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4.5.1 

Since  f  i s  cont inuously  d i f f e r e n t i a b l e  i n  a  neighborhood of  ( a , b ) ,  

w e  have t h a t  

where e and e both  approach zero a s  h  and k  approach zero. 1 2 
This ,  i n  t u r n ,  says  t h a t  elh + e2k goes t o  zero  " f a s t e r "  than 

e i t h e r  h  o r  k ( t h a t  i s ,  e h + e2k is a  h igher  order  i n f i n i t e s i m a l ) ,  1
and t h i s  is what w e  mean when we say  t h a t  nea r  ( a , b ) ,  we may view 

Aw = f ( a  + h ,  b + k )  - f ( a , b ) .  a s  a l i n e a r  combination of h  and 

k,  i .e . ,  f x ( a , b ) h  + f y ( a , b ) k .  

I n  s t i l l  o t h e r  words, i n  a s u f f i c i e n t l y  smal l  neighborhood 

of ( a , b ) ,  t h e  e r r o r  involved i n  neg lec t ing  elh + e2k is  neg l i -

g i b l e  both from a p r a c t i c a l  p o i n t  of  view a s  w e l l  a s  from a  

t h e o r e t i c a l  p o i n t  of  view, and accordingly ,  we may th ink  i n  

t e r m s  of  saying t h a t  Aw "behaves l i k e "  

I f  we observe i n  (1) t h a t  h  i s  what we usua l ly  denote by hx 

and k  i s  what we u s u a l l y  denote a s  Ay, we s e e  t h a t  express ion 

(1) is  simply what w e  have previous ly  c a l l e d  Awtan ( o r  i n  h igher  

dimensions, Awlin).  That i s ,  Awtan i s  e x a c t l y  equal  t o  (1) and 

it i s  Aw which i s  approximately equal  t o  Awtan. 

a .  Given t h a t  w = f ( x , y )  = x2 - y2 ,  w e  have 

Hence 
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4 .5 .1  cont inued  

Theref o r e ,  

i f  ( 3  + h ,  2 + k )  is  s u f f i c i e n t l y  c l o s e  t o  (3 ,2 )  . 

I n  p a r t i c u l a r  f (3 .001 ,  1 .99)  has  t h e  form f ( 3  + h ,  2 + k) w i t h  

h = 0.001 and k = -0.01. The re fo re ,  (2)  becomes 

S ince  f  (3.2) = 32 - 2* = 5,  e q u a t i o n  (3 )  y i e l d s  

An e x a c t  computat ion o f  	f (3.001, 1.99) y i e l d s  f(3.001,  1.99) 

= ( 3 . 0 0 1 ) ~ - 2 (1.99) 

= 9.006001 - 3.9601 

= 5.045901. 

A comparison o f  (4) and 	(5) shows t h e  pe rcen tage  e r r o r  i n  t h e  

approximat ion  is 

There fo re  t h e  e r r o r  is a b o u t  0.002%. 

S i n c e  f  ( 7 , s )  = f  ( 3  + 4 ,  2 + 3 ) ,  e q u a t i o n  (2) would y i e l d  

f ( 7 , 5 )  - f ( 3 , 2 )  = 6 !4 )  - 4 ( 3 ) .  
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4.5.1 continued 

Therefore ,  

I f  we compare (6 )  and (7)  w e  s e e  t h a t  t h e  percentage e r r o r  
7i n  our  approximation i s  Z4 x 100 o r  nea r ly  30%. 

The p o i n t  i s  t h a t  (7 ,5 )  i s  " f a r  enough away from" (3 ,2 )  so  t h a t  

t h e  e r r o r  t e r m  elh + e2k i s  no longer n e g l i g i b l e .  Notice t h a t  

f x ( 3 , 2 )  h  + f  ( 3 , 2 ) k  i s  s t i l l  e x a c t l y  equal  t o  Cwtan, b u t  t h a t  
Y 

Awtan i s  n o t  a  good approximation f o r  Aw [= f (7 ,5 )  - f  (3.2)  1 . 

Since f x ( 3 , 2 ) h  + f (3 ,2 )k  = 6h - 4k, equat ion  ( 8 )  becomes
Y 


W e  can now w r i t e  h2 - 2 
k i n  t h e  form e , h  + e2k a s  fol lows:  

L e t t i n g  el = e = h 2 - k  we s e e  t h a t  el and e 2  approach zero a s  

h  and k approach zero.  Thus, us ing  t h e  r e s u l t  of ( 1 0 )  i n  ( 9 ) ,  

w e  have 

where el and e2 approach zero a s  h  and k  approach zero s i n c e  

With r e s p e c t  t o  p a r t  ( a )  we had h  = 0.001 and k = -0.01. 

Hence h - k = 0.001 - (-0.01) = 0 . 0 1 1 .  

Therefore ,  
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4.5.1 continued 


which checks with the computation 5.045901 - 5.046 of part (a). 

Notice that the determination of el and e2 is not unique. 


For example, equation (8) could have been written as 


in which case we could let el = h and e2 = -k. [This is 

actually more straight-forward than the choice of el and e2 

from equation (lo), but the former method shows that el(and e2) 

may depend on both h and k.] 

