Solutions
Block 5: Multiple Integration

Unit 6: Surface Area

5.6.1 (L)

S projects onto the circular disc x2+ y2 < 1 in the xy-plane.

0 in z = 1 - x2 - y2).

(We get this information by letting z

Now, a normal vector to S at (xo, P 1 - xoz- yoz) is given by
9z 7 9Z >
'é—-}-(-l‘f‘*ﬁj—k.

(If this is hazy review Section 15.3 of the text), or
-2x1 - 2y3 - Kk,
so that

2x1 + 2y§ + K

/4x2+ 4y2+ 1

. % >
is a unit normal, u, -

Hence an element of surface area in terms of dx and dy is given
by

5.5.6.1
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5.6.1(L) continued

dy dx _ dy dx
[En- x| (2x1 + 2y3 + k) - k
/ ax?+ 4y2+ 1

/ax® + 4y® + 1 ay ax.

Thus, the surface area of S is given by

ff Jax® 4 4y + 1 dy ax. (1)

x2+ yz <1

The form of this integral suggests polar coordinates, in which
case the region {(x,y): x2+ y2 < 1} is written as
{(r,8): 0 <r<1,0 <86 <2m}. So, written in polar coordinates

formula (1) becomes

f2“fl/4r2 +1 rdr 4e

0 0

r=0de

o k_‘\
™o
=

=
——
-9
a1
N
g
[
e
[STE

o
=
TN
W

1
= ﬁ f(S -1 ) de
0
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5.6.1(L) continued

We have elected to start off with this exercise because the
region S happens to be a surface of revolution. Consequently
we may check our answer by the technigue used for finding sur-
face area in Part 1.

Namely, notice that the surface S may be obtained by revolving
the portion of the parabola; vy = 1 - xz, y > 0, about the

y-axis. That is

(0,1)
y=1-Xx

ds

~
s

In other words the surface area should also be given by

Jrl 4 /- a3, 2
2T X ds=f 27 x VY1 + (@ dy. (2)

0

Since y = 1 - xz, it follows that - -2x%, so that
ax 1 dx,2_ 1 dx
i ) g and (H§} =5 Hence

i3 /I & c%rz

\8]

]

2rx V1 + 1

4x2

2 mx 4x2 + 1
X

Il

/ftixE + 1

1= x2 implies that
5 - dy.

and this, in turn isw ¥5 - 4y since y
X2 =1 =g, oF 4%2 1 = 4(1 - g} ¥ 1

S5:2.60.3
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5.6.1(L) continued

Putting this information into (2) yields that the required

area is
l —_
f /5 - dy dy
0
i
- 3
= - = (5 - 4y)2
5 Nz |
3
= _ g2
= 3 [1 57]

| W

I | 2 _ T _
= E(S - 1) = E—(S V5 - 1)

which checks with our previous result.

5.6.2

Pictorially we have

z = 1 meets 2z = xz + y2 in the
circle 2 = x2 + y2 (i.e., let

z = 1 in 2z = x2 + yz).

So our surface projects onto the region x2 + y2 < 2 in the

xy-plane.

Our element of surface area is

dy dx

- -
| Un. K|

and‘_{ln is given by

§.5.6.4
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5.6.2 continued

+

02 2 9z, 2
hs;) + {gy) + 1

2 9z

and since, z = %(x
Consequently (1) becomes

Ix

X1 + yg -k

= "
fxz + y2 + 1
Hence, the surface area is

ff v‘x2+y2+ldydx
2 2
X"ty <2

and introducing polar coordinates yields

fzyfi v‘rz + 1 rdr de

0 o0
3 V2

27 2
= f % (r2 + l) r=0 dae
0

3
=22+ n?- 0+ 13

w

= %1[3 JE = 11,

+ y2) it follows that 22 = x and

(1)
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5:.i6:4:3

Since the plane is cut by the cylinder x2 + yz = 1 it is clear

that the cut portion of the plane projects onto the region

xz y2 < 1 in the xy-plane.

A normal vector to the plane x +y + z = 1 is 1 + 3 + k.
Consequently En . k, in this case, is 1/ V3.

Thus, our desired area is given by

SS e

-
X%+ y? =g 8- K|

= ff /3 dy dx

x2+ y2 < 1

2m~1
=ff /3 rdr ae

0 0

5:5.6:6
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5.6.4

Our diagram, in the first octant is given by

sphere

x2+ y2+ 22

\ ?——-'——-
—_—

surface whose area we seek

>Y
cylinder x2- ax + y2 =0

A

The surface we seek has, by symmetry, four times the area of

the region shown above.

