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3.8.1 (L)

The main reason for this exercise, relative to the material in
this unit, is to justify a technique used in the lecture.
We were trying to solve a differential equation of the form

M(x,y)dx + N(x,y)dy = 0 (1)
We then pointed out that if M(x,y)dx + N(x,y)dy were exact, we
could find a function, w = f£(x,y), such that

dw = M(x,y)dx + N(x,y)dy (2)
We then substituted (2) into (1) to obtain

dw = 0 (3)
whence we concluded that

w=_c (4)
and that, therefore, the solution of equation (1) was

f(x,y) = ¢ (5)

The point is that in (2), dw is a function of the two
independent variables dx and dy, but in (3) dw is a function
of the two dependent variables dx and dy. That is, once we
equate M(x,y)dx + N(x,y)dy to zero then dx and dy are no longer
independent.

What we want to show in this exercise is that the use of dw

in (2) is compatible with its use in (3). In essence, we wish
to show that even if x and y are dependent variables the
"recipe" of computing dw as fxdx + fydy is correct.

To show this properly we must make the distinction, once

again (as we did in Part 1), between an eguation (conditional
equality) and an identity.

When we write

f(x,y) =0 (6)
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3.8.1 (L) continued

we mean {(x,y):f(x,y)= 0}. We do not mean that f(x,y) = 0 for
every 2-tuple (x,y).* For example, suppose f(x,y) = x2 — ¥
Then f(x,y) = 0 means x2 -y =0, or y = x2. Thus in this case,
f(x,y) = 0 means the parabola y = xz. If we let C denote the
parabola [i.e., C = {(x,y):y = x2]] then equation (6) is an
identity provided that the domain of f is restricted to C. That
is, on C f(x,y) = %2 = y = Ee = x2 =0, but if (x,y)$¢ C then
f(x,y) # 0 [e.g., £(3,2) = 9-2 =7 # 0].

b. With this as background, it should now seem clear as to what we
mean when we say, "suppose f(x,y) = 0 determines y as a

differentiable function of x". Relative to the present example
2 2 2

x“ - y = 0 implies that y = x” and x“ is certainly a differentiable

function of x. Geometrically, the statement would be that f(x,y)
determines a smooth curve C in the plane (in our example, the
parabola y = x2).*

At any rate, under the present assumptions, we have that

f(x,y) =0 (6)

is equivalent to

y = g(x) where g' exists.

% I1f we do mean that f(x,y) = 0 for each (x,y)EE2 we then write
f(x,y)= 0, and say that f(x,y) is identically equal to zero.
In the language of functions if f = E? +R (where R = real numbers)
we define f to be the zero function on E2 if f(x,y) = 0 for each
(x,y)sEz. More generally if S is any set and f = § + R we define

f to be the zero function if f(s) = 0 for each seS.

* f(x,y) = 0 does not always guarantee that y is a differentiable
function of x (although it happens in the example we chose).

This is why the exercise is worded as it is.
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3.8.1 (L) continued

In other words, if we let C = {(x,y): y = g(x)} then on C
fix,y)z £f(x,g(x))= 0 (7)

Now f(x,g(x)) is a function of x alone.

Hence we may write that
h(x) = £(x,g(x))* (8)

Therefore on C, equation (6) is equivalent to the identity
h(x)E 0.
Since h(x) = 0 then it follows that

h'(x)= 0 (9)

In differential form, we are saying that w = f(x,y) implies,
on C, that w = h(x); therefore

(9")

dw = h'(x) dx

But h'(x) can also be computed by the chain rate, using the
facts that

h(x) = £(x,y) and y = g(x).** (10)

* %

In terms of part (a), f(x,y) = x2 - y and g(x) = xz.

Hence, f(x,g(x)) = x2 - xZE 0.

Note that in this form, x and y are treated as being
independent in the expression f(x,y), with the dependency
coming from y = g(x).