What is important is the fact that el and e2 approach zero as h 


and k approach zero. It is not too important (except for 


computational case in making certain approximations) otherwise 


how el and e2 are expressed in terms of h and k. 


The main aim of this exercise is to emphasize why we always 


specify ncontinuously differentiable" when we talk about 


differentials. 


Notice that we have already, in previous units, done the compu- 

tations required for this exercise. By way of review, we have 

shown that wx(O,O) = w (0,O) = 0. Namely, for example, 
Y 


wx(O,O) = lim 

Ax -* 0 I
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4.5.2 continued 


Hence wx (0,O) dx + w (0 ,O)dy is well-defined. The crucial 
Y 


point, however, is that this is not a good approximation for 


Aw in any neighborhood of (0,0), no matter how small the 


neighborhood! 


In particular 


wx(O,O)dx + w (0,O)dy- 0 
Y 


while 


Introducing polar cordinates, (2) becomes 


2rL sin 8 cos 8
A w =  
 2 
r 


and since r # 0 [i.e., (x,y) # (0,O)1 

Aw = 2 sin 8 cos 8 

= sin 28. 

From (3) we see that in any neighborhood of (0,O) AW takes on 

all values from -1 to 1 inclusively, while from (1) we see 

that wx(O,O)dx + w (0,O)dy is always zho. 
Y 


In other words if we let dw = wx(O ,0) dx + w (O,O)dy, dw is not 
Y 


a reasonable approximation for Aw. For this reason we refrain 




Solu t ions  
Block 4 :  Matrix Algebra 
Unit  5: The T o t a l  D i f f e r e n t i a l  Revis i ted  

4.5.2 continued 

from us ing t h e  no ta t ion  dw un less  w i s  a continuously 


d i f f e r e n t i a b l e  func t ion  of x and y. 


A s  a f i n a l  computational check, no te  t h a t  "continuously 

d i f f e r e n t i a b l e "  means t h a t  w and w no t  only e x i s t  b u t  - they a r e  
X Y 

a l s o  continuous. 

~f we compute wx(x,y) a t  any p o i n t  (x ,y )  # ( 0 , 0 ) ,  w e  have 

If we apply p o l a r  coordinates  t o  (41, we s e e  t h a t  

3 3 2 22 r  s i n  8 - 2r  cos 8 r s i n  8 
wx(x,y) = 4 


r 


3 
-- 2 ( s i n  8 - s i n  8 cos2 8 )  

From (5)  w e  see t h a t  

32 ( s i n 8 - 2sin 8 cos 8 )
l i m  wx(x,y) = l i m  
(x,y)+(OIO) r + O  r 

3 2Therefore,  u n l e s s  s i n  8 - s i n  Bcos 8 = 0 ,  equat ion  ( 6 )  r e v e a l s  

t h a t  

l i m  wx (x ,y )  = f w ( O I O )  [= 01. 

( ~ , Y ) + ( O , O )  

I n  summary, i n  t h i s  e x e r c i s e  w i s  n o t  continuously d i f f e r e n t i a b l e  

i n  any neighborhood of  ( 0 , 0 ) ,  and it turned o u t  t h a t  wx(O,O)  dx 

+ w (0,O) dy was n o t  a good approximation f o r  Aw.
Y 
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4.5.3 

Given t h a t  

our  d e f i n i t i o n  of d i f f e r e n t i a l s  y i e l d s  

W e  m a y  now s o l v e  (2)  f o r  dx and dy i n  t e r m s  of  du and dv t o  

o b t a i n  

2
xdu + ydv = (2x2 + Zy ) d x  

and 

2-ydu + xdv = (2x2 + 2y )dy 

s o  t h a t  

dx X 
= du 2 + 

2x2 + 2y 

and 

Assuming t h a t  x and 

I
y a r e  continuous d i f f e r e n t i a b l e  funct ions  

of u and v ,  we a l s o  know t h a t  

dx = xUdu + xvdv 

and 

dy = yUdu + yvdv 

Then, s i n c e  du and dv a r e  independent v a r i a b l e s ,  we know t h a t  

M du + N dv 1 - M du + N dvc-t M, E M ,  and N ,  E N 2 .  Therefore ,
1 2 2 I L I 

equa t ing  t h e  express ions  f o r  dx and dy i n  (3 )  and ( 4 )  we may 

S.4.5.7 
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4.5.3 continued 


conclude that 


4.5.4(L) 


First of all, let us observe that 


is another way of writing 


That is, we may think of f(x,y) as being the 2-tuple (u,~) 

[since F:E~- 2+ E 1 and then by (1) , 2 since (u,v) = (x - 2 y , 2xy) 
2 2 

it follows from the definition of equality that u = x - y 

and v = 2xy. 

a. 	This part of the exercise is designed merely to help make sure 


that you understand the language implied by (1) and (2). 