At any rate we have that the surface area in question is given

by

*
9z, 2 22,2
4 ff/(a—x} + 5%+ 1 ay ax (1)

x2 - ax + y2 < 0
or

2
(.~ & 2 + y2 < %-

*
Here we have combined a few steps and rewrote

g EE, as /Q%i)z + (%%)2 + 1 dy dx directly.

55647
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5.6.4 continued

) faf Yax—-x /x " .
0 0

a = 3 y

Since

(1) z =+ /a’- x%- y2 2.

X
/

-

dy dx. (2)

x% - ax + yz =0
or

y = Yax - xi

projection of the
surface on xy-plane

(ii)

Simplifying (2) yields

(3)

ax-x
4 jr .l. a dy dx

and again, polar coordinates are suggested.

since the polar form of x2 - ax +

y%2 = 0 is given by

S.5.6.8
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5.6.4 continued

r2 -~ ar cos 8 = 0 or r = a cos @, formula (3) becomes

L ac 8
fzf o8 ar dr de
0 0

[1=S

az—-r2

m a cos @
2
=4af S - de
0
m .
2
= 4a f [- /az - azcoszs -(- /a")] de
0

]

T
4a2 fz(l - sin @) de
0

i
2
6=0

4a2[9 + cos @

4a2[ % - 1].

5.6.5(L)

Here we see a more "practical" need for surface area in terms of

the mass of a "shell".

Letting do denote an element of area on the hemispherical shell,
we have that the mass of that element is pdo, so that the mass is

}C/L(io . (1)

]

5.5.6.9
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5.6.5(L) continued

Now p(x,y,z) = kz =k /1 - x2 - y2 at each point on the hemis-
phere, and d ¢ is, as usual,

2

32,2 . 22
/322 4 5%+ 1 ay ax

gy ax (2)

1 S x2 = ¥

(just as in the previous exercise with a = 1).

Hence, putting (2) into (1) yields that the required mass is

./PJ[. k dy dx
1

x2+ yz i

The main aim of this exercise is to emphasize that there are
problems in which it is crucial that we replace plane regions
by more general surfaces - quite apart from simply wanting to

find surface areas.

§.5.6.10
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5.6.6 (optional)

Bl S P fh Bh O Pl PR O BE BE Ba e

The main object of this exercise is to emphasize how we compute

Gn when the surface S is given in the implicit form
g(x,y,z) = 0. (1)

In this case we have already learned that Vg is normal to S,
provided of course that we are at a point on S for which

Vg # 0. Thus, as long as Vg # 0, Vg/|Vg| may be used as the
expression for u i and in this case

dy dx

o, - K
n

becomes

lﬁ—ﬂ—l dy dx. (2)
Vg - k

-

The only way that (2) can get us in trouble is if i; - k=0,
but were this to happen it would mean that g ™ 0, in which

case g(x,y,2z) = 0 does not define z as a differentiable function
of x and y (recall in our discussion in Block 4 we pointed out
that if g(x,y,z) was continuously differentiable then glx,y,z) =
0 defined z implicitly as a differentiable function of x and y
if and only if g, # 0).

Applying this discussion to the present exercise, we have that

x2 + yz + 22 = a2. Hence S may be written as g(x,y,z) =0 where

g(x,y,z) = x% + y2 + 2% - a®. Then g, = 2x, 9, = 2y, and

g, = 2z; so that Vg = 2xi + 2yj + 2zk and Vg - k = 2z.

Hence from formula (2), we obtain that the surface area in

question is given by

2 7. 1.2
f/ /’x * Y+ A2 gy ax (2)

X+Y

and since x2 + y2 + 22 = a2 on S, formula (3) becomes

§.5.6.11
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5.6.6 continued

ﬁitl” a dy dx
2. .2 &
x"+y <1

- ff a dy dx i (4)
y2 < a2

2 2 2
e /% - X" -y

A quick check now reveals that our integrand in (4) checks with
that of formula (3) in Exercise 5.6.4.

To be sure, in this problem we did ultimately solve for z
explicitly in terms of x and y, but our main point was to show
that the technique for finding surface areas applies to surfaces
0.

of the form gl(x,y,z)

5.6.7 (optional)

The main aim of this exercise is to generalize the procedure for
finding surface area to surfaces of the general parametric form

f(u,v)
g(u,v)
= h(u,v)

(1)

N
| L}
o n
In |A
< &
A A
o o

where f, g, and h are differentiable functions of u and v.

