2,0) - fxy (-2,0) = (-6) (-6) 0° = 36> 0
and
£ .(-2,0) = -6<0.

Therefore (-2,0) is a relative maximum of f

3

£(-2,0) = (-2)° + 03 + 3(-2)2 - 3(0)%+ 8 = 12.

(-2,0,12) is a relative (local) high point on our surface.

2 - _ - -
fxx(-2.2)fyy(—2,2) = fxy (-2,2) = (-6) (6) 0 36< 0
£(-2,2) = -8 + 8 + 12 - 12 + 8 = 8

Therefore (-2,2,8) is a saddle point on our surface.

4,7.6(L)

The main aim of this exercise is to help you see how our theorems
involving the chain rule and implicit functions may be used to
simplify the computations which arise in the solution of max/min

problems.

We first solve the problem using "brute force". Letting x and y
denote the dimensions of the base of the box, and z its height,
we have that

Xy + 2xz + 2yz = 108 (1)
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4.7.6 continued

and subject to this constraint we wish to maximize the function
f where

f(x,y,z) = xyz. (2)

We may solve equation (1) explicitly for z in terms of x and y
(being careful to observe that in more complicated problems, we
might by necessity have to use implicit differentiation since
it will not always be possible to solve for z explicitly in
terms of x and y) to obtain:

_ 108 - x
A [ a7 | )

provided, of course, that x + y # 0. [If x + y = 0, then
equation (1) would become

—x2 = 108

. . . = ; 2 2
which is an obvious contradiction since -xX < 0.]

In other words, then, if equation (1) is satisfied, equation
(3) holds. That is, eqguations (1) and (3) are equivalent.

If we now replace z in equation (2)by its value in equation (3)

we obtain

2.2
f(x'y’z) =er+y#0 (4)

2(x + y)

where f(x,y,z) is now a function of x and y alone, since, from
(3), z is a function of x and y. [Paralleling the notation of
the lecture, f(x,y,z) as defined by equation (4) will be
denoted by h(x,y).]

That is

s S o W .
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4.7.6(L) continued

108xy - x°y>
2(x +vy)

h(x,y) = X+y#0 (4')

and hence, the maximum (or minimum) values of h occur when
h (x,y) and hY(x,y) are simultaneously zero.

From equation (4') we have that

B (Ey) = 2(x + y) (108y - 2xy2) - (108xy - xfyz)z
* 12(x + y)1°
so that
| 2 22,
hx{x,y} = 0 +»2(x + y) (108y - 2xy”~) - (l08xy - x"y“)2 =0

«>2y[(x + y) (108 - 2xy) - (108x - x%y)] = 0

Il
o

+>2y[108y - xzy - 2xy2]
2 2
«>2y~[108 - x"y - 2xy] = 0. (5)
Therefore, from equation (5) we have that hx{x,y) = 0 if and
only if either y = 0 or 108 - &% 2xy = 0. Clearly y =0
corresponds to a minimum capacity, so it must be that

108 - x% - 2xy = 0. (6)

Since equation (4') is symmetric in x and y, we may use the
result of equation (6) to conclude that hyix,y] = 0 >

108 - y2 - 2yx = 0. (7)
Equating (6) and (7) yields

' 2 2

108 - x© - 2xy = 108 - y~ - 2xy

or

i3

E3 Ea

L3 2
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4.7.6(L) continued

and since x and y are non-negative, it follows that x = y.
With x = y, equation (6) [or (7)] becomes 108 - 3x2 = 0 or

X = 6.

Therefore y = 6, and from equation (3), z = lﬂﬁii_ﬁﬁ = ¥,

Consequently the box has a 6" by 6" base and a height of 3".

Note #1

If we solve this problem using the format of our lecture we

have

flx,y,z) = xyz

and

g(x,y,z) = 0 where g(x,y,2z) = xy + 2xz + 2yz - 108. (8)

Assuming that equation (8) determines z as a differentiable

function of x and y, say z = k(x,y), we have

f(x,y,2)

hix,y) =1, = ki(x,y) .