(1)From (1) 


(2) Again from (1) 


and, leaving the computational details tc the reader, this 


means 
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4.5.4 	(L) continued 

(3)  This  i s  a g e n e r a l i z a t i o n  of ( 2 ) .  Namely, from (1) 

-f ( 3  + h,  2  + k)  = [ ( 3  + h12 - (2 + k12, 2 ( 3  + h ) ( 2  + k ) ]  

A s  a p a r t i a l  check of equat ion  ( 4 ) ,  l e t  us  observe t h a t  

equat ion  ( 3 )  i s  t h e  s p e c i a l  case  h = 0.001, k = -0.01 s i n c e  

3.001 = 3 + 0.001 and 1.99 = 2 + (-0.01). P u t t i n g  t h e s e  

va lues  of h  and k i n t o  ( 4 )  y i e l d s  

which checks w i t h  ( 3 ) .  

. 	 H e r e  we s t a r t  t o  come t o  g r i p s  wi th  what l i n e a r  a lgebra  i s  a l l  

about  us ing  t h e  language of d i f f e r e n t i a l s  d iscussed i n  t h e  

previous  u n i t ,  equat ions  (2)  y i e l d  

In  ano the r  form (5)  says  t h a t  
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4.5.4 (L)  continued 

= 2xAx - 2yAy Autan 

= 2yAx + 2xAyAVtan 

I n  p a r t i c u l a r ,  when 
J

1 
x  =3 and y  = 2, w e  see from (51 t h a t  

du = 6Ax - 4Ay 

dv = 4Ax + 6Ay . 

The p o i n t  w e  a r e  s t r e s s i n g  i n  t h i s  p a r t  of t h e  e x e r c i s e  i s  t h a t  

s u f f i c i e n t l y  c l o s e  t o  (3.2) du i s  a good approximation f o r  L u  

and dv is  a good approximation f o r  Av. Hence, (and again  l e t t i n g  

h = Ax and k  = Ay) 

-f ( 3 +  h ,  2 + k) = (5 + Au, 12 + Av) . 

[That is ,  -f ( 3 , 2 )  = (5,12) and changing t h e  i n p u t  o f  -f t o  ( 3  + h ,  

2 + k) means t h a t  t h e  new ou tpu t  has  t h e  form (5  + Lu, 12 + Lv) . I  

I f  w e  now make t h e  assumptions t h a t  du %Au and d v % ~ v ,  w e  may 

s u b s t i t u t e  (5)  [o r  ( 5 ' )  i n t o  ( 7 )  t o  o b t a i n  

-f ( 3  + h ,  2 + k) %(5 + 6  A x -  4Ay, 1 2  + 4 A x +  6 Ay) 

I f  w e  compare (8) wi th  ( 4 )  w e  see t h a t  t h e  e r r o r  i n  our  U-

coord ina te  is  h2 - 2 k (which c e r t a i n l y  goes t o  zero  " rap id ly"  

a s  h  and k  approach z e r o ) ,  whi le  t h e  e r r o r  i n  our  v-coordinate 

i s  2hk (which a l s o  goes t o  zero  r a p i d l y ) .  

Thus, -near  (3.2) t h e  mapping ( func t ion)  , Z : E ~ +  E2 de f ined  by 

( l ) ,may be replaced by t h e  1, inear  mapping . 

-g : ~ 2 + ~ 2 ,de f ined  by (8). 


That i s ,  g(3 + h ,  2 + k)  = (5  + 6h - 4k, 1 2  + 4h + 6k) s o  t h a t  
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4.5.4 ( L )  continued 

I£ w e  w r i t e  (9)  i n  t h e  form 

A q  = ( A u ,  Av) 

w e  see t h a t  

J 
Notice i n  (10) t h a t  t h e s e  a r e  no longer  approximations. These 

a r e  t h e  e x a c t  va lues  f o r  Ax and Ay -i f  w e  a r e  d e a l i n g  wi th  2. 

It i s  only an approximation when we rep lace  f by q. 

The impor tant  p o i n t  i s  t h a t  near  ( 3 , 2 ) ,  t h e  va lues  of 

-f ( 3  + h ,  2 + k) and q ( 3  + h ,  2 + k) a r e  "about  t h e  same". The 

advantage of us ing 2 r a t h e r  than f l ies  i n  t h e  l i n e a r  p r o p e r t i e s  

of g. 

A t  any r a t e ,  

s o  t h a t  

Comparing (11)wi th  (3)  shows t h a t  2 i s  indeed a good approxi- 

mation f o r  -f a t  (3.001, 1 .99) .  I n  f a c t ,  using ths language 
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4.5.4 (L) continued 

of  t h e  Euclidean m e t r i c ,  we have 

1 If-(3.001, 1.99) - q(3.001, 1.99) 1 I =  11(5.045901, 11.94898) -

(5.046, 11.944) 1 1  

A s  we s h a l l  see i n  t h e  nex t  e x e r c i s e ,  one does no t  need a 

geometric  i n t e r p r e t a t i o n  f o r  r ep lac ing  Z:E"+ En by q : ~ n + ?Zn, 

b u t  i n  t h e  cases  n  = 1 o r  2 ( e s p e c i a l l y  n  = l ) , t h e r e  i s  an 

i n t e r e s t i n g  geometric i n t e r p r e t a t i o n  which w e  s h a l l  d i scuss  i n  

t h e  fo l lowing note .  