§.3.8.3
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3.8.1 (L) continued

Applying the chain rule to (10) we have
h'(x) = £, =X 4 ¢ I

x dx y dx
= dy
= fx + fy A% 7 (L)

and since y = g(x), %% = g'(x)*, therefore

h'(x) = fx + fy

If we now replace h'(x) in (9') by its wvalue in (11'), we
obtain,

dw [fx + fy g'(x)] dx

fdx + £ [g'(x)dx]

Y

fxdx + fydy |[since on C, y = g(x);, therefore
dy = g'(x)dx]. (12)

Equation (12) shows us that on C, we may still view dw as

fxdx + fydy even though x and y are not independent on C.

g'(x) (11")

c. Implicit differentiation applies to equations of the form
f(x,y) = 0. If we assume that f(x,y) = 0 determines y as a
differentiable function of x, say, y = g(x), then if
Cc= {(x,¥y): v = g(x)} ,

f(x,y) = £(x,g(x)= 0 on C.
e ———
h(x)
Therefore, h'(x)= 0 and [as seen in (11l)] it is also f_ +
dy =
fy Ix °
Comparing these two expressions for h'(x), we obtain
£ + £ R0, or V=- fx (provided £_ # 0)
X y dx ! dx fy P y *

* This is the first time we are making use of the
assumption that g is differentiable.

5.3.8.4
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3.8.1 (L) continued

More mechanically,

w= f(x,y) =0 >

f
= - +C_1¥.=-_.’5
dw = fxdx + fydy =0 - fy (fy # 0).

Most likely, the mechanical way seems natural to you and in
the case of most students, it would be accepted without gquestion

(although perhaps not without confusion). The key part is that
the mechanical way utilizes the fact that dw is still fxdx + fydy

even when x and y are dependent, since we are using dw in the

case f(x,y) = 0.

d. As we did (almost trivially) in Part 1,

x2 + yz -1=0

2x + 2y %ﬁ = 0, therefore g¥ -

(13)

&
Yy (14)

Notice that in getting from (13) to (l14) we assumed that (13)
defined y as a differentiable function of x, say g(x), such

that

%% + go(x) - 1= 0.

Indeed in this case, y = g(x) =

# 1~ x2 and the only

"trouble spots" occurred when x= + 1 since there y could not

be defined as a (single-valued) function of X.

Y

2
X

* y2 -1=0

vertical tangent, therefore
‘fcurve is not single valued in
any neighborhood of x = 1.

.

-

(1,0)
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3.8.2

a. For dw to be identically zero all coefficients of dw must be
zero. In this exercise dw= 0 only on the set of 3-tuples S
(usually a surface) defined by the equation f(x,y,z) = 0. 1In
other words, dw =0 on the set S = {(x,y,z):f(x,y,z) = 0}.

b. If f(x,y,z) = 0 defines z as a continuously differentiable
function of x and y, say, z = g(x,y), then f(x,y,g(x,y)) =
h(x,y). Equivalently h(x,y) = f(x,y,2), z = g(x,y). Hence,
by the chain rule,

_ ax oy 9z
hy =f, 5%+ fy 3% T £, % vl
Now —%% = 1, %% = 0 since x and y are independent variables.

Thus (1) yields

- 9z _
hy=£f, +£f, 3¢~ £y + £,94 (2)
Similarly,
-4
h =F8 £ == + & 3
y vy T 2w Ty T 2 Yy (2

Therefore if S = {(x,y,z) : f£(x,y,z) = 0} , then on S
h(x,y)= 0.

Therefore, h = hyE 0 (4)

[Notice that it is h(x,y) that is identically zero,_not
f(x,v,2), i.e., £(x,y,2) = 0 only on S].