Hence by the chain rule

_ 3z
hx_fx"_fzﬁ
B (9)
9z
h =£f + £ s
Y b'§ z 9y
while g(x,y,z)1= 0
9z _
9y Y 9 ax = ¢
s (10)
9z _
Using the facts that f(x,y,z) = xyz and g(x,y,2) = xy + 2xz +

2yz - 108, equations (9) and (10) become
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4.7.6 (L) continued

_ 92

hx = yz + Xy =

3z

= XZ + —

hy Xy 3y
and

9z

y + 2z + (2x + 2y)55 = 0

92
X + 22 + (2x + 2y)=— =0
(2x y)ay

so that

_ =(y + 2z)
iEx + y)

a2l
™

@
"

_ =[x + 22z)

T 2Ty .

%‘N

Accordingly h, = hY = 0 then become

Yz - (y + 2z) = 0
ZEx ¥ y)

xz - xy(x + 2z) _
2ix + v) =: 0

or

2(x + y)yz - xyl(y + 2z)
2(x + y)xz - xy(x + 2z)

or

or

v2(2x - x)
xztzz - y)

o
o ©
———

I

(9")

(10")

(11)

(12)
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4,.7.6 (L) continued

and since x = 0 or y = 0 implies that h(x,y) is minimum,
equation (12) tells us that 2z - x = 2z -y = 0; or x =y = 2z
whereupon we obtain x = 0, y = 6, z = 3 from equation (1).

Notice that this method is the implicit equivalent of the
technique used in the solution of this exercise.

There is a rather nice "trick" that is sometimes helpful in
simplifying this type of problem. The "trick" is known as the
method of Lagrange Multipliers.

Note #2.Lagrange Multipliers

In Note #1 we were seeking hax/min values for f(x,y,z) subject
to the constraint that g(x,y,z) = 0. From equations (9) and
(10) we could conclude that

j=2
Il

Hh
£
Fh
T

= (13)
h

i
g
+
=
T
L?

y 'y 'z g,

provided g, # 0.

If we now let hx = hy = 0 in equation (13) it follows that
fz .
fx = 9xl5] (14)
z
£
z
£ = —] . (15)
y = 9%I5}

added to which we have as a triviality,

£
= 5 16)
£, qz[gz}. (
In n-tuple notation, equations (14), (15), and (16) may be
combined to yield
£,
{fxf fy, fz) L [a;] (gx;gy:gz) - (l?)
In other words the points g(al,az,aB) at which f(x,y,z) can
have maximum or minimum values, subject to the constraint
5.4.7.35
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4.7.6 (L) continued

g(x,y,2z) = 0 must satisfy
£, (a)

[fx(g_). fy(gh fzfg)] = [gx (a), gy(g}, g, (a)] (18)
g,(a)

or

g g £,(9)

Vf(a)= AVg(a) where ) = (18")
g_(a)

(There is a nice geometric interpretation of (18') which is
discussed in detail in Section 15.11 of Thomas. It should be
noted, however, as we shall soon see, that our approach works
for any number of variables while the geometric interpretation
does not apply for more than three variables)

If we now use hindsight and begin with our result in (14'), we
may introduce the concept of a Lagrange Multiplier as follows:

To maximize or minimize f(x,y,z) subject to the constraint
g(x,y,z) = 0, construct the function

K(x,y,z,\) = £(x,y,2) - Ag(x,vy,2)

and find values of x,y,z, and for which kx' ky’ kz' and
are simultaneously zero.

X
simply repeats the constraint that -g(x,y,z) = 0 [which is the

(I.e., kx = 0 says fx - Ag_ = 0 or fx = kgx, etc. while kk =0

same as g(x,y,z) = 0])

More generally, suppose we want to maximize or minimize
f(xl,...,xn} subject to the constraint that g(xl,...,xn} = 0
Our previous theory works precisely as before. Namely,
assuming that g(xl,...,xn) = 0 defines X, as a continuously
differentiable function of x,,...,X, ( and this will happen

provided 94 # 0), say, X_ = ¢(xl,...,x ¥

n

n n-1

S.4.7.36
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4,.7.6(L) continued

