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Study Guide
Block 5: Multiple Integration

Unit 6: Surface Area

Overview: (Actually an introduction to Section 16.9 of the Text)

In Part 1 of our course, we discussed briefly the problem of
finding areas of surfaces of revolution. In the same way that
the problem of finding volumes was more general than finding
volumes of revolution (i.e., not all solids are obtained by re-
volving a plane region), the problem of finding surface area

is more difficult than what may have been indicated in our

study of surfaces of revolution. Our aim in this unit is to
broaden our concept of surface area (and as an optional exercise
we will show that the treatment of surfaces of revolution is

a special case of the more general theory).

Recall that our study of volume and area in Part 1 was easier
to handle than our study of arc length. Namely, there were
three important axioms that were valid in the treatment of
area and volume, but only two of these three were valid for
arc length. 1In this sense (even though the degree of sophis-
tication is a dimension higher) we are faced with the same
problem in extending the notions of volume as a double (or
triple) integral to the notion of surface area as a double
integral. [This topic is covered in detail in Section 16.9 of
the text in the special case that the surface has the explicit

form z = f(x,y). While we shall try to make our discussion more
general than that in the text, the main points will be the same.]
Namely, we are without the key axiom that if the one region is
contained within another the surface area of the containing
region is at least as great as that of the contained region.

In other words, when we deal with surface area, we cannot apply
that nice device of "squeezing" the desired region between two
other regions. Consequently, we must be extra careful (just

as we had to be when we studied arch length in calculus of a
single variable) in how we define surface area rigorously.

(The author concludes Section 16.9 with a rather paradoxical
conclusion based on a seemingly harmless way of computing a

surface area.)
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From an intuitive point of view, it seems that we should be able
to partition a surface into a grid in much the same way that we
partitioned regions in the xy-plane into rectangular grids.

The problem, of course, is that it is not easy to define a
basic element of area on an arbitrary surface. For example, in
planes straight lines are very natural for measuring distances;
on a sphere arcs of great circles (i.e., circles on the sphere
whose center is also the center of the sphere) are very natural
for measuring distances; but what is natural surely depends on
the shape of the particular surface. (As a point of information
geodesic lines on a surface are those curves on the surface

which yield the shortest path between two points on the surface;
so that for planes, the geodesics are straight lines while for

a sphere the geodesics are arcs of great circles.)

The typical ploy is to reduce the study of surface area to the
study of plane area. One way of doing this is to project the
given surface onto the xy-plane (we need not restrict our usage
to Cartesian coordinates except that it seems convenient. The
key idea is that we project the surface onto a plane). If the
surface is single valued (meaning that a line perpendicular to
the xy-plane meets the surface in no more than one point) then
there is a natural correspondence between the points on the
surface S and the points on its projection R; where by "natural"
we mean that the correspondence is given by the "matchup" of
points on lines perpendicular to the xy-plane (see the pictorial
summary in Figures 1, 2, and 3). If the surface is not single
valued, we can, as usual, divide it into single-valued branches.

The point is that since R is a plane region we can partition it
in the usual way into a rectangular grid. If we then pick a
point (Po) in the rectangle of dimensionzlxi byt&yj, we can
project this rectangle onto the plane tangent to S at the point
P at which the line through (Po) perpendicular to the xy-plane
meets S. Note especially that this requires the surface S to be
smooth; otherwise there might not be a tangent plane at each

point on the surface.
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The gist of the argument is to assume that if the rectangles into
which R is divided are sufficiently small then the area of the
region obtained when the rectangles are projected onto the

tangent planes is essentially the same as the area of the region

obtained when the rectangle is projected onto the surface S

itself. Then since there is a 1-1 correspondence between the
rectangles in R and the projections of them onto the surface S,
and since the projections onto S yield precisely S itself, we
can find the area of S by appropriately finding the area of
the individual rectangles in R. Pictorially,
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(Figure 1)

Since S is single valued there is a 1l-1 correspondence between
points on S and points on R. If S is given in the form

z = f(x,y) then the correspondence matches (xo,yo) in R with
(xo,yo,zo) in S where z, = f(xo,yo). That is the point on
S(R) is directly above (below) the corresponding point on
R(S).

(Figure 2a)

5.6.3
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We may then partition R in the "usual way" (ABCD is henceforth

referred to as AA..).
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We then project the rectangle Aij onto the plane tangent to S
at the point ﬁb on s directly above P _.
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X (Figure 3)

For sufficiently small Ax,, &yj, the area of projection of
A, . onto the plane tangent to S at ?6 (Figure 2b) is
essentially the same as the area of the projection of &Aij

onto S itself.