Combining (4) with (2) and (3) we obtain f(x,y,2) = 0 ~

az _ _ Ix
ax T;
£ provided fz(x,y) # 0.
«aE - - _.Y_
ay fz
c. In this case S = {{X,y,z]=25 + x2y3 = 0}. Now, since w = z5 - x2y
dw = 2xyldx + 3xy2dy + 5zldz. (5)

Nl N & S S S VS B B oW e e
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3.8.2 (continued)

2 3
For (x,y,z)e S, z5 = -x2y3, or z = —xg yg. Therefore on S,
8 12
2? = xg y1r (6)
and
3 3 2 _ 2
dz=-§x Eygdx-%xgy 3 4y (7)

Substituting (6) and (7) into (5), we obtain that for
(x,y,2)e S

8 12 3 3 2 _ 2
aw = 2xy3ax + xBylay + 55 y 0 (- 2x O ylax - By O ay)
- 2xy3dx + 3x2y2dy = 2xy3dx - 3x2y2dy
= 0dx + 0Ody.
3.8.3 (L)

OQur aim here is simply to emphasize the role of each of the two
definitions of an exact differential in terms of a specific

example.
We wish to find a continuously differentiable function f such
that
df = (exy3 + 2xX sin y + 4x3y5de + (3exy2 + x2 cos y +
sx4y?)ay (1)

or, alternatively without using differential notation,

fx = exy3 + 2% 8in y + 4x3y5
and i (1)
fy = 3exy2 + x2 cos y + 5x4y4 J

Now before we try to construct the desired f, it would be helpful

to know that such a function exists. It is here that we use the

S.3.8.7
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3.8.3 (L) continued

criterion of comparing My and Nx' where M denotes the coefficient

of dx and N the coefficient of dy in Equation (1). We have

M exy3 + 2x sin y + 4x3y5

I

2 4 4

N = 3exy2 + %7 cos y + S5xyT,;

hence,
My - 3exy2 + 2x cos y + 20 x3y4
Nx = 3exy2 + 2x cos y + 20 x3y4.

Therefore,

MYE N (2)

from which we may now conclude that a function f which satisfies
equation (1) exists;knowing this, we set out to construct £, and

X
Namely, we know that whatever f looks like it must satisfy

our technique mimics the proof of why My = N_ implies exactness.

fx = exy3 + 2x sin y + 4x3y5.

If we now integrate with respect to x, treating y as a constant,
we obtain,

3 4+ %% sin y + x4y5 + gl(y)* (3)

f = exy
Notice that (3) tells us that if f exists, all we need to do is
determine g(y) explicitly to determine f£. What we would not know

—

* Recall that since x and y are independent, 3g/3x= 0++ g is a
function of y alone. Our definition of a "constant" when we
integrate holding y constant is any function of y. This
parallels the usual definition of constant in the case of

a single variable, i.e., dc/dx= 0+>c is a constant.

S.3.8.8
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3.8.3 (L) continued

without (2) is that £ does exist. More specifically, if we

differentiate equation (3) with respect to y, we obtain

=5 = 3e¥y? + x? cos y + sxiy? + 9" (v) (4)

but we also know from (1') that

fy = 3exy2 + x2 cos y + 5x4y4.

Comparing this with (4), since ny fy’ it follows that

£'(y) =0

whereupon

g = ¢, c an arbitrary constant (5)

[The fact that My = Nx guaranteed that when we equated the two
expressions for fy, the resulting equation would yield g'(y)

in terms of y alone, so that g(y) could be determined].

At any rate, substituting (5) into (3) yields

fl f(x,y)] = exy3 + x2 sin y + x4y5 + c. (6)

As a check, we see from (6) that

exy3 + 2x sin y + 4x3y5

Hh
]

£ 3exy2 + x2 cos y + Sx4y4

Y

[l

which checks with equations (1').
Aside:

The technique by which we derived (6) works in general (provided

of course, that MY = Nx}. This does not mean that the more
astute student could not have found f by "inspection". Namely,

sl3.8l9
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3.8.3 (L) continued

%3 2

(ey”™ + 2x sin y + 4x3y5)dx + (3exy

= (exy3dx + 3exy2dy] + (2x sin y dx + x

- x2 cos y + 5x4y4)dy

2 cos y dy)

+ (4x3y°ax + sxiylay)

a(e®y? [+cl) + d(x®sin y) + a(xy®)

d(exy3 + x2 sin y + x4y5 + c).