Then, subject of this constraint, our function to be maximized

(or minimized)is

1 =
EXyreeerx  _qv ¢ (xyeenrx )" = hixy,ooax q)

whence
3¢ )
h = £ + f
ey g Xy 9%
. (19)
hy B EE —a;’;
n-1 n-1 n n-1
and we then find %ﬁ yeu., & by differentiating
=5 9%, _
n-1
1 =
g{xl,xz,...,xn_l, {xl,...,xn_l) 0
to obtain
8¢
g + g —_ = 0
.xl Xn axl
H (20)
4 a#
g + g — =0
Tn-1 *n axn-l
so that
9% Ix
3 _ .1 . 80 a-1 (21)
9x g 9X g
1 xn L X
Using (15) and (17), the conditions that hx = L..= hx =0
1 n
become
gxl )
£y HE, kE===21
1 n xn
These rcome from (19) and (21).
g
X
£ + £ 2 SPE
n-1 n X
Il
8. 4:.7.37
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4.7.6 (L) continued
Ix

£, + f_ (- —=) =0 } This is just an identity.

g
n n X
n

Therefore,

fxn
£, = (—) g,
1 Iy il,
n
fxn
fxn = (;——) gxn
xn
£
*n
So letting A = —— and using n-tuple notation we have
g
*n
(f ,-.-'f } = :\(g ’tt.jg }
*1 *n *1 *n
or
Vf = Aﬁg

just as before [equation (18')].

Lagrange multipliers sometimes simplify our computations, but

not always.

Applying this technique

k(s,y,z,A) = £f(x,y,2) -
= xyz - A(xy

Hence

kx =0+ yz - Aly + 22)

0+ xz - Aix + 2z)

P
Lo
]

k. =0 > xy - A(2x + 2y)

The system of equations

to the present exercise we have

Ag(x,y,2)
+ 2xz + 2yz - 108).

Il
o

0
=0

(22) is relatively easy to solve.

(22)

For

example we may multiply the first equation by x and the second

by y to obtain

S.4.7.38
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4.7.6 (L) continued

xyz - x(y + 2z) = 0 = xyz - y(x + 2z)
or

x(y + 2z) = y(x + 2z).
So that with » # 0,

x(y + 2z) = y(x + 22)

or

2xz = 2yz

whereupon

X = y.

Similarly, multiplying the last equation of (22) by z, we obtain

0

xyz = Az(2x + 2y) = 0 and comparing this with xyz - Ax(y + 2z) =

yields x = 2z.

Notice, at least in this example, that the method of Lagrange

Multipliers was less computationally involved than the more

direct methods.

4.7.7

Let

f(x,vy,2,w) = xyzw (1)

[We use x,vy,2z,w, rather than xl,xz,x3,x4, so that our notation

for partial derivatives will not be too combersome.]

Our constraint is that

X +y+ 2z + w = constant. (2)

Letting g(x%,y,2,w) = x + v + 2 + w, we have that gWE l, so

w is a continuously differentiable function of x,y, and z
5.4.7.39
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4.7.7 continued

everywhere.

Now from (2)

] B
ax
1.4 Mo
9y
14 2 o g
3t
so that
OW _ 9w _ oW _ 5 (3)

Now letting h(x,y,z) = f(x,y,z,w(x,y,2) = xyzlw(x,y,2)],

h = xyzw + yzw
h = Zw_ + XzZw
Y =y

h =

5 Xyzw, + Xyw
so from (3),
h = -xyz + yzw
h = -xyz + xzw ) (4)
hz= -Xyz + Xyw
Since x,y,z, or w = 0 imply that Xxyzw is not a maximum, we may

assume that x,y,z, and w are each unequal to zero, whereupon

when we let hx = hy = hz = 0 (4) becomes
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4.7.7 continued

W =

W=y

w =z

or

X =y =2 = w, as required.
4.7.8(L)

We wish to find the extreme values of f(x,y,z) = x2 + y2 + z

subject to the two constraints

X2 + 2 g = (1)
and
X +y = 1. (2)

That is, we let § = {(x,y,2) = x>+ 2y%> + z> = 1 and x + y = 1}
We then want the greatest and least values of x2 + y2 + 22
subject to the condition that (x,y,z)eS.