A Note on Exerc i se  4.5.4 (L) 

In  t h e  s p e c i a l  case  r = 1, -f :En+ E~ reduced t o  a  func t ion  of  

a  s i n g l e  v a r i a b l e ,  f o r  which w e  u s u a l l y  used t h e  n o t a t i o n  

y = f (x). 

The i d e a  was t h a t  i f  f  was d i f f e r e n t i a b l e *  a t  x  = c ,  then 

y = f t ( c ) x + cl was a  good approximation f o r  y  = f ( x )  i n  a 

s u f f i c i e n t l y  smal l  neighborhood of  x = c .  I n  t e r m s  of  a 

graph, a l l  w e  w e r e  saying i s  t h a t  nea r  x = c [ i . e . ,  near  

t h e  p o i n t  ( c , f ( c ) ]  w e  could r e p l a c e  t h e  curve  by t h e  l i n e  

* N o t i c e  t h a t  i n  t h e  c a s e  r = 1 we t a l k e d  a b o u t  f b e i n g  
d i f f e r e n t i a b l e  a t  x = c .  We d i d  n o t  i n v o k e  t h e  more  s t r i n g e n t  
c o n d i t i o n  t h a t  f b e  c o n t i n u o u s l y  d i f f e r e n t i a b l e  a t  x = c ,  
w h i c h  wou ld  h a v e  m e a n t  t h a t  f '  b e  c o n t i n u o u s  a t  x = c .  The 
r e a s o n  f o r  t h i s ,  q u i t e  s i m p l y ,  i s  t h a t  f '  e x i s t s  a t  x = c i t  i s  
a u t o m a t i c a l l y  c o n t i n u o u s  t h e r e .  P i c t o r i a l l y ,  s i n c e  t h e  c u r v e  
i s  s m o o t h  i n  a n e i g h b o r h o o d  o f  ( c , f ( c ) )  t h e  s l o p e  c a n  b e  made 
a s  n e a r l y  e q u a l  t o  f f ( c )  a t  a  p o i n t  P on y = f  ( x )  j u s t  b e  
c h o o s i n g  P s u f f i c i e n t l y  c l o s e  t o  ( c ,  f ( c ) ) .  
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4.5.4 (L) continued 

tangent  t o  t h e  curve a t  ( c , f ( c ) ) .  That i s  

The d i s t a n c e  between 

P and Q goes t o  zero 

f a s t e r  than t h e  

Y = f '  ( c ) x  + Yo d i s t a n c e  between c 


Q and c + Ax a s  Ax + 0.  


(F igure  1) 

I n  terms of  t h e  language of Exerc ise  4.5.4 ( 6 )  , y = £ ' ( c )  x + yo 

i s  t h e  l i n e a r  ( s t r a i g h t  l i n e )  func t ion  q : ~ n +En i n  t h i s  case .  

I n  t h e  case  n = 2 w e  may view -f:E2 + E2 a s  a mapping of  t h e  

p lane  i n t o  i t s e l f .  To avoid confusion w e  r e f e r  t o  t h e  domain 

of -f a s  t h e  xy-plane and t o  t h e  range of f a s  t h e  uv-plane. 

While t h i s  might s e e m  s t r a n g e ,  n o t i c e  t h a t  we have a l ready 

done something l i k e  t h i s  i n  t h e  case  n = 1. Namely when 

£:E+E t h e  domain of  f and t h e  range of f a r e  t h e  same 

(namely, E ) .  P i c t o r i a l l y  t h i s  means t h a t  both t h e  domain and 

range of f a r e  t h e  number l i n e .  Yet t o  avoid confusion,  we 

r e f e r  t o  t h e  domain a s  t h e  x-axis  whi le  t h e  range i s  c a l l e d  

t h e  y-axis .  

A t  any rate w e  have 

(Figure  2 )  


I n  t e r m s  of t h e  s p e c i f i c  f and P of Exerc ise  4.5.4(L) we have 
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4.5.4 (L) continued 

(Figure  3) 

I f  we l e t  Q denote t h e  p o i n t  (3.001, 1.99) i n  t h e  xy-plane 

then -f ( Q )  = -Q(5.045901, 11.94398). I f  we  were t o  add t h i s  

information t o  Figure  3,  drawn t o  s c a l e ,  t h e  p o i n t s  P and Q 

would s e e m  t o  coincide  s i n c e  both  would l i e  w i t h i n  t h e  dot 
which denotes P. 

A s i m i l a r  r e s u l t  p e r t a i n s  t o  -P and -Q. So l e t  us  d i s t o r t  t h e  

graph a b i t  s o  t h a t  a l l  four  p o i n t s  a r e  c l e a r l y  labeled .  