Il

I

The point is that we do not have to be this astute to obtain
f, but the above may help to explain why one often thinks of

exact differentials as being ones that are "integrable at sight".

b. Given that fx = 4x3 sin y we obtain that the required f, if it

exists, must have the form
4 .
f =x" siny + g{y)_ (7)
To determine g, we compute fy from (7) to obtain
- 3 '
fy = x cos y + g'l(y)
and compare this with the requirement that
4
f_ =X cos + X.
v ¥
This leads to the equation
4 i _ 4

X cosy +g'(y) = x" cos y + x
or
g' (y) = x. (8)
Equation (8) is a contradiction since it shows that x depends
on y, contrary to the known fact that x and y are independent
variables. This contradiction stemmed from the assumption
that the required f existed, which means, therefore, that no
such f exists.

S.3.8.10
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3.8.3 (L) continued

In this example M = 4x> sin y and N = x4 cos y + x. Therefore
3 3
MY = 4x~ cos y and Nx = 4x” cos y + 1

from which it follows that

Myi]emx
so that we know at once that

g .= 4
4%~ sin y dx + (x  cos y + x)dy

is not exact.

One use of exact differentials is in the solution of certain

types of differential equations. In this exercise we are

given that

dy _ _ {exy3 + 2x sin y + 4x3y5J (9)
ax {3exy2 + x2 cos y + 5x4y4J'

Therefore,

(exy3 + 2X sin y + 4x3y5)dx + (3exy2 + x2 cos y + 5x4y4)dy

= 0. (10)

Now in part (a) of this exercise we showed that the left side of

(10) was df where f = exy3 + x2 sin y + x4y5 + ¢c. In .other

words, (10) becomes df = 0 so that by our discussion in Exercise
3.8.1 (L), we have that

f(x,y) = k, k an arbitrary constant. (11)
Comparing (11) and (6), it follows that

exy3 + xz sin y + x4y5 + c =k (12)

and since c and k are both arbitrary constants they can be

5.3.8.11
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3.8.3 (L) continued

"amalgamated", so that (12) becomes

exy3 + x2 sin y + x4y5 = c. (13)

Equation (13), with any value for c, satisfies the given
differential equation (9), but we wish to determine a solution
of (9) such that when x = 0, y = 2. To this end we let x = 0
and y = 2, and obtain

i) +0+0=c

so that

whereupon (13) becomes

exy3 + x% sin y + x4y5 = 8

or a (14)

g(x,y) = 0 where g(x,y) = exy3 + x2 sin y + x4y5 - 8.

)

[Geometrically, the curve (14) passes through the point (0,2)

and its slope at any point (x,y) is given by equation (9)]

Note:

More generally, to solve the differential equation

Mdx + Mdy = 0 (15)
we first test to see whether Mdx + Ndy is exact. This is done

by seeing whether My = Nx' If it is exact, we use the pro-
cedure of part (a) to find explicitly a function f such that

df = Mdx + Ndy. This function f "converts" equation (15) into

af

Il
(=]
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3.8.3 (L) continued

from which it follows that

f(x,y) = c (16)
and (16) is then the solution to (15).

The reason that differential equations are not this easy to
handle, in general, is that Mdx + Ndy need not be exact.

The main study of first order differential equations centers

around the problem of what happens in equation (15) when the
left side is not exact, and this will be investigated by us

in more detail in Block 7.

3.8.4

The slope of our curve is

dy _ _ (ery + ex}
a {xz + 1)ey

so that

(2xe¥ + eX)dx + (x% + 1)e¥ dy = 0. (1)
Letting M = 2xe¥ + e* and N = {x2 + 1)e¥, we see that

My = 2xey, Nx = 2xey.

Since MyzENx, Mdx + Ndy is exact and we may now construct f such
that df = Mdx + Ndy.

