Unit 3: Applications to 3-Dimensional Space

1. Lecture 1.030

Lecture 1.030 continued

Study Guide
Block l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space
2. Read Thomas, sections 12.4 and 12.5
3. Exercises:
$1.3 .1(\mathrm{~L})$
a. Let A and B denote two points in space and let O denote any other point Show that a point P belongs to the line determined by A and B if and only if there exists a scalar t such that $O \vec{O}=(1-t) O \vec{A}+t O \vec{B}$.
b. If the points A and B of part a. are given in Cartesian coordinates by $A\left(a_{1}, a_{2}, a_{3}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}\right)$, show that $P(x, y, z)$ is on the line determined by A and B if and only if $\left(x-a_{1}\right) /\left(b_{1}-a_{1}\right)=$ $\left(y-a_{2}\right) /\left(b_{2}-a_{2}\right)=\left(z-a_{3}\right) /\left(b_{3}-a_{3}\right)$.
c. Find the (Cartesian) equation of the line which passes through $A(2,-3,5)$ and $B=(5,4,-1)$.
1.3 .2
a. Find the (Cartesian) equation of the line which passes through $A(3,5,1)$ and $B=(7,2,4)$.
b. At what point does the line described in part a. intersect the $x y$-plane?
1.3.3

Find the vector which originates at $A(1,2,3)$ and bisects $\Varangle B A C$, where $B=(2,4,1)$ and $C=(4,8,5)$.
1.3 .4
a. Let A, B, and C be points in space not all on the same straight line, and let M be the point at which the medians of $\triangle A B C$ intersect. Express $O \vec{M}$ in terms of $O \vec{A}, O \overrightarrow{O B}$ and $O \vec{C}$.
b. If in Cartesian coordinates $A=\left(a_{1}, a_{2}, a_{3}\right), B=\left(b_{1}, b_{2}, b_{3}\right)$ and $C=\left(c_{1}, c_{2}, c_{3}\right)$, find the coordinates of M (where A, B, C, and M are as in part $a \downarrow$ in terms of the $a^{\prime} s, b ' s$ and $c^{\prime} s$.
c. With A, B, and C as in Exercise 1.3.3 find the coordinates of the points at which the medians of $\triangle A B C$ meet.
(continued on next page)

Study Guide
Block l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space

1.3.4. continued

d. Given that $A=(1,2,3)$ and $B=(2,4,1)$ find the coordinates of C if the medians of $\triangle A B C$ meet at $(0,0,0)$.
$1.3 .5(\mathrm{~L})$
Suppose A, B, and C are three points in space not on the same line. Let O denote any other point in space. Show that a point P belongs to the plane determined by A, B, and C if and only if there exist scalars t_{1} and t_{2} such that
$O \vec{P}=\left(1-t_{1}-t_{2}\right) O \vec{A}+t_{1} O \vec{B}+t_{2} O \vec{C}$.

The next two exercises are optional. Their purpose is to supply you with extra drill with vector arithmetic, while at the same time, providing you with a better idea of the analytic counterpart of a plane. That is, the geometric notion of degrees of freedom is identified analytically with the number of arbitrary parameters in a formula. In our discussion of a plane, which is obviously 2-dimensional from a geometric point of view, we see that the analytic counterpart involves the two parameters t_{1} and t_{2}. For those who feel thay have had enough drill, these two concepts will be revisited later, at a time when we have the computational tools to simplify the procedure used in these two exercises.
$1.3 .6(\mathrm{~L})$
a. Find the equation (using Cartesian coordinates) of the plane determined by $A(1,2,3), B(2,4,5)$, and $C(4,5,7)$. Express your answer in terms of t_{1} and t_{2} as in 1.3.5(L).
b. Find appropriate values for t_{1} and t_{2} in a. to verify that the given points A, B, and C satisfy the equation obtained in a.
c. Let $t_{1}=t_{2}=1$ in your answer to a. to find the point P if $A B C P$ is to be a parallelogram.
d. Determine from your answer in a. whether $(3,4,5)$ is above, below or in the plane determined by A, B, and C .

Study Guide
Block l: Vector Arithmetic
Unit 3: Applications to 3-Dimensional Space
1.3 .7
a. Find the equation of the plane which is determined by the points $A(2,3,4), B(3,1,2)$ and $C(4,2,5)$.
b. Is the point $(5,6,14)$ in this plane? If not, is it below the plane? Explain.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus
Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