5.6.4
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Now, if the plane tangent to S at 56 makes an angle 8 with the xy-
plane, then the area of the projection of AAij onto this plane is

{&xiayj] sec 8. Again, pictorially

& side view of tangent plane

&xi sec 8

>~ <« xy-plane viewed along

e ﬂxi "4 y-axis.

Now, if u denotes a unit normal vector to the plane then

ﬁn - k = cos 8. Hence (sparing the details of taking limits)

an element of area on the surface is given by

dx dy
o ﬁ
un

where u_  is the unit normal* to the surface S at the point ﬁs.

In this way we obtain the result, by definition,

da
R Ju .k

Y
The only remaining difficulty is in expressing up - In the
approach used in the text S is given in the form Z = f(x,y).
In this case, the normal vector is fo + fyﬁ - ﬁ, so that a unit

normal u, is given by

*Actually there are two such normals depending on the sense we
choose. By convention one picks the outward normal, i.e., the
normal point out from the surface which means in the direction
from the origin to the surface, but since area is non-negative,
it is reasonably safer to write

x d
|%———§| and not worry about the sense of u .
. = k

n
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+ & >
£ + £ - k
b = y?
- 2 2
T T
Therefore,
+ 1
-+ > -
un k =

/f 2 + f 2 + 1
X ¥

and formula (1) becomes

-
Ag = J /%x +£% 1 ang. (2)

Formula (2) is developed quite rigorously in the reading assign-
ment in the text. Its only deficiency from our point of view is
that it requires that the surface be expressed in the special form
z = f(x,y). Yet there are times when the surface may be defined
implicitly in the form g(x,y,z) = 0, or parametrically in the form

x = x(u,v)
= y(u,v) (3)
z = z(u,v).

(In fact formula (3) is perhaps the best since the key struc-
tural property of a surface in that we have two degrees of
freedom at our disposal. That is, any definition of a surface
is a form of (3). 1In particular the form z = f(x,y) is the
simple special case in which u = x and y = v.)

In the optional exercises in this unit we shall develop

recipes for finding surface area when the surface is given

either implicitly or parametrically.

Read: Thomas; Section 16.9
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3. Exercises

5.6.1(L)

Find the surface area of the region S if S is the portion of the
paraboloid z = 1 - xz— y2 for which z > 0.

5.6,2

Find the area of the portion of the surface 2z = x%+ y2 cut off
by the plane z = 1.

5.6.3

Find the area cut from the plane x + y + z = 1 by the cylinder
2 2

x“+ y© = 1.

5.6.4

Find the surface area of that portion of the sphere x2+ y2+ z2 =
a2 cut off by the cylinder xz- ax + y2 = 0.

5.6.5(L)

Find the mass of the hemispherical shell S defined by
x%+ y2 ¥ 22 =1 and z > 0, if the density of S at any point is

proportional to the distance of the point from the xy-plane.

Optional Exercises

[The aim of 5.6.6 is to show how we develop the formula for the
surface area of S if S is given in the impllicit form g(x,y,2)
= 0.

In 5.6.7 we show how to compute the surface area of § if S is

given in the parametric form

x = f(u,v)
= g(u,r)
z = h{a,x).

In 5.6.8 we apply the results of 5.6.7 to the special case of

polar coordinates (i.e., x = u cos v, y = u sin v) and show

5ela
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how surface area is computed when the surface is given in the

polar form z = f(r,8).]

5,66

Determine the surface area found in Exercise 5.6.4, but without
solving for z explicitly in terms of x and y.

5657

If the surface S is defined by

f(u,v)
g(u,v) (u,v)eRr
h(u,v)

N
o

let F(u,v) = (f(u,v), g(u,v),h(u,v).

Show that the surface area of S is given by
- b
.{;f |F, x F, [dAq.

Check the above result in the special case u = x, v = y.

5.6.8

Apply the result of Exercise 5.6.7(a) to the case in which our

surface is given by

r cos @

r sin 0
f(r,e).

N
I

Check the result obtained in (a) by seeing what happens in the

special case z = 0.

What happens in the special case of z = f(r,8) where fBE 02

cl
d. Compute the surface area of S if S is the portion off;he
sphere x% + yz + z% = 4 cut off by the cylinder r = 75 where
0 <0 < m.
5.6.8
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