In particular, we have
f = 2xe¥ + %,
X

Therefore,

2
£ = x“eY + &* + gly) (2)

S.3.8.13
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3.8.4 (continued)

so that

.. & xzey

v + g'(y).

But we also know that
2 Y

f = (x" + 1l)e

¥ ( )

and comparing these two expressions for fy’ we see that

xzey + g'(y) = (x2 + l)ey.

Therefore,

g'(y) =&

so

gly) = e + c. (3)

Substituting g(y) as determined in (3) into (2), we obtain

X

£l = £(x,y)] = x°e¥ + ¥ + ¥ + c. (4)

Thus, equation (1) becomes

df = 0
so that
£=%k (5)

and combining (4) and (5),
x2e¥ + ¥ + &Y = ¢, (6)

Since our curve passes through the origin, we must choose
c so that (6) is satisfied when x = y = 0. This yields

Oe0 + e0 + eo = c

S.3.8.l4
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3.8.4 (continued)

or

c =2, (7)

Substituting (7) into (6) we find that our curve is given by

X

xzey + ¥+ ¥ =2 (8)

[In this particular case we may solve for y explicitly as a

function of x. Namely

ey(x2 + 1) = 2 = eX
oF 2 - &~
x2 + 1
.
y = &n 22 = ; (9)
x° + 1

Since x2 + 1 is always positive and we define n only for
positive numbers, equation (9) tells us that 2 - e® must be
positive, or e® <2, That is, our curve is restricted to x
values such that x <in 2].

3.8.5

Our main aim here is to extend the results of this unit to
exact differentials in the case when there are more than two
independent variables. Rather than to proceed too abstractly,
we shall look at the special case n = 3.

we are given that

df (x,y,z) = M(x,y,z)dx + N(x,y,z)dy + P(x,y,z)dz. (1)

This is equivalent to

£.=HM (2)

5.3.8.15
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3.8.5 (continued)

£ =N (3)
f =P (4)
Now from (2) and (3) we have that

fxy = MY and fyx = Nx' (5)

Under the hypotheses of the problem, fxy = f
clude from (5) that

it so we may con-

Similarly, from (2) and (4), we have that

£ " M, and fzx = Px’ and since fxz - fzx' it follows that

Finally, from (3) and (4) we have that

fyz = Nz and fzy = Py, so since fyz = fzy, we conclude that
N, =B, .

[Hopefully, it is easy to see that this procedure generalizes
to the case of n independent variables. Namely, if

Af (XgpeeerXy) = Pi(Xypeeerx )dx; + .00 P (X eee,x)dx,

then for i # j (L = 1,..,n; j=1,...,n),

P, P
== =3 .
xJ Xy

That is, we pick terms in pairs and we differentiate each
coefficient with respect to the differential of the other term,
and each of these pairs of derivatives are equal. The case
n = 2 discussed in the text and in our lecture is but a

is.]

S.3.8.16
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3.8.6

d X o
a. Unless e [xz e” sin y] = 3y

make our differential exact. A guick check shows that

3
¥4 ay
continue.
We must have
aM 9(xz - e* sin )
W - X 5% X! = 2z - ¥ sin y
and
oM _  d(xy + z) _
3z X =Y .
From (2),

M=yz + g(x,y)
therefore,

3
5% s &y QY{X:Y)-

Comparing (1) and (4), we have

z -eXsiny =2z + gy(x:Y)
therefore,

gy{x,y) = - ¥ sin y

or

g(x,y) = e* cos y + h(x).
Substituting (5) into (3) yields

M=yz + e® cos y + h(x)

where h is any function of x.