(Figure  4 )  

According t o  equat ion  (12) of  Exerc ise  4.5.4(L),  i f  w e  draw 
4 

a c i r c l e  centered  a t  Q with  r a d i u s  J 1 x l o m 8  --, 10 
- , 

q(3.001,  1.99) would l i e  w i t h i n  t h i s  c i r c l e .  C lea r ly ,  i f  

drawn t o  s c a l e ,  t h i s  c i r c l e  would be encompassed by t h e  

d o t  t h a t  names Q. That i s ,  a t  l e a s t  geometr ica l ly  speaking,  

w e  would conclude t h a t  -f (3 .001 ,  1.99) = p(3.001,  1 . 9 9 ) ,  s i n c e  

w e  could n o t  d i s t i n g u i s h  between t h e s e  two p o i n t s  i n  t h e  uv-

plane.  Again p i c t o r i a l l y ,  
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4.5.4(L) continued 


but p(Q) 

/ 	
also lies 

in this 

dot 

(Figure 5) 


Mapping the xy-plane into the uv-plane is not as geometrically 


"pleasant" as mapping the x-axis into the y-axis. That is, we 


may place the y-axis at right angles to the x-axis so that the 


mapping may be viewed as a plane curve. But in this context, 


mapping E2 into E2 would require a 4-dimensional graph since 


both the domain and range of f are 2-dimensional. 


We shall, little by little, talk more about mappings of the 


xy-plane into the uv-plane as we continue with our course. 


4.5.5 


a. 	Our mapping in this case is equivalent to the change of 


variables 


Using differentials, (1) yields 
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4.5.5 continued 

-I f  w e  now l e t  xl = x2 = x3 -- X4 - 1, t h e  system (2)  becomes 

dul = 2dxl + 2dx2 + 2dx3 + 2dx4 

du2 = dxl + dx2 + dx3 + dx4 

du3 = 3dxl + 3dx2 + dx3 + dx4 

du4 = 3dxl + dx2 + dx3 + 2dx4 

NOW 

Theref o r e  

Therefore ,  i f  w e  assume t h a t  dul% Aul, du2% du2, du3% iu3 ,  

and du4? Au4, w e  may compute dul, du2, d u j  and du 4 from (3)  

wi th  Axl = Ox2 = Ax3 -- Ax4 = 0.001 and then r e p l a c e  Aul, 

Au2, Au3 and Au4 i n  ( 4 )  wi th  t h e s e  values  of dul, du2, du3, 

and du4. 

I n  more d e t a i l ,  from (3)  

Hence, from (4) , 
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4 .5 .5  c o n t i n u e d  

[ w h e r e  ( 4  + d u l l  1 + d u 2 ,  3 + d u 3 ,  3 + d u 4 )  = ( 4 . 0 0 8 ,  1 . 0 0 4 ,  

3 .008 ,  3 . 0 0 7 ) .  

The  a p p r o x i m a t i o n  refers t o  -
f ( l . O O 1 ,  1 . 0 0 1 ,  1 . 0 0 1 ,  1 . 0 0 1 ) l .

b. From (1) w i t h  xl = x2 = x3 = xq = 1 .001 ,  we h a v e  
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4.5.5 continued 

s o  t h a t  

f- (1 .001 ,  1 .001 ,  1 .001 ,  1 .001)  = (u l ,  Y1, U3 ,  U4) 

I f  we d e f i n e  q:~4+E~ by 

p ( l  + Axl, 1 + Ax2, 1 + Ax3, 1 + Ax4) = ( 4  + dul, 1 + du2, 

3 + du3, 3 + du4) 

equat ion  ( 6 )  y i e l d s  

whereupon from ( 7 )  we obta in  



Solu t ions  
Block 4: Matrix Algebra 
Unit  5: The To ta l  D i f f e r e n t i a l  Revis i ted  

Our aim here  i s  t o  shed some l i g h t  on i n v e r s e  func t ions  and t o  

show how w e  may use  d i f f e r e n t i a l s  i n  s tudying t h i s  t o p i c .  

In  Exerc ise  4.5.4(L) w e  t a l k e d  about 

and we i n v e s t i g a t e d  t h e  value  of  -f ( a  + h ,  b + k) knowing t h e  

value  of g ( a , b ) .  I n  p a r t  ( a )  of t h i s  e x e r c i s e  we a r e  t a c k l i n g  

t h e  i n v e r s e  problem. Namely, knowing t h a t  f ( 3 , 2 )  = ( 5 , 1 2 ) ,  

w e  would l i k e  t o  f i n d  t h e  p o i n t  (x ,y )  nea r  (3 ,2 )  such t h a t  

-f  (x ,y )  = (5.00052, 12.00026). To t h i s  end we have: 

a .  We know t h a t  -f13 ,2)  = (5,12) and t h a t  

-f ( 3  + Ax, 2 + Ay) = (5  + Au, 12 + Av). 

From t h e  given informat ion  i n  t h i s  e x e r c i s e  we have t h a t  

whi le  

What we would l i k e  t o  know is what va lues  of  Ax and Ay i n  

equat ion  (1) would produce t h i s  change i n  u and v. 

What w e  a l r e a d y  know i n  t h i s  problem [ see ,  f o r  example, 

equat ion  ( 6 )  i n  Exerc i se  4.5.4 (b)  I is t h a t  

From a  pure ly  mechanical p o i n t  of  view, we can s o l v e  t h e  

system of equa t ions  ( 4 )  t o  express  dx and dy a s  l i n e a r  com-

b i n a t i o n s  of  du and dv. I n  p a r t i c u l a r  
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4.5.6 (L) continued 


Similarly 


so that 


dy = --1 du + 
13 

-3 dv 
2 6 

. 