The key point is that we may view equation (1) as a mapping of
the rectangular region R = {(u,v):a < u <b, ¢ <v<d} in E2
(i.e., 2-space) onto the surface S defined by (1) in 3-space,

E3. (See note at the end of this exercise).

Analytically, this mapping is no more difficult to define than
it was to define a similar mapping from E2 into Ez, such as when
we discussed mappings of the xy-plane into the uv-plane. From a
geometric point of view, however, things are a bit tougher, but
only because it is more difficult to draw pictures in E3 than

it was to draw them in Bz.

S.5.6.12
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5.6.7 continued

At any rate, from a pictorial point of view, we have that

equation (1) may be viewed as:

v z A' = F(A)= [f(c,d), g(c,d),
4 a(e,d) N h(c,d)]
' (| ESE
|
‘ R I
c b4 | | s
: |
| ' |
| ! |
1 : | II ,
|
| s [ | ”
a bl‘-l I | | 4 y
X
F is defined on R by F(u,v) = [f(u,v),g(u,v), h(u,v)] where
(u,v)e R.
(Figure 1)

With reference to Figure 1, what we can now conclude is that the

surface area of S is given by

f-/ O O (2)
s

- . T
la, = k|

where u is the (outer) unit normal to the surface S at the

point (x,y,z).

The problem with formula (2) is that it expresses things in

terms of x and y (z is a function of x and y on S) while the

5.9.6,13
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5.6.7 continued

equation of S is given in terms of u and v.* Thus, somehow or
other, we must use the chain rule or its equivalent to express

(2) in terms of u and v.

We prefer to avoid the direct use of any method which requires
that we express u and v in terms of x and y (or inversely
which requires that we express x and y in terms of u and v).
For one thing, such an approach may lead to difficult computa-
tions in some cases (i.e., it might be difficult to invert the
equations). For another thing, in some abstract situations,
we might not know how u and v are related to x and y, but only
that S is determined by a pair of parameters u and v.
Thirdly, from a purely philosophical point of view, we feel
that any attempt to convert everything into x and y coordinates
gives the impression that the Cartesian coordinate system is
vital to the concept of surface area; and consequently we
prefer an approach that is self-contained in terms of u and v.

To carry out our objective what we do is look to see how the
surface S evolves from the region R. Assuming, as usual,

that our mapping is single-values, we may view S as being made
up of the images of elemental rectangular regions of R. That
is, we partition R into rectangles by the grid of lines u =
constant and v = constant, and we then look at S as being made

up of the union of the images of these rectangles. Pictorially,

*As a special case, notice that when u = x and v = y (i.e.,in
the case that z = h(x,y), which is the case treated in the
text), R and R' are the same region, whereupon formula (2)
becomes

‘/:f dy dx

-> >
R lu_ - k]
and the xy-plane and uv-plane coincide point by point. Thus,
in this case, formula (2) is the usual recipe for computing
the surface area of S when S is given in the form
z = hix,¥y).

5.5.6.14
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5.6.7 continued

~Z N

u = constant

constant

X
(Figure 2)

We now compute the scaling factor necessary to convert the area
of a rectangle in the uv-plane into the area of its image on S.

Again, pictorially

D(uo,vo+ Av) C(uo+ Au, v + Av)

L
D (x0+ axz, y0+ ayz,zo+ AzBJ

CI
A Rax F
ij e
B' (x + &xl,yo+ Ay,

o
zc+ Az™)

Afu ,v,) B(u+ du,v ) A'[E(u,v.),g(u ,v ) ,h(u ,v,)]

= (xoryoi ZO} .

(Figure 3)

The crucial step, as usual in such discussions, now involves
our being able to replace the region dsij by the parallelogram
determined by, say, A', B', and D', which we can do provided

&Rij is sufficiently small.