One approach is by direct substitution. From (2), if (x,y,z)eS
then y = 1 - x. Hence the points of S have the form (xl,l—x,z}.
Now from (1) any point (x,y,z), in S satisfies x2 + 2y2 + zz= Lz
hence if (x,1-x,z) S it follows that

%% & (L = %)? % 2o = 1

or
z? = 4x - 1 - 3x° (3)
or
z =+ fax - 1 - 3x% . (3")

S.4.7.41
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4.7.8(L) continued

Hence the points of S have the form

(x, 1 - x, + Vax - 1 - 3x° |

So if we restrict our attention to S,

fix,y,z) = x2 + y2 + 22

= x2 + (l-x)2 + (4x - 1 - 3x2)

= g(x).
Now
g'(x) = 2x - 2(1 - x) + 4 - 6x

= =-2x + 2

g"(x) = -2.
Hence g(x) has a maximum when x = 1. When x = 1, then 1 - x =

and 4x - 1 - 3x% = 0, so the point (x, 1 - x, + V4x e B

of S which is furthest from the origin is

2

{1;0;0).

How about the point of S which is nearest form the origin?

Since f is continuously differentiable on S, it must assume its

minimum somewhere on S.

But g'(x) = 0 ++ x = 1 yielded a maximum. Hence the minimum
must occur at an end point of the interval upon which g is
defined. What limits the domain of g? Well, since

(x, 1-x, 2 d4x -1 - 3x2) is to be real, in particular 4x - 1 -

3x2 must be non-negative. Thus,

4 - 1 - 3x2 > 0 =

3x2 - 4x + 1 <0 -

S.4.7.42
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4.7.8(L) continued
(3x - 1)(x - 1)< 0

and this means that (3x - l)and (x - 1) must either be zero or

else have opposite signs

- - - =+ 4+ + + + + + + + + + +
> 3x - 1

x -1

- - - --=-=-[F++++++++
_ 1 _
X—'j' = =
In other words, g is defined on [%, 1) and hence assumes its

minimum either when x = % or x = 1. But we have already seen
that x = 1 yields a maximum for g. Therefore g assumes its

minimum when x = %. When x = %, l -x= %¢ and tﬁ4x—l—3x2 =
+ J% -1 - % = 0. Hence the point of 5§, (x, 1 - x, + Jﬁx-l—Bx:),

which is nearest the origin is (%, %, 0).

A second approach is through partial derivatives. We assume that
our two constraints are consistent and independent so that we may
view x2 + y2 + 22 as a function of x alone (this happens provided
|%%%f%%[ # 0, and this was disclosed in our treatment of functional

dependence) .

We then have

g(x) = £(x,y(x), 2(x)) = x> + [y(x)1% + [(z2(x)1°
Hence
= dy dz
g'(x) 2x + 2y ax 2z Tx . (4)
Ultimately we shall solve g'(x) = 0, but this involves knowing

dy dz i d ;
ax and ai—exp11c1tly in terms of x.

From (2) we have that

5.4.7.43
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4,.7.8(L) continued

X - -1, (5)
From (1), we have that

2x + 4y o+ 22 F = 0 (6)
and putting (5) into (6) we obtain

2x - 4y + 2z g; =0

whence
dz _ 2y - x (7)
dx z

provided, of course, that z # 0.

(If z = 0, then x2 + 2y2 + 22 = x2 + 2y2: hence z

x2 + 2y2 = 1, This, coupled with x + y = 1, or x

]

0 implies
1 = ¥y

means that
(1 - y)2 + 2y2 = 1

or

1 -2y +3y" =1

or
y(2 - 3y) =0
or
2
y =0o0orys= T . (8)

What (8) tells us is that (7) is undefined (division by zero)
whenever y = 0 or y = % . Thus, the points corresponding to
these y-values must be checked separately. [Using hindsight,

S.4.7.44
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4,7.8(L) continued

our first method showed that y = 0, that is the point (1,0,0) was
furthest from the origin, while y = % corresponds to (l, %, 0)

which was nearest to the origin.]

Assuming that z # 0, the substitution of (5) and (7) into (4)
yields

g'(x) = 2% - 2y + 2z {2¥ = X)
z
=2[x -y + 2y - xl.
Therefore,
g'(x) = 2y
g"(x) = S0} Q¥
= 2(-1)
= -2,

Therefore g(x) is maximum when y = 0 (i.e., when x = 1 since
x + y = 1) which agrees with the result of our first method.

