1. Lecture 3.020

a.

b.

2. Read Thomas, Sections 15.2 and 15.3.
3. Exercises:
$3.2 .1(\mathrm{~L})$
a. If $f(x, y)=x^{2}+y^{3}$, compute $f_{x}(1,2)$.
b. If $f(x, y)=x^{3} y+x^{4}+y^{5}$, compute $f_{x x}(1,2)$ where $f_{x x}(1,2)$ means $\left.\frac{\partial}{\partial x}\left[\frac{\partial f}{\partial x}\right]\right|_{(1,2)}$.
c. Find $f_{y}(1,2,3,4)$ if $f(w, x, y, z)=w^{2} x y+z^{3} y^{2}+x^{3} z w$.
3.2 .2
a. Determine $f_{w}(w, x, y, z)$ and $f_{w w}(w, x, y, z)$ if $f(w, x, y, z)=w^{3} x^{2} y+$
$x^{3} y^{2} z+w z^{4}$. In particular, determine $f_{w w}(1,2,3,4)$.
b. Compute $\frac{\partial z}{\partial x}$ if
$z^{3} x y+z^{5} y+\cos z=1$.
$3.2 .3(\mathrm{~L})$
Let $x$ and $y$ be a pair of independent variables and define $u$ and $v$ by $u=2 x-3 y$ and $v=3 x-4 y$.
a. Show that $u$ and $v$ are then also a pair of independent variables.
b. Solve the above equations and express $x$ and $y$ in terms of $u$ and $v$. From this compute $\frac{\partial x}{\partial u}$ and compare this with $\frac{\partial u}{\partial x}$.
c. Express $x$ in terms of $u$ and $y$, and then compute $\frac{\partial x}{\partial u}$. How does this answer compare with the result in (b)?
d. Express $u$ in terms of $x$ and $v$, and then compute $\frac{\partial u}{\partial x}$. In this case, does $\frac{\partial u}{\partial x}=\frac{1}{\left(\frac{\partial x}{\partial u}\right)}$ where $\frac{\partial x}{\partial u}$ is as in (b)?
3.2 .4

Given that $x$ and $y$ are independent variables, define $u$ and $v$ by $u=x^{2}-y^{2}$ and $v=2 x y$.
a. Explain why $u$ and $y$ are also independent variables.
(continued on next page)
3.2 .2
3.2.4 continued
b. Show that $\left(\frac{\partial x}{\partial u}\right)_{y}=\frac{1}{\left(\frac{\partial u}{\partial x}\right)_{y}}$.
c. Determine the value of $\left(\frac{\partial x}{\partial u}\right)_{v}$.
$3.2 .5(\mathrm{~L})$
From the polar coordinate relations, $y=r \sin \theta$ and $x=r \cos \theta$, compute $\frac{\partial \theta}{\partial y}$ where, from now on, $\frac{\partial \theta}{\partial y}$ will be interpreted to mean $\left(\frac{\partial \theta}{\partial y}\right)_{x}$ unless otherwise specified.
3.2 .6

Given that $x$ and $y$ are independent variables, assume that $u$ and $v$ are functions of $x$ and $y$ [we usually denote this as either $u=u(x, y)$ and $v=v(x, y)$, or, if we feel that misinterpretation might arise, as $u=f(x, y)$ and $v=g(x, y)]$ such that $u$ and $v$ are also independent variables. Assume further that we also know that $u$ and $v$ are related by $u^{2}=y^{2} v$. Determine $\left(\frac{\partial u}{\partial y}\right)_{x}$.

## $3.2 .7(\mathrm{~L})$

Let $S$ be the surface defined by the Cartesian equation $z=x^{2}+y^{3}$. Assume that there is a plane which is tangent to $S$ at the point $P(1,2,9)$. Find the equation of this plane.
3.2 .8

Assuming that the surface defined by the Cartesian equation $z=x^{3} y^{2}+x^{5}+y^{7}$ has a tangent plane at the point (1,1,3), find the equation of this plane.
3.2 .9 (L)

Let the surface $S$ have the Cartesian equation $x=g(y, z)$.

### 3.2.9(L) continued

a. Assuming that $S$ possesses a tangent plane at the point ( $x_{0}, y_{0}, z_{0}$ ), find the equation of this plane.
b. The plane $M$ is tangent to the surface $x=e^{3 y-z}$ at the point $(1,2,6)$. Find the equation of $M$.
c. Check the solution in (b) by expressing $x=e^{3 y-z}$ in the form $z=f(x, y)$.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus
Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