. § [xz - e® sin yl] = x = — [xy + z], so it make sense to

[xy + 2], no choice of M can

(1)

(2)

(3)

(4)

(5)

(6)

5.3.8.17
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3.8.6 (continued)

b. We want to find f£(x,y,2z) such that
£, = ¥z e* cos y + h(x) (7)
£, = xz - e* siny (8)
fz = Xy + Z. (9)
Integrating (7) with respect to x, we obtain
f = xyz + e* cos y + fh(x}dx* + c(y,z) (10)
so that
f = xz - e sin ¥y + e (¥,2)
Yy Yy
and combining this with (8) yields
xz - e sin y = Xz - e* sin y + cy {v.z)
therefore, cy(y,z) =0
therefore, cl(y,z) = k(2z). (11)
Substituting (11) into (10) yields
£(x,y,2) = xyz + " cos y +fh(x)dx + k(z) (12)
From (12)
£, = K+ k'(z)
and comparing this with (9) leads to
xy + z = xy + k'(z)

* The fact that h(x) is continuous is sufficient to
guarantee the existence of./;(x)dx.

S.3.8.18
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3.8.6 (continued)

therefore, k'(z) = z

therefore, k(z) = 1 z2 + C

and putting this into (12) yields

2

f(x,y,2) = xyz + eX cos y + h(x)dx + 1 R o (13)
2

= ey + 2z _

£ = xe¥ + 2z N

fz = 2xey + 2z = P

(14)

(15)

(16)

Before locking for f, we make the following checks

-2

= =¥ + 22J . + 2z _
Y

(

g

fo

(ey + Zz)

N
(=5
N

= y + 2z, _ y + 2z
Nz - (xe ) 2xe

Now we set out to construct f.

From (14)

£ ,I;Y + 2z 44 4 gly,z)

v + 22

= xe + gl(y,z)

from which it follows that

£ = y + 2z
y = X qy(y,z)

9
G 7 (

“ v 22 ]
= 2e = 3%

= 5% (2xe

v ok 22
xe ) = Nx

y + 2z

(2xe ) P

X

y + 2z, _
) Pyc

(17)

and comparing this with (15) yields

-
xey 2z xey + 2z

+ gy(y,z) =

S.3.8.19
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3.8.6 (continued)

so that

gy (y,2z) =0

and

g = h(z).

Thus from (17) we have now that

£(x,y,2) = xe¥ T 22 4 n(a) (18)
and from (18) we conclude that

£,(x,y,2) = 2xe¥ * 22 4 h'(2)

and comparing this with (16), yields

h'(z) = 0
whereupon
h =c.

Putting this into (18) yields the final result:
£(x,y,2) = xe¥ T 22 4 ¢,

3.8.7

d(sST - u) =

SdT + TdS - du. (1)

We are given that

TdS = du + pdv. (2)

Substituting (2) into (1) yields

S.3.8.20
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3.8.7 (continued)

d(sST - u) SdT + du + pdv - du

SdT + pdv (3)

I

is exact (since ST - u has it as its total differential).

Therefore, (—%%)T = (—%%)
v

(where the subscripts indicate that v and T are being used as

the independent variables).

S.3.8.21
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Block 3: Partial Derivatives

Quiz

From u = x3 = 3xy2, we obtain

Ju B(x3 - 3xy2}

u au ’
or
_ 3,2 3% _ 5.2 3% 3y
1 = 3x a 3y ~a 6xy U
Therefore,
2 _ 2y 3x _ 3y _
3(x y) 3a - XY a“—l. (1)

Similarly, from v = 3x2y - y3, we obtain

v _ B{3x2y - y3}
au Ju

r

or

o* 6xy %% + 3x2 %% = 3y2 &

Therefore,

6xy %ﬁ + 3(x2 - yz) N o 0. (2)

Multiplying both sides of (1) by (x2 - y2), both sides of (2) by
2xy, and then adding the two resulting equations, we obtain

2
2 _ _2,73x _ 2 _ 2 9y 2 .2
3(x vo) 5 6xy (x vo) N y
-3
12x2y2 %% + 6xy {xz = yz) %% =0
*Notice that we are assuming that x = x(u,v), y = y(u,v) where u
and v are independent variables. Hence, %ﬁ = 0.