To find where g is minimum we must check where g' does not exist
and, as we have seen, this is when z = 0 whereupon y = % and

X = Thus,

W=

» 0)

(WIIN]

z
(30

is closest to the origin.
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Block 4: Matrix Algebra
Quiz

1. continued

4 =3 1
atals o0

1 1 -1
Check

1 2 3 4 =3 1
2 5 7¢]-3 0o 1

Il

(b) AX = B implies that
A lax) = a71s

or

ala)x = a7ls

or

I.X = A YE,

Hence,

x = a"lB

4 =3 1
at=l3 o 1
1 1 -1

and we are given that

6 + 3
15 + 7
21 * 9

=3+ 0 + 3
=6 + 8@ ¥ 7
-9+ 0 +9

1 #&2+=.3
2 & & =7
3+ T =19

(2)

5.0.4.2
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Quiz

2

1. continued

20 3
B=1]4 5]|.
6 7

r4 =3 1
X = 1-3 1
1 -1 7

8 - 12 + 6 12: = A5 + 7

= |-6+ 0 + 6 -9+ 0 + 7
|_2 + 4 -6 3+ 5 4+ 7
4
= -2
1
Check
3 2 3 2 4 2 & @+ 0 4 - 4 + 3 2 3
2 &5 0 -2|=1]4+0+0 8 - 10 + 7| = |4
3 71 9 0 1 6 F O = {0 12 - 14 + 9 6 7

We may row-reduce

%) % Xy X )by By by By
1111:1000
1 2 3 3;6 I 0 0
2 3 4 41 0 0 1 o0
3211:0001
to obtain
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2. continued

1 1 1 1 1 0 0 0
0 1 2 2 =1 I 0 0
0 1 2 2 =2 0 1 0
0 =1 =2 =2 =3 0 0 1
X)X, X3 X, bl b2 b3 b
1 0 -1 =1 2 =1 0 0
0 1 2 2 =1 1 0 0
0 0 0 0o -1 -1 1 0
0 0 0 0. =5 0 1 1

The 3 row of (1) tells us that

-bl = bz + b3 =0

or

while the 4™

-Sb1 + b3 + b4 =0

or

Putting (2) into (3) yields

row of (1) tells us that

(1)

(2)

(3)

b, = 5b; - (b, + bz)

or

b, = 4b1 - b,. (4)
S.4.0.4
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2. continued

In other words, unless b3 - bl =7 b2 and b4 = 4bl =
system has no solutions.
the system has no solutions since then b3 # bl +

b, # 4b; - b,).

(b) 1If b1 = b2

must equal 3 (i.e., 4bl = bz}.

In particular, with bl

the given

= 1, then b3 must equal 2 (i.e., bl + b2) and b4

In this event, all solutions are determined by the first two rows

of (1).

Namely, we must have

1 3 4 1
and
x2 + 2x3 =+ 2x4 = —bl

or, since bl = b2 = I,

xl = ¥ ok x3 + x4

and |

Xz = =2 (x3 + x4)

o

(5)

From (5), we see that we may pick, for example, X and x, at

random whereupon Xq

—2(x3 + x4).

3. Written as a linear system, we have

f(x,y,2) = (u,v,w)

where

is then given by 1 + Xy + X%, and X, by

S.4.Q0.5
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3. continued

u = 2x +
v =x+ 2
w’ﬁ

3y + 3z

y + 2z

2% + iy 4+ =7

Using our row-reduced matrix technique, we have

(x vy
=
2 3
2
1
2
2
L2 1
2
0 -1
\_0 -3
0
=1
0
X Yy
The last
-3u + 4v
That is,

z u v w)
. -
0 "\
0
N
0
"
0
2 1 0
-1 =2 u
=3 =2 1J
0 -3
=1 1 =2 0 - (1)
0 -3 4
z u v w

the image of f is the plane (in uvw-space) w = 3u - 4v.

Since a plane is 2-dimensional, it is obvious that f is not an

onto map.

S.4.0.6
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Solutions

Block 4: Matrix Algebra
Quiz

4. (a) Letting

u = x3 - 3xy2

3x2y - y3

<
1l

we want x and y such that u = 2.001 and v = 11.001.