$.5.6.15
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5.6.7 continued

With reference to Figure 3, then what we are doing is replacing
Asij by &Sij' where

D C
AR, .
1]
A B
(Figure 4)

[Notice that in going from Figure 3 to Figure 4 we are again

invoking local linearity. In effect, we are saying that

locally (i.e. on small domains, aRij] F may be replaced by its
linearization (i.e., the one which maps &Rij onto the parallelo-
gram A'B'C"D")]

At any rate, since we assume that ﬁsij may be replaced by E§ij,

we are "home free" because it is easy to compute the area of

TS.. in terms of the area of AR,..
ij 1]

In particular,

-
A'B'= [f(uj + Au, V), q(uO + Au, vo}] 2 [f(uo,vo),

q(uo,vo), h(uo,vo)]

[f(uo + Au, v ) - f{uo,vo), g(uo + Au, VOJ - g{uo, Vo},
h{u  + Au, v,) - h(u_, V)]

£(u  + Mu, v)) - £lug, v) glu, + du, v) - glu,, Vo)

= [ r r

Au Au

h(uO + Au, vo) - h(uo, vo) i i

A v

and since on the straight line A'B', the average rate of

5.5.6.16
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5.6.7 continued

change change equals instantaneous rate of change we have that

A'B' = [fu{uo,vo}, gu(uo,vo), hu(uofvo)] Au
_-+
= Fu(uo,vo) Au.

Similarly

alp' = fv{uo,vo) Av.

- -+
Then, since the area of Agij is given by |A'B' x A'D'| we have

that the area of a§ij is
- e
|F, (u ,v,) x F (u_,v.)| du Av
- -
& |Fu(u0,vo) X Fv(uo,vc)| AR

R. : -
1]

If we now sum over the entire partition and take limits we see
that the surface area of S is given by

- >
'/:/]Fu x F | dap
R

where

s = {[f(u,v), g(u,v), h(u,v)]l: (u,v)eR}

and

F: R+S with f(u,v) = [f(u,v), g(u,v), h(u,v)].
In the case that S is given by z = f(x,y) we have

X =1

v
= f(u,v).

N
I

Therefore,

F(u,v) = (u,v,f(u,v)

5.526.17
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5.6.7 continued

and
Fy, = (1,0,£)
F, = (0,1,£f).
Hence,
i 3 k
FoxFo= |1 0 £
0 1 £
e Ty
= ful fvj + k
+ 2 .
= - fxl = fyj + k (since x = u, and y = v)
Consequently
> <> _ 2 2
|F, x F | = /%X +ES+ 1,

and the formula established in the previous exercise yields that

the surface area of S is

J/. 2 2
f /1 +d, * fY dAR
R

which agrees with our previous result.

A Note on Arc Length and Surface Area

When we define a curve in parametric form (either a plane curve
or a more general space curve) we are very close to having a
non-geometric definition of a curve. For example, suppose we

say that the curve C is defined by

X = t2
= t4 + 1 0 <t<1 (1)
z = t6 + t2
5.5.6.18
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£EY £131 £

Il h a Oa e e

(Since t4 = x2 and t6 = x3, this space curve is the intersection

x2 + 1 and z = x3 + x.)

I

of the two surfaces y

What equation (1) says from a purely analytical point of view
is that if we let R denote the closed interval [0,1] and if we
define F on R by F(t) = (tz, t4 + 1, t6 + 2t) for each teR
then the curve C is precisely F(R); that is, the image of R

under the mapping F.

Notice that this interpretation lends itself to any number of
dimensions. In particular, we define an n-dimensional space
curve to be any continuous mapping from E into E". The usual
geometric notion of a space curve is then viewed as a continuous
mapping from E into E3, and a plane curve as a mapping from E
into E2, Moreover, we say that the curve is smooth if the
mapping is differentiable.

In a similar way one defines an n-dimensional surface as a con-
tinuous mapping from E2 into E". 1In particular, this agrees
with the usual parametric definition of a surface in 3-space.
Namely when we say that S is the surface defined by

f(u,v)

g(u,v)
h(u,v)

™
]

we are saying that we may view S as the image of E:E2+ E3 where
F is defined by

F(u,v) = (f(u,v), g(u,v), h(u,v))

for each (u,v) eEz.

Again, we say that the surface is smooth if F is differentiable.

The point that we would like to make in this note is that arc
length may be viewed in the same way that surface area was
discussed in this exercise; and perhaps by revisiting arc length
at this time, it will become easier to follow the technique
developed in this exercise (since the theory is the same but

the diagrams involve one less dimension).

$.5.6.19
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Rather than look at the general abstract case, let us pick a
particular curve C. Suppose that C is defined by

t2+l

2t

} 1< t:< 2

I

Then the curve C is the image of the interval [1,2] under the
mapping F defined by F(t) = (t2 + 1, 2t). Pictorially, we may
view F as

|
L]
&
28]

-.l l e T [
IO ]i: r!{"r‘rf”; Jz > t 5
! 2E Ny =2 /&1
E \
F(R) = {(x,y): x = tZ + 1, y=2t, 1 <t<2}

Il
Il

{[(z,y): y=2 /1, 1<t <2}

I
I

{(x,y): y=2 1, 2 < x < 5}

In fact, the entire mapping may be viewed in the xy-plane.

