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PROFESSOR: Hi. Our lesson, today, hopefully will serve two purposes. On the one hand, we will

give a nice application of the chain rule. Now that we've had two units devoted to

working with the chain rule, I thought you might enjoy seeing how it's used in places

which aren't quite that obvious-- places that we wouldn't expect to be used, at least.

And secondly, I would like to pick as my application one which comes up in many,

many different contexts.

And without further ado, the topic I want to cover today is called "Integrals Involving

Parameters". Now, that sounds like a big mouthful. Let me motivate that for you,

first of all, physically, and then in term of a couple of geometric examples.

You all know from past experience my great ability with physical applications, so I

won't even try to find anything profound here. Let me just take a pseudo example,

pointing out what type of situation we're trying to deal with and leaving it to your own

backgrounds to see places where the same principle could have been applied, but

hopefully in a more practical, meaningful way for you.

Imagine for example, that we have a platform that we're looking along in the x

direction. And we've punched holes in this platform, say, and liquid is trickling

through these various holes. The holes are all on a horizontal line this way. What

we're going to do is we're going to focus our attention on a particular particle of the

liquid, and we're going to watch it as it falls. And what we would like to do is find how

far that particle fell, say, during the first second of its flight.

Obviously, from a calculus point of view, the first thing we have to do is know what

the velocity function is, because ultimately, we would like to integrate the velocity.

Now, notice that we would expect the velocity to be depending on time. If this were

1



a freely falling situation, we'd expect the usual gravitational type situation. Or

whatever the situation happened to be, we would expect on the one hand that the

velocity does depend on of time. On the other hand, because of how the streams

are flowing-- in other words, we don't know what's happening above here that's

causing the water to shoot out-- we don't know what the initial velocity is coming out

of each of these holes in the sense that a different opening may give rise to a

different velocity of stream coming out.

All I'm trying to bring out here is that as we try to focus our attention on a particular

opening, we find that the velocity of the particle that will follow it during that first

second is a function both of its position x-- in other words, x sub 0 in this case,

because we're focusing at x equals x0 and the time t as t goes from 0 to 1. And we

then simply integrate along the vertical direction here. We find y as a function of x0

from 0 to 1-- v(x0, t) dt.

Once we're through integrating, you see, notice that the integration is with respect

to t. So when we're through integrating, this being a definite integral, t no longer

appears. We have a function of x0 alone, saying nothing more than the distance

that the particle falls during the first second is a function of the position of the

opening along the line here.

Now, at any rate, the practical application is not so much writing down this equation

as the inverse is the case. Namely, in many practical applications, we are given this

particular integral. And for some reason or other, want to determine what v itself is.

In other words, we often want to find the derivative given the integral. All right.

Let's just let it go at that for the time being. The important point is that I want you to

see an example of an integral. Let me just write this here in more abstract form. It

appears to be a definite integral, a to b. The function inside the integrand is

apparently a function of two variables, x and y-- say, in this case x0 and t. One of

the variables is a variable of integration-- in this case, y-- and the other variable is

being treated as a constant.

And that's where the word parameter comes in. x is a parameter, meaning a
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variable constant, in the sense that, for this particular problem, x is chosen to be in

some domain and remains fixed. In other words, this is some function of x when

we're all through here. All right?

As a geometric example, imagine the following situation. We have a surface w =

f(x,y). We take the plane x = x0 and intersect this surface with that particular plane.

We get a curve, you see.

Now, we look at that curve corresponding to two points, p and q, where p and q are

determined by the y values a and b. In other words, p corresponds to y = a. q

corresponds to y = b. And now, a very natural question that might come up is that

we would like to find the area of this particular plane region, in other words, the area

of this slice between p and q.

Now, you know, the first thing I hope that you'll notice is that because this shape of

the surface can be in many different ways, the particular cross section that we get

does depend on the choice of x0. Different slices-- different planes x = x0 will give

us different curves of intersection. The point is that once we have the curve

intersection x is being treated as the parameter. This particular curve is given by

what equation?

f is a function of x0 and y. See, x = x0 for every point on this curve. And so the area

of the region R is the integral from a to b, f(x0, y) dy. And the question that very

often comes up is, how do you find the derivative of A sub R with respect to x0,

noticing, you see, that A sub R is a function of x0 alone, the y dropping out between

the limits a and b when we perform the operation of integration.

A third place that this type of situation occurs is in solving certain differential

equations. For example, suppose we're given a particular curve and that that curve

determines a region R between the lines x = a and x = b. Suppose all we know

about the curve is its slope at any point. We know that its slope at any point is given

by dy/dx and some function of x and y which we don't necessarily have to go into

right now.
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And let's suppose, for the sake of argument, that we solve this first order differential

equation. What we'll find, if we're lucky, is that y is some function of x and an

arbitrary constant. Remember, once you have one solution to a differential

equation, you have an infinite family in terms of a one parameter solution to a

differential equation. In other words, in finding the area of the region R in this case,

there are many curves that satisfy this particular differential equation. Until we know

what specific points are being referred to over here, the best we know for sure is

what? That these endpoints are a and b, that the integrand is f(x,c), and we're

integrating that with respect to x from a to b.