Now, if we let du = 0.00052 and dv = 0.00026, equations (5) 


and ( 6 )  quickly yield 

while 


If we then assume that Ax %dx and Ay 2 dy then (7) and (8) yield 

3 + Ax % 3 + dx = 3 + 0.00008 = 3.00008 (9 

and 
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4.5.6 (L) continued 


In other words, 


To check the accuracy of our approximation, we have by the 

definition of -f that 

Hence 


Notice that what we wanted was the 2-tuple (x,y) such that 


Comparing (11) and (12) we see that while (x,y) is not exactly 


(3.00008, 1.99999), the approximation 


is extremely accurate. 


To summarize what we did in this exercise, we replaced the 

2 2function -f:E~+E by =:E~-E . 


As described in Exercise 4.5.4(L), 3 is the linear function 


3(3 + Ax, 2 + Ay) = (5 + 6 Ax- 4 Ay, 12 + 4 Ax+ 6 Ay). 


We then computed ~~(5.00052, 
12.00026) - and used this to 

1

approximate the desired solution, f (5.00052, 12.00026). 


This type of substitution is perhaps the best intuitive way 


to think of the mapping 
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4.5.6 (L) continued 

-f : + E". ~~ 

Namely, w e  replace f by i t s  l i n e a r  counterpar t  3 i n  t he  

neighborhood of some spec i f ied  po in t ,  and let  t h e  answers 

obtained i n  terms of 9: serve a s  t h e  approximation f o r  the  

corresponding r e s u l t  involving f. 

Again, the  case  n = 1 is  t h e  e a s i e s t  t o  see p i c t o r i a l l y .  

In  t h i s  case,  we have: 

Y 

(Figure 1) 

In  Figure 1, given b w e  want t o  f ind  a such t h a t  f ( a )  = b. 

Graphically we draw the  l i n e  y = b t o  meet the  curve y = f ( x )  

a t  P (a , f (a)) and the  x-coordinate of P is t h e  required value 

f o r  a. Now it would be e a s i e r  (a r i thmet ica l ly ,  no t  p i c t o r i a l l y )  

t o  solve f o r  a i f  y = f ( x )  were replaced by the  l i n e a r  equation 

y = f ' (c)  x + yo. P i c t o r i a l l y ,  t h i s  would involve l e t t i n g  

t he  l i n e  y = b i n t e r s e c t  t he  l i n e  y = f' ( c ) x  + yo a t  Q and 

approximating a by t he  x-coordinate of Q. That i s  

Y y = f (x) 

I c aa l  
(Figure 2) 
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4.5.6 (L) continued 


Our claim is that if P is close to (c,f(c)) then al is close to 


a. 


Notice, however, (as we stressed in part 1 of our course) that 

in finding f-'(b) we want to use the fact that we want our 

answer to be near x = c. For example, f need not be 1-1 

globally (i.e., for the entire domain) such as 

I c a a2 


(Figure 3) 


That is, both f (a) and f (a2) equal b, but we choose x = a since 

it is "near" x = c. 

In this same vein, we are assuming in this exercise that the 

domain of -f is being restricted to a sufficiently small 
neighborhood of (3,2) so that in this neighborhood f is 1-1. 

(The conditions under which we can be sure such a neighborhood 


exists will be discussed in the next unit.) 


Note: 

We may generalize this exercise by picking the point (xo, yo) 


rather than (3,2). Then from equation (5) of Exercise 4.5.4 


we have 


We may then solve (13) for dx and dy in terms of du and dv. 


That is, 
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4.5.6(L) continued 

2xodu = 2x0 dx - 2xoyody 

yodv = zYo2dx + 2xoyody i .  
Hence 

S i m i l a r l y ,  

2 2
except  t h a t  ( 1 4 )  and (15) a r e  undefined when 2 (xo + yo ) = 0. 

This  can only  happen i f  xo = yo = 0,  o r  when (xo,yo) = (0,O).  

I n  o t h e r  words, a t  l e a s t  from a mechanical p o i n t  of  view, t h e  
2technique  used 

. 
i n  t h i s  e x e r c i s e  a p p l i e s  f o r  a l l  (x0, yo) i n  E 

except  (0,O) 

What does t h i s  mean p i c t o r i a l l y ?  F i r s t  of a l l ,  n o t i c e  t h a t  
2 

s i n c e  f ( x , y )  = (x - 2 
y , 2xy) ,  f(O.0) = (0,O).  Now look a t  

any neighborhood of (0,O) i n  t h e  xy-plane. Let  (h ,k )  and 

(-h,-k) be  p o i n t s  i n  t h i s  neighborhood, o t h e r  than (0,O). 

Then 

Therefore  

-f (h ,k)  = -f (-h, -k) even though h # -h and k # -k. That  i s ,  

-f i s  n o t  1-1 i n  any neighborhood of  (0,O).  
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4.5.6 (L )  continued 

P1 (-h, -k) 
Given f( P )  = Q where P  = ( h , k ) ,  l e t  P1 = (-hI  -k) ; then 

-f ( p l )  = Q. That i s ,  t h e r e  i s  no neighborhood of (0.0) 

f o r  which -f i s  1-1. 

This happens i n  t h e  case  n  = 1 a s  we l l .  Namely suppose 

f ' ( c )  = o. For example 

C 

There i s  no neighborhood of x = c i n  which f  i s  1-1. 