Namely
A
(too+ 1, 2ty)
4 D(5,4) F maps [1,2] onto CD
1 —
L
F
3 4 5
5.5.6.20
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Notice that a "small" segment of AB maps onto a "small" segment
of CD and the scaling factor is the slope of CD at some point

on the small segment

7 F(PQ) & P'Q"
Therefore,
|E(PQ)|»PQ sec @

8 tan9=§X.+
dx

sec 8 /1 + (%%)2 >

J F(R) = e (G2 at
1

In other words, we could have interpreted arc length solely in
terms of F(R), etc. It is in precisely this same way that
the parametric form for a surface can be used to develop the

corresponding formulas for surface area.

5.6.8 (optional)

In the case of polar coordinates we have that S is given by:

X = r cos @*
= r sin ©
z = £f(r,8)

and hence,

f{r,e} = (r cos 8, r sin 8, f(r,8).
Therefore,

= (cos 8, sin 8, fr)

0

iy 1y
Il

(-r sin 8, r cos 6, fg)

* The symbols u and v are not important, but if one wished to
adhere to the notation of the previous exercise we would

write
{x u cos v
y u sin v
z

f(u,v)

o

S.5.6.21
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5.6.8 continued

I(fg sin & - rfr cos 8) - ?(fgcos e + rfrsin e)

+ k{{ 00529 + r sin2 8)

Y

r

s 2 2 2
(f951n e - rfrcos 8)° + (fgcos 8 + rfr51n 8)"+ r

= £ 2sin29 ~ 2rfrfgsin 8 cos B + rzfrzcoszg +

and
i 3 Kk
Fr X Fe = cos 6 sin @ fr
-r sin @ r cos 8 fg
-
Therefore,
2
Ifr X fg | =
)
2 2
f9 cos”8 + 2rfrfB
= f 2 + r2f 2 + rz.
] 2

Thus, the required surface area is

ffl?r x ?'gl dap
R

=fj/fgz+r2f2+r2 dr de*
r

R

b. For a plane region S5, z = 0.
case f, = £_ = 0, so that J%ez

e ¥
becomes

-[J;dr de
R

— 2= 2
+ r fr

sin 8 cos 8 + rzfr

2 2

sinze + r

(1)

That is, £(r,8) = 0. In this
r, so that (1)

2

*Notice here that dA

= dr d8 not rdrd® since the region R

is in the uv-plane (or in our present context,

not the xy-plane.

the r@-plane,

S.5.6.22
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5.6.8 continued

which agrees with the usual formula for finding (plane) area in

polar coordinates.

Iif f0 = 0 (which, by the way, is always true for a region of
revolution about the z-axis since the height of an element
remains constant through the revolution) then formula (1)

becomes

ff/r +r dr d4de

or
1 2
V1 + fr rdr de. (2)
R

In this case our region R is defined by
{ -2
r,8): r =5, 0 <8< m}
and our surface S is given by

Z =4+ V4 - %" - y2

or
Z = /ﬁ - r

In terms of formula (1) this means that f(r,8) = /4 - rz, so
that f, = 0 and f_ = -r/ Ja - £2.

Since f9 = 0, formula (2) applies and we see that the surface

area is given by

7
ff’1+—~rﬁ— rdr 46
R 4 - r

9
m
f[derde
o Jo /a - 2

$.5.6.23
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5.6.8 continued

e
de

r=0

m
-2 f(/4—(%)2—/4—0)d9
0

W =%
=-2f('/.1_5%9—-—2)de
0

I

m
f(‘:—./us-t;u2 ae
0

m
= 41?-‘/. 16 - 8~ de

0

gin L %
= 47 - 16 f coszu du

0 4

(where u = sin-l % i il.e.,

v1le - &
.=l 7
sin 'a-
=411—8f (1L + cos 2u)du
0
sin-l%
=47 - 8 [u + % sin 2u =0
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5.6.8 continued

TR ¥
L e ool g 18 o
=47- 8[sin 2 + B T ]
2
_ _ . =171 _ m/l6 -7
= 47 8 sin T -_—.2_

44 (3,14) - 8 gin"%{0.785) - 1.57 /16 = (3.14)2
V12,56 = 8(.91) - 1.57 VE. 1%

v 1.4
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