I freudianly put a c in here, because I think what I was trying to emphasize for you is

that when you look at this thing, observe that this integral is a function of c alone.

Namely, when you integrate this thing, you integrate it with respect to x. The x drops

out. All you have left here is a c. A sub R, then, is a function of c. And in many

cases, what we would like to do is see how fast the area changes as a function of c.

In other words, how do we change the area as a function of changing the arbitrary

constant c?

And I have enough exercises in the assignment to give you concrete drill on this. All

I'm trying to give you here is an overview of the entire topic. And the reason I want

to give you this overview is that it's hinted at in the textbook, but this topic is not

covered there. In fact, the reason that I had you read that particular section of the

textbook before the lecture this time-- you notice that usually we start with the

lecture.

This time I had you read the textbook first, because the way the textbook covered

this topic is essentially nothing more than the way we tackled a different problem

last semester. And I want you to see that the problem done in the Thomas text is

not a new problem-- it's one that we've done before-- but that with the tools that we

now have available, we could've tackled a more significant problem. And that's the

one I'm electing to do here and what I want to show you the key steps on, because

they're not in the text. But I will leave the reinforcement for the exercise.
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At any rate, hopefully now, when you see an integral of this type, it will not bother

you too much. In other words don't worry about how do you integrate a function of

two independent variables? When you see something like this, it means that there is

some implicitly implied domain for x. In other words, we have some function of x.

Let's say the domain of g might very well be, say, all x's between two values, say c

and d.

But who cares about that right now? The important point is that g is defined on a

certain set of values x. And what it says is to compute the output of the g machine.

For the given x, you fix that x and integrate f(x,y) dy between a and b. Notice, you

see, during the integration, x is being treated as a constant, so that for all intents

and purposes, this is an ordinary integral.

But because x isn't a bona fide constant, meaning what? It's a constant only in the

sense that once chosen, it remains fixed for this particular integration. Different

values of x will give me different integrals here. And consequently a very natural

question that comes up is how does my function g-- which depends on x-- how does

that vary as x varies?

In other words, the key question is simply this. First of all, given g defined this way,

one, does g prime even exist? Does dg/dx exist? And two, if it does exist, what is it?

In other words, the question that we're raising is if we can find g prime of x, how do

we do it in terms of looking at the right hand side?

And let me not try to guess the answer here. The answer does turn out to be, in this

particular case, one that you might have guessed. But I prefer to show you that we

don't have to guess, point one. Point two, if you do guess, you won't always be that

lucky. That's my finale for today's lecture. But let me see if I can survive to get to the

finale first.

Let me see how we'll tackle a problem like this. First of all, to see if g prime exists at

some value x0, what we have to do is-- way back to the very beginning of Part 1--

the same old definition for an ordinary derivative. We have to compute the limit of g

of x sub 0 plus h minus g(x sub 0) over h, taking the limit as h approaches 0.
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Notice what the g machine does... What the g machine does is it feeds x into the

integrand here and integrates this with respect to y from a to b. So if the input of my

g machine is x0 plus h, that means that the x is replaced by x0 plus h here. g of x0

plus h is simply integral from a to b f of x0 plus h comma y dy. Similarly, g(x0) is

integral from a to b f(x0, y) dy. I now want to form this difference. And noticing--

again, this is all calculus of a single variable-- that the difference of two definite

integrals is the definite integral of the difference, I can conclude that g(x0 + h) minus

g(x0) is simply this single integral over here.

Now, my next step in determining g prime of x0 is I must divide this by h. Notice, by

the way, that h is an arbitrary increment, but once chosen, remains fixed. Notice

that h is a constant as far as this integration is concerned. Consequently, to divide

by h, it is permissible to bring the h inside the integrand. In other words, technically

speaking, the h should be here, but since h is a constant with respect to y, the

integral can have the h brought in.

Why do I want to bring the h in here? Let me again telegraph what I'm leading up to.

Obviously, when I'm going to compute g prime, my next step is to take the limit of

this as h approaches 0. With h in here, I look at this and what I hope is that by this

amount of time at least the following minimum amount of material has rubbed off on

you in a second nature way-- that if I look at this expression in brackets as h

approaches 0, this is precisely the definition of what we mean by the partial of f(x, y)

with respect to x evaluated at (x0, y).

See, this is what? The change in f-- see, y is held constant. We're taking this over to

change from x0 to x0 plus h and dividing by h. This is a partial of f with respect to x.