Genera l iz ing  s t i l l  f u r t h e r  suppose z ( x , y )  = [ u ( x , y ), v ( x , y ) 1 

where u and v  a r e  cont inuously  d i f f e r e n t i a b l e  func t ions  of  x 

and y. 

then  

Idu = + u (xory0)dyu ~ ( x ~ ~ Y ~ ) ~ x
Y 


dv = v x ( ~ o , y o ) d x+ v ( x  ,yo) dy. 

Y O 

We can then s o l v e  f o r  dx and dy i n  terms of du and dv un less  

5.4.5.25 
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4.5.6 (L) continued 


~ x ( ~ o , ~ o ) ~ y ( ~ o , ~ o )  - uY ~xo,~o)vx(~o,~o) # 0, that is, unless 

For example, if we multiply the top equation in (16) by 


v (xo,yo) and the bottom equation by -u (xo,yo), we obtain 

Y Y 


whereupon 


Thus, as long as ux (xo, yo) v (x o,Yo) - u ~ ( x ~ ~ Y ~ ) ~ ~ ( ~ ~ , Y ~f 0, 

we may divide both sides of (18)by it to obtain an expression 


for dx in terms of du and dv. 


The coefficients of dx and dy in (16) [which, by the way, are 


constants once (xo,yo) is specified] form an important matrix 


called the Jacobian Matrix of u and v with respect to x and y. 


The Jacobian Matrix will be explored in somewhat more detail in 


the next unit. 


Therefore, 


)
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4.5.7 ( L )  continued 

du = xdx + 2ydy + 2zd2 

2
dv = 6xydx + 3x dy + 122 


dw = 4yzdx + 4xzdy + 4xydz 


I n  p a r t i c u l a r  i f  x = y = z = 1, equat ions  (1) become 

Using our augmented mat r ix  technique ,  w e  may s o l v e  equat ions  

(2) f o r  dx, dy,  and dz  i n  t e r m s  of du, dv, and dw a s  fol lows:  

Therefore 
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4.5.7 (L) continued 


1 1
d z = ~ d u + ~ d v - 


Again, assuming that x,y, and z can be expressed in terms 


of the independent variables u, v, and w, we know that 


dx = xudu + xvdv + 5 d w  


dy = yudu + yvdv + ywdw 


dz = zudu + zvdv + zwdw .


Comparing (3) and (4) we have 


7 
X = -1, XV = 0' XW = 2 u 


I

From our original equations, when x = y = z = 1 we have that 

so that (5) really is read 


5 7 
5 5 

21 4) = -1, xv( 2, 7- 4) = Or xW( 71 714)XU( =
 2 

4.5.8(L) 


The main aim of this exercise is to show the dltference 


between a local inverse and a global inverse. 
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4.5.8 ( L )  continued 

X X 
a .  	 Given t h e  mapping -f : E ~ +E~ def ined by -f  (x ,  y )  = ( e  s i n  y  , e cos y  1 . 

we have 

u = e  X s i n y  

X 
v = e  c o s y .  

Hence 

e Xs i n  y  e X c 0 s . y  


I e cos  y  - e X s i n  y 


2 2= - e Z x ( s i n  y  + cos  y )  

This  i s  e s s e n t i a l l y  equ iva len t  t o  saying t h a t  du = e 
X s i n  y  dx 

+ eXcos ydy, dv 	= e Xcos ydy - e X s i n  ydy and so lv ing  f o r  dx and 

dy i n  	terms of  du and dv, j u s t  a s  we d i d  i n  t h e  previous 

2x >
e x e r c i s e s ,  b u t  e 0 f o r  a l l  r e a l  va lues  of  x.# 

Theref o r e  

+ o f o r  a l l  ( x , y ) .I la ( x , Y )  

Notice,  however, t h a t  t h e  v a l i d i t y  of  our  approach r e q u i r e s  

t h a t  Ax and Ay be s u f f i c i e n t l y  smal l  s o  t h a t  Au % Autan, e t c .  

Thus o u r  r e s u l t s  a r e  " l o c a l "  which means t h a t  f o r  any po in t  -
(x ,y )  i n  t h e  xy-plane t h e r e  i s  a s u f f i c i e n t l y  smal l  neighborhood 

N of (x ,y )  such t h a t  -f i s  1-1-on 5 .  That i s ,  l o c a l l y  f 
-1

e x i s t s  

a t  each p o i n t  (u ,v )  i n  t h e  uv-plane. P i c t o r i a l l y ,  
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4.5.8 (L) continued 

There are neighbor-
\ 

hoods N1 and N2 of 

(0,O) and (0,1), 

respectively such JI I 
that f:N1+ N2is both-
1-1 and onto so that 

;u 

(Figure 1) 

Moreover the results in Figure 1 extend to the treatment of 
Xo 

any pair of points (xo,yo) in the xy-plane and (e sin yo, 
eXOcos y ) in the uv-plane.

0 

b. Since sin(yo + 271) = sin yo and cos(yo + 271) = cos yo' we 
have that -f(xoryo) -f(xo, Yo + 2 ~ )  

That is. 

