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Block 3: Partial Derivatives 


Pretest 


1. 	Let w = f (x,y) = 2Xy 2, (x,y) # (0.0). Show that 
x + Y  

lim f(x,y) depends on the path by which (x,y) approaches 

(x,y)+(O,O) 


2. 	 Find the equation of the plane which is tangent to the surface 

x4 + y 6 z + xyz5 = 3 at ~ ~ , ~ , ~ ~ . 

I. 	 Suppose w depends on r but not on 8, say w = h(r), and that h is a 
rn ,.

L 
twice-differentiable function of r. Determine -a'w + -a ;, expressed 

ax a~ 
in terms of r. 

4. 	 Find the equation of the curve C if C passes through the origin 


and has its slope at each point (x,y) given by 


i1 b 

Given that g(y) = dx where y > b > -1, determine gl(y). 
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Unit '1: Functions of More Than One Variable 


1. Lecture 3.010 




- - 

- - - 
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Block 3:  P a r t i a l  Der ivat ives  
Unit 1: Functions of  More Than One Var iable  

2. 	 Read Supplementary Notes, Chapter 4 .  

3 .  	 Read Thomas, Sect ion  15.1. 

4. 	 (Opt ional )  Read Thomas, Sect ions  12.10 and 12.11. (These s e c t i o n s  

w i l l  h e l p  you f e e l  more a t  home with equat ions  of s u r f a c e s .  The 
i d e a  i s  t h a t  j u s t  a s  t h e  graphs of func t ions  of  a s i n g l e  v a r i a b l e  

a r e  curves i n  t h e  xy-plane, t h e  graphs of func t ions  of  two r e a l  

v a r i a b l e s  a r e  s u r f a c e s  i n  space.  Except f o r  any peace-of-mind 

t h a t  you g e t  i n  f e e l i n g  a t  home wi th  t h e  va r ious  equa t ions ,  it 

should be noted t h a t  w e  can su rv ive  t h e  remainder of t h i s  course 

wi thout  r ecourse  t o  accura te  graphs j u s t  a s  was the  case  i n  func t ions  

of a s i n g l e  r e a l  v a r i a b l e . )  

5. 	 Exerc ises  : 

Define a s  t h e  Minkowski me t r i c .  That i s ,  i f  -x = (x l , .  ..,xn)  , 
then IlxIl = m a x ~ l x l l .. . . . I  x n I l .-

a .  	 Show t h a t  

1. 1k1)>/ 0 f o r  a l l  x  - and llxll = 0 i f  and only i f  -x = 0. 

2 - IIx + yll 4 lkll + Ikll 
3 .  	 IlaxII = lal  IkII 
b. 	 Compute -x * ~ ,l l X l l r  and l l r l l  (where we a r e  s t i l l  using t h e  Minkowski 

m e t r i c )  i f  5 = (2 ,4 ,1)  and 4~ = (4 ,4 ,5 )  . From t h i s  conclude t h a t  

it need n o t  be t r u e  t h a t  ~ -X - ~ 6I l l ~ l l  I l u _ l l .  

Mimic t h e  proof of t h e  corresponding 1-dimensional case  t o  prove 
l i m  1i mt h a t  i f  -x and -a belong t o  E" and x-rg f  (x)= L1 while x,a g (5) = L2, 

then  

l i m  [f (x)+ g ( x ) I = L1 + L2 
-x-rg 
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a. Using t h e  Minkowski m e t r i c ,  suppose E > O  i s  given;  f i n d  6 such t h a t  

f o r  t h i s  choice  of 6 

b. I n t e r p r e t  t h e  answer i n  ( a )  geomet r i ca l ly  and exp la in  why t h e  same 

va lue  of 6 a s  i n  ( a )  would have s u f f i c e d  had w e  used t h e  Euclidean 

m e t r i c  r a t h e r  than t h e  Minkowski metr ic .  

3.1.4(L) 

L e t  -x = (xl,x2,x3,x4) and l e t  -1 = (1,1,1,1). Define f by 

3 2f ( x )  = x12 + 2x2 + x3 + x4 . Prove t h a t  f i s  continuous a t  = 1. 

3.1.5 

L e t  f ,  -x and 

such t h a t  

-1 be a s  i n  Exerc ise  3.1.4. For a given E > O ,  f i n d  6 

3.1.6(L) 

L e t  f be de f ined  by 

a.  

b. 

c .  

Is f continuous a t  (0 ,0 )?  

l i m  l i mCompute both  y+Q [x+o 
lim limf ( x , y ) l .f (x,y)l  and x+O ry+(, 

I n v e s t i g a t e  t h e  behaviour of 

i n  more d e t a i l  by in t roduc ing  p o l a r  coordinates .  
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Let f be defined by 

a.  	 Show t h a t  l i m  f ( x , y )  depends on the  path by which (xIy)(x,y)+(O,O) 


approaches (0,O . 

1i m 
b. 	 Compute 
(x,y)+(O,O)

f (x,y) i f  (x,y) approaches (0 ,O)  along the  

71 
ray 	t3 = -4 . 
c. 	 Show t h a t  i f  (x,y) approaches (0,O) e i t h e r  along the  x-axis o r  

the  y-axis then l i m  f ( x , y )  = 0. 

Define g by r 

l. 

a .  	 Show t h a t  g i s  no t  continuous a t  (0,O). 

b. 	 Show t h a t  lim g(x ,y)  = g(O,O) i f  (x,y) i s  allowed t o  
(x,y)+(O,O)


approach ( 0 , O )  along e i t h e r  ax i s .  


L e t  	the  funct ion £:E~-+E be continuous. Prove t h a t  f cannot be 1-1. 

Comment 

The following two exerc i ses  a r e  opt ional .  They may be omitted 

without l o s s  of con t inu i ty  t o  our p resen t  discussion.  Their  

main purpose i s  t o  supply the  i n t e r e s t ed  reader with a few clues  

a s  t o  how a n a l y t i c  proofs a r e  ca r r i ed  ou t  i n  n-dimensional vector  

spaces (with n g r e a t e r  than th ree)  using t he  ordinary proper t ies  

of r e a l  number ar i thmet ic .  
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Uni t  1: Functions of More Than One Var iable  

L e t  -a and b belong t o  E
4 . Prove t h a t  our  d e f i n i t i o n  of -a = b_ 

i s  an equivalence  r e l a t i o n  because a£ t h e  f a c t  t h a t  "ordinary"  

e q u a l i t y  i s  an equivalence  r e l a t i o n  on t h e  s e t  of r e a l  numbers. 

Le t  a, 2 and -c be elements of E
4 . With t h e  d o t  product  a s  

de f ined  i n  our  supplementary n o t e s ,  prove t h a t  
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