That's why I want to bring the h inside.

So now, I say, OK, g prime of x0, by definition, is this limit. I now want to take the

limit of this expression. And by the way, notice what I'd love to do now is to jump

right in here and say, aha, this is just the partial of f with respect to x evaluated at

(x0, y0).
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But the thing I would like you to notice-- and again, going back to Part 1 of course,

one of the big things that we talked about under the heading of uniform

convergence. There is a very dangerous thing in general to interchange the order of

limit and integration. This says what? First perform the integration, and then take

the limit. What we would like to be able to do is first take the limit and then integrate

the result.

Now, we did see that, provided the integrand was continuous, these operations

were permissible. But we'll talk about that a little later. For the time being, let's

simply summarize by saying if the limit operation and the integration operation can

be interchanged, then the derivative-- see, this thing here is what?

This is my g(x). The derivative of g(x) with respect to x has the very delightful form

that, essentially, all I have to do is take the derivative operation, come inside the

integrand, and replace the derivative with respect to x by the partial derivative with

respect to x. In other words, the derivative of the integral from a to b, f(x, y) dy is the

integral from a to b, the partial of f with respect to x dy-- provided, of course, that

the limit and the integration are interchangeable.

In particular, this will be true if f and f sub x exist and are continuous and see,

straighten out the range and the domain and what have you once and for all. Notice

that y is allowed to exist between a and b. We've said that x is going to exist on

some domain between c and d. Notice that saying that y is between a and b and x is

between c and d geometrically says that f is defined on a rectangle. See? OK.

And then what we're saying is, under these conditions, to integrate an integral with a

parameter, with respect to that parameter, all we have to do is come inside the

integral sign and differentiate-- take the partial derivative-- with respect to what is

being used as the parameter. In this case, it's x, which is the parameter.

Now, the only danger with this particular thing-- and by the way, notice, not only is

there a danger here that I'm going to mention. The danger is this looks so easy, you

may be saying, why did he do it the hard way? Why didn't he just tell us this was the

right way of doing it? And the point is it just happens to be one of those
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coincidences where the rigorous way yields a logical answer which is consistent with

what is probably our intuitive guess.

But it's not always going to happen that way. And the example that I have in mind

now goes back to what we were talking about the beginning of the lecture. Namely, I

wanted to give you an application of the chain rule. And here's where that

application comes in.

I now call this-- I don't know what to call it. So let's just call it variable limits of

integration. Same problem as before-- it's going to cause the chain rule to come in

now. The only difference is going to be-- and that's just a forewarning. You don't

have to know that right now.

I'm going to have the same problem as before. What did I have before? I had that

g(x) was integral f(x, y) dy between the two constants a and b. Now, I'm going to let

my constants of integration also depend on the parameter. See, all the constants of

integration have to be our constants as far as y is concerned.

What I'm saying is what makes this problem differ from the previous one is suppose

that it happens that instead of being given a nice rectangle to play around with, I'm

given a couple of curves like this in the xy plane. See, this would be a of x. This

would be y equals b(x).

See, what I'm saying now is that not only does the integrand depend on what value

of x I pick, but the limits of integration as I'm finding a cross-sectional area of a

surface, you see. The limits of the integral themselves depend on the choice of x--

constant, as far as y is concerned, but depend on x. You see, now, what happens is

that my parameter appears in the limits as well as just in the integrand.

And now, you see, also what this means is if I try the previous approach of

computing g(x plus delta x), et cetera, I'm in trouble, because the only way I can

combine two integrals and put them under the same integral sign is if they're

between the same limits of integration. Notice here, for example, that if I replace x

by x plus delta x, I not only change the integrand, but notice that the limits become
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what? a of x plus delta x, b(x plus delta x)-- and those in general, unless a and b

happen to be constants, will vary with x.

In fact, let's look at it this way. This is the problem we should have started with in the

sense that constant limits of integration are a special case of this. At any rate, what I

wanted to show you was that this particular problem can be handled very nicely in

terms of the chain rule. Namely, what we do here is we observe that, first of all, y is

not really a variable here. It's integrated out.

So what we think of is let's think of x as being some variable u. Let's think of b(x) as

being some variable v. Let's write down the function of three independent variables

u, v, and x. OK. What will that function be? Let u, v, and x be arbitrary, independent

variables. Look at the integral from u to v f(x, y) dy. This is obviously dependent

upon u. It's dependent upon v. And it's dependent upon x.

The place that the chain rule comes in is that in our particular problem, u and v

cannot be arbitrary, but rather u must be that particular function a(x), and v must be

the particular function b(x). Consequently g(x) is simply what? It's h(u, v, x), where u

is a(x) and v is b(x). Consequently, to find g prime of x, what we want is h prime of x

and to find h prime as a function of x.