From (1), we have

(1)

du = (3x2 - 3y2)dx - 6xy dy
(2)
2 2
dv = 6xy dx + (3x" - 3y7)dy
so that from (2)
2 2 2 2, 2 2
(3" = 3y“)du = (3x" - 3y") dx + (3x” - 3y7) (-6xy dy)
2 2 2 ;
6xy dv = (6xy) dx + (3x" - 3y7) (6xy dy)
or
(3x2 - 3y2}du + 6xy dv = {9x4 + 18x2y2 + 9y4)dx
2
= 9(x2 + y2) dx
or
2 2
T Bl JSNET . . . (3)
3 . 32 3 5.2
3(x" + ¥v°) 3™ + ¥7)
Returning to (2), we also find that
-6xy du = -6xy (3x> - 3y2)dx + 36x2y> dy
2 2 2 2 2 2 2
(3x° = 3y~ )dv = 6xy(3x”~ = 3y“)dx + (3x° - 3y“) dy
or
2 2 g . o ®
-6xy du + 3(x” - y7)dv = 9(x° + y°) ady
S.4.0.7




Solutions
Block 4: Matrix Algebra
Quiz
4. continued
so that
2 2
ay = ——2%y du 5 + & = ’2 av. (4)
3{x2 + yz) 3(x2 & yzl

Utilizing the approximation that Ax = dx (= AXy on
(= Aytan), we may combine (3) and (4) with x = 2, y =1, du = dv =
0.001 to obtain

), Ay = dy

ax = —2— (0.001) + —2— (0.001)
3(5) 3(5)
_ -007
75
or
AX = 0.000093
and
_ -4(0.001) , 3(0.001)
dy = 75 e 75
_ -0.001
= =95
or

Ay = -0.000013.

Hence, the required point is approximately

(2 + 0.000093, 1 - 0.000013),

or

(2.000093, 0.999987).

5.4.0.8
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Solutions
Block 4: Matrix Algebra
Quiz

4. continued

In summary,

and

3(2.000093)2(0.999987)

5. We have

f(x,y) = x> + y2 - 6Xy

Hence,

_ 2
fx(x,yj = 3x" - 6y + 6
fy(x,y) =2y - 6x + 3

For max/min values, we

H
I
o

[
I
o

so by (1), we have

X =2y + 2 =10
2y = 6x + 3 =0
or

x2 -2y +2 =0
2y = 6x = 3
Therefore,

x2 - 6x + 5 =20

(2.000093)> - 3(2.000093) (0.999987)2 ~ 2.001

(0.999987)° ~ 11.001.

+ 6x + 3y *+ I,

3(x2 = 2y + 2)

wish to solve

(1)

(2)

5.4.0.9




Solutions
Block 4: Matrix Algebra
Quiz

5. continued
or
X =1, 0r X = &,

Looking at the second equation in (2), we see that if x = 1, then
2y =6 - 3 o0ory= %: and when x = 5, 2y = 30 - 3 so y = 7;.

Hence, our candidates are the points {1,3) and (5,21).

Noticing that

2
% af e 0P L e 3
t1,3 =1+ (3) e @ + 6 +3 41
- 9 9
=1+ 7 -9+6+32+1
_ 23 _ <8
=% =57 )
and
27 3, (27) 27 27
t5,2h =5°+ (F) -erFh 6 + 33D +1

81

= 125 + = T 405 + 30 + 35 4+ *
3
= -2, (4)
Comparing (3) and (4), it appears clear that f attains a minimum
at x =5, vy = %; and that this maximum value is —l%é.

We should be a bit suspicious about f(l,%) being a maximum since,
for example

= 3 _ 3
£(2,0) = 21 > T = f(l,2 5

To play it safe, we observe that

S.4.Q0.10
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Solutions
Block 4: Matrix Algebra
Quiz

5. continued

fxx = b6X%
b = 2
Yy

fxy = -6.
Hence,

xx Tyy - fxy = 12x - 36
and

<0 ifx=1
12x - 36

>0 4if x =5

Hence, X = 1 corresponds to a saddle point while x = 5 corresponds
to a minimum (not a maximum since fxx(s'Tf) = 30 > 0 » "holding
water") .

In other words, x3 5 y2 - 6xy + 6x + 3y + 1 is at least as great
as -l%é, but it can be made as great as we wish by appropriate

choices of x and y.

S.4.0Q.11
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