5.3.Q.1
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Quiz

1. continued

2
3 [{xz = y%) = 4x2y2] 3% . x% - y? (3)

and since

2

(x2 _ y2) . 4x2y2 = x4 _ 2x2y2 + y4 + 4x2y2
4 2:.2 4 2 2 2
=X + 22Xy  +y = (x" +y7)

equation (3) becomes

2

2 2,°93x _ .2 _ .2
32" 4+ y=) a - X y
Therefore,
9x _ __EE_:_ZE__ (4)
du 5 2 2°
3(x7 + y7)
[Note that u = x3 - 3xy2 s [2u = 3x2 = 3y2. Hence, 2% =
X du
y ¥

___E_L__E" This is not the same as equation (4) since in (4),
3(x7 - y7)

ax means ('a—x")
u Ju

-]
v

2. (a) w= f(u,v)

where

=
]

3x + 2y

<
Il

8x + 5y

Therefore

w= f(3x + 2y, 8x + 5y) = g(x,y)

S.3.0.2
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2. continued

aw*  Jw*ou dw v

—_ = —_— F — —

9x  du 0x = 9v ox

- 3 oW 3w
=3 u k5 v
oW ow
22w _ , 2l5d] oy
g =33 * 08—
X
aw ow ow aw
- § 3(33 du 2 3(3;) v B(av) 3u 3(3; av
au  9x v 90X du 9x EAAID 4
2 2 2 2
3w 3w 9w 3w
=9 — + 24 + 24 + 64 —
auz avau suav sz
2 2 2
3°w 3w 2w
=9 — + 48 + 64 —5
auz susv av2
oW _ 3w du 9w dv
ay Ju 9y av 3y
aw ow
23_1.1+SE
32w =2 azw ou + 32w v +5 32w 3u Bzw v
ayz auz 9y avau 3y dudv 3y sz Yy

(1)

(2)

(3)

[Notice the similarity in structure of the bracketed expressions

of equations (1) and (3). All that we have done in (3) is re-
placed each x in (1) by y.]

[=+]

*As usual, %% refers to the notation w = g(x,y) while 5% refers

to the notation w = f(u,v).

5.3.0.3




Solutions
Block 3: Partial Derivatives
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2. continued

2 2 2 2 2
3w 3w 3w 9w 9w
—— =4 — + 10 + 10 —— + 25 ——
ayz auz avau Jusv sz

2 2 2

3w 3w 3w
= 1. &£X 4 30 AT L L

Buz Juadv avz

2 2 2 2 2
2w 3W 1329 68 af;a“"'+39ﬂ‘2"-.
X Yy du v
(b) 1If
3

then

2 2 2 2

3w 3w _ 3w _ 0w _
—5 = 60y Fose ™ Jvam - Le 8nd = =2,
du av

Hence, (5) yields

&
I

3w a—‘; 13(6u) + 68(1) + 89(2)

[l

78u + 246

78(3x + 2y) + 246

234x + 156y + 246.

on the other hand, direct substitution yields

(4)

(5)

(6)

S.3.0.4
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2. continued

(3x + 2y)°> + (8x + 5y)2 + (3x + 2y) (8x + 5y)

w:

= (27x3 + 54x%y + 36xy2 + 8y3) + (64x° + 80xy + 25y?)

+ (24x2 + 31xy + loy?)

Therefore,
w = 27x° + 54x%y + 36xy? + 8y°> + 88x° + lllxy + 35y°
Therefore
W . B1x® 4 1 2 11
5~ x“ + 108xy + 36y~ + 176x + 1y
2
——g = 162x + 108y + 176 (7)
4
and
= sax® + 72xy + 24y” + 111x + 70y
32w
29 = 72x + 48y + 70, (8)
y

Adding (7) and (8) yields

32 5%
28 4+ 29 - 23ax + 156y + 246,

%
axz 9y
which checks with our result in (6).

We first find the equation of M. Since M is an equipotential

_ .5 4 5 F a
surface of w = z7 + 6xyz + X'y~ , we know that Vw is normal
(1,1,1)
to M.
Now,
s 4 4

Vw = (6yz + 4x3y5, 6%z + 5%y, Sz4 + 6xy).