See the chain rule here? u can be expressed in terms of x. v can be expressed in

terms of x. Obviously, x is already expressed in terms of x. So this is really implicitly

a function of x alone. So by the chain rule, what I'd like to be able to do is to

combine these three pieces of information to find h prime of x.

And remember how the chain rule works. Now, I'm not going to beat that to death.

We've just had two units on that. Let's just say it rather quickly. g prime of x is the

partial of h with respect to u times u prime of x plus the partial of h with respectively

to v times v prime of x times the partial of h with respect to x times x prime of x,

which, of course, is just 1. In other words, writing this thing out, g prime of x is

simply this.

What is the partial of h with respect to u? Let's come back here for a second and
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remember what h is. h is this integral. I want to take the partial of that with respect

to u. That means I have to investigate this.

Now, here's the interesting point. Whereas u, v, and x are independent variables,

what does it mean when you say you're taking the partial with respect to u? It

means that you're treating v and x as constants.

Now, if v and x are being treated as constants, what I have is simply what? I'm

taking a derivative with respect to a variable where the only place the variable

appears is as the lower limit of the integrand. In other words, I claim that that's

nothing more than minus f(x, u). Then I go inside the integrand. In other words, I

differentiate the integral. That leaves me just the integrand-- and replace the

variable by the variable of integration u here. And because it's the lower limit, I put

in the minus sign.

Now, why did I go through that very fast? That's why I had you read this assignment

first. Notice that the assignment in the textbook does not touch what I'm talking

about, but rather seems to review that topic that we covered under Part 1-- that if

you wanted to take an ordinary derivative with respect to u, integral from u to a, g(y)

dy, the answer would just be minus g(u).

And that's exactly what I did in here. I treated v and x as constants here. In other

words, the only variable in here was u. That will be emphasized again in the

exercises. In a similar way, the partial of h with respect to v means this thing. Notice

now that u is being treated as a constant. x is being treated as a constant. To

differentiate this, my variable appears only as an upper limit on the integrand.

That means I come inside the integral sign, replace the integral by just the function

itself, replacing what? Replacing y-- that's the only variables of integration-- by the

upper limit v. In other words, this is f(x, v). All right?

And finally, the partial of h with respect to x is this integral here. Notice now that u

and v are being treated as constants. With u and v being treated as constants,

that's the special case that we started out lecture with, namely, to differentiate with
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respect to a parameter when the parameter appears only as part of the integrand.

So how do we do that? We come inside. This is the interval from u to v, the partial of

f with respect to x dy. Putting the whole thing together-- recalling, among other

things, that du/dx, since u is a(x), is just a prime of x and that dv/dx is b prime of x--

what this says-- and again, I want to see the beauty of the chain rule here, because

at least to my way of thinking, I don't see anything at all intuitive about the result I'm

going to show you.

And that is as soon as you make the limits of integration variable, to differentiate an

integral involving a parameter-- you see again, what's the parameter here? x. We

integrate it with respect to y. This is a constant as far as y is concerned. See,

intuitively, you might say, gee, all you've got to do is take the derivative sign, bring it

inside, and this should be the answer. See, it's the same as we did before.

The point is-- and this is where many serious mistakes are made in problems

involving integrals of this type-- is that the reason that our intuitive way happened to

be right in the simpler case was that these were constants with respect to x. Now,

they're variables. Well, it turns out, if you just wrote this thing down, you would be

wrong.

What is the correction factor? Again, come back to here. The correction factor is this

here, which we've just started to compute. Again, just saying it-- if you wrote this

term down to get the correct answer, you would have to tack on what? b prime of x

times f(x, b(x)). That means what? You think of a y as being over here. For the

particular value of x, you replace y by b(x). In other words, you look at f(x, y), and

every place you see a y, replace it by b(x). And then subtract that from that a prime

of x times f(x, a(x)).

Now again, I suspect that, for many of you, it's the first time that you've seen

something like this, because I say it's a topic which I believe was a natural one to

occur in the textbook, but for some reason it doesn't appear there. Because of the

importance of the concept, the number of times it appears in physical applications,

the number of times that one has to differentiate with respect to an integral-- I don't
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know the physical applications well enough to lecture on them, but it does occur in

probability theory, among other places, it appears in any subject involving integral

equations and the like-- that I wanted to give you the experience of seeing what the

concept means, to have you hear me say it. And then I will spend the exercises

trying to drive home the computational know how so that you will be able to do

these things at least in a mechanical way, independently of whether the theory

made that much sense because of the lack of physical example motivation other

than what I did at the beginning.

At any rate, keep in mind, though, that in terms of our present topic, where we're

talking about the chain rule, this is a certainly noble application to show an important

place in the physical world where knowledge of the chain rule plays a very important

role. And with that, I might just as well conclude today's lecture. And until next time,

good bye.
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