Since ( X ~ , Y ~ )# ( X ~ , Y ~+ 271), equation (2) shows that f: is 
not 1-1 globally. In terms of Figure 1, what this means is 

the following, We were able to find sufficiently small 

neighborhoods N1 or (0.0) in the xy-plane and N2 of (0.1) 

in the uv-plane such that f:Nf N2 was 1-1 and onto. But if 
we now choose a neighborhood of (0,O) which is not sufficiently 

small then -f need not be 1-1 on this new neighborhood. For 

example, utilizing equation (I), suppose we choose our 

neighborhood N of (0,O) to be large enough to include (0, 2~i) .  

Then not only does -f(0,O) = (0,l) but -f(0,271) also equals 
0 0 

(0,l) [since -f(0,271) is equal to (e sin 2 ~ ,e cos 271) = (0,l)1. 

Pictorially 
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4 . 5 . 8  (L) continued 

(Figure  2) 

NO ma t t e r  how w e  shrunk N2 w e  cannot have f1:N2+ N s i n c e  

-f - l  ( 0 , l )  would equal  (0,O) and (0,2m) con t ra ry  t o  our  d e f i n i t i o n  

t h a t  -f - I  i s  a s ingle-valued funct ion .  

Thus, t h e  f a c t  t h a t  -£:En -+En has  a l o c a l  i n v e r s e  everywhere i s  

n o t  enough t o  guarantee  t h a t  -f  has  a  g loba l  inverse .  

Are t h e r e  c o n d i t i o n s  under which w e  can be s u r e  t h a t  -f  :En+ En 

has  a g l o b a l  inve r se?  

I n  p a r t  1 of our  course  w e  took c a r e  of t h e  answer of r = 1. 

Namely i f  f was d i f f e r e n t i a b l e ,  t h e  f a c t  t h a t  f '  (x) was never 

zero  guaranteed t h a t  f  was 1-1. (I.e.,  t h e  graph was e i t h e r  

always r i s i n g  o r  always f a l l i n g .  ) 

For t h e  c a s e  r = 2 t h e  fo l lowing s p e c i a l  r e s u l t  a p p l i e s  

( aga in ,  s t a t e d  wi thout  p r o o f ) .  

Theorem 

Let  -f  b e  a cont inuously  d i f f e r e n t i a b l e  func t ion  de f ined  i n  

a r eg ion  R of E2 such t h a t  t h e  Jacobian determinant  of f 

i s  never ze ro  i n  R. Suppose f u r t h e r  t h a t  C is  a s imple c losed 

curve ( i .e . ,  a c losed  curve t h a t  never c r o s s e s  i t s e l f  and 

which can be drawn from s t a r t  t o  f i n i s h  wi thout  t a k i n g  t h e  

p e n c i l  o f f  t h e  paper. For example a i s  a simple c losed 

curve  b u t  @ i s n ' t )  which, t o g e t h e r  wi th  i t s  i n t e r i o r ,  l i e s  
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4.5.8 (L) continued 

i n  R, and t h a t  -f is 1-1 on C. Then f ( c )  is a l s o  a simple 

closed curve & f is  1-1 on the  domain C I R  ( i . e . ,  on R and 

i t s  boundary) . 
In  terms of an example, consider Figure 1 of p a r t  ( a ) .  

Suppose we l e t  C be t he  c i r c l e  centered a t  (0,O) i n  t he  xy- 

plane with radius  equal t o  1 and l e t  R denote t h e  i n t e r i o r  

of t h e  c i r c l e  

Then, - - f o r  a l l  - Moreover,f l ( x ) f O  xsR s ince  fl(z)#Of o r  every z. 
f o r  every p a i r  of d i s t i n c t  po in t s  P1 and P2 on c ,  f(P1) # f (P2)  

s ince  t he  c i r c l e  i s  too small t o  permit two po in t s  whose y- 

coordinates d i f f e r  by 27r t o  e x i s t  on t he  c i r c l e .  (I.e., the  

diameter of t he  c i r c l e  is  2 which i s  less than 27r ) .  In  more 

d e t a i l ,  i f  P1 = (xl,yl) and P2 = (x2,y2) then f (PI) 'f(P2)  

implies t h a t  

X1 X 

( e  s i n  y 1, e 'cos yl) = 
X2

(e s i n  y2,  
X2 

e cos y 2 ) ,  s o  t h a t  

X X2 
e 'sin y1 

X 

e l cos  y1 

= e s i n  y2 I 
X2 

= e cos y2 I . 
Squaring both equations i n  (3) and adding y i e ld s  

e2x1(sin2Y1 + cos2 Y 1 )  = e 2x2 ( s i n  2 y2 + cos 2 y2) 
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4.5.8 (L) continued 


But ex is an increasing function (hence 1-1). Therefore 


If we divide one equation in (3) by the other we obtain 


sin yl -- sin y2 

cos y cos y1 2 


or tan yl = tan y2, etc. 

At any rate, the theorem guarantees that will map the circle 

C into a simple closed curve C' in the uv-plane, R will be 

mapped onto the interior of C', and if we let S denote C' and 

its interior, we have that -f:RUC + S is 1-1 and onto. 

(Notice that the mechanics of computing -f(C) etc. are not 
too simple.) 
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