S5.3.Q.5
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3. continued
Therefore,

>

Vw = (10,11,11).
(1,1,1)

Therefore,

- - -+
10i + 113 + 11k

is normal to M at (1,1,1). Therefore, the equation of M is

10:(x: = 1} * 1l{y = I} + 11l(z = 1) = 0,

or

10x + 1lly + 1lz = 32, (1)
To find where M meets z = 2y = 4x (i.e. z = 4x and y = 2x), we
replace z by 4x and y by 2x in (1) to obtain
10x + 22x + 44x = 32,
(03 52
=32 _ 8
=T = 19"
Therefore,
y =2x +y = %g and z = 4x > z = %%
Hence, the point of intersection is {f%, %g, %% .
-
4. We want the gradient, Vf, at (2,3). This is given by
g _ T 4E T
VE = fx(2,3)1 + Y(2,3)3. (1)
(2,3)
Se3.0.6
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Solutions
Block 3: Partial Derivatives

Quiz

4. continued

We are told that in the direction, Sy from (2,3) to (5,7) éhL = &5
But, -3 - V¢ - 3 °1
dSl (2,3) 51
- >

The vector from (2,3) to (5,7) is 31 + 4j. Therefore,
> 3 r 4 *
u = =1L + = 7.

Sy 5 5
Therefore, from (1)

- L ” - *. . (32 42
4 = Vf J usl [fx(z'B)l + fy(2;3)J] [5 1+3 jl

(2,3)

Therefore,

- 3 4
4 = 3 fx(2.3) +z fy(2.3)
or
3 fx{2,3) + 4 fy(2,3) = 20. (2)

¢ =¥ 4 e i ; .
Similarly, u = =1+ % j if s, is the direction from (2,3) to

Sy 5 5 2
(6,6). Therefore,
10 = V£ cw =3f 2,3 +2£ (2,3
S, T R 5 gt
(233

Therefore,
4 fx(2,3) + 3 fy(2,3) = 50. (3)

Solving equations (2) and (3) simultaneously yields

fx(2,3) = 20 and fy(2,3) = -10.
Hence,
> - a
VE J = 201 - 10j.
(2,3)

$.3.0.7
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4. continued

- -
Therefore, gg is maximum at (2,3) in the direction 20i - 10j
[i.e., in the direction from (2,3) to (4,2)] and this maximum
value is

/(2002 + (-10)2 = 10/5 (% 22.4).

.4
5. £(x) = f (x - y)h(y)dy
a
% 3 dx da
1 _— ey - - —_— - - —
£ (x) -fa 5% [(x - y)h(y)ldy + (x - x)h(x)gp - (x - a)h(a)gg
0 "
0
Therefore,
X
£f'(x) = f h(y)dy.
a
Hence, the resulting differential equation is
£"(x) = h(x).
6. (a) Letting M = 3x2y + e* cos y and N = x3 - e* sin y, we see
that
oM _ 2. _ X _ ON
3; = 3x e sin y = i
Therefore, Mdx + Ndy is exact. Therefore, there exists f(x,y)
such that
2 b4 3 b S
df = (3x"y + e” cos y)dx + (x° = e” sin y)dy
= fxdx + fydy.
Therefore,
S.3.0.8
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6. continued

f_ = 3x2y + e* cos y and £ = x3 - ¥ sin vy
% v y
Fr s x3y + e® cos y + gly)
+
3 > A '
f =x" - e siny + g'l(y)
y +

g'(y) =0, gly) =C
ors:

f = x3y + e cos y +C

(b) dy _ 3x2y + ¥ CDSBY i
e* sin Yy - X
(ex sin y - xa)dy = (3x2y + e* cos y)dx -+

(3x2y + e* cos y)dx + (x3 - ¥ sin y)dy = 0 >

d(x3y + e* cos y +C) =0 -

x3y + e* cos y + C = constant -

x3y + ex cos y = constant.

5.3.0.9
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