Solutions
Block 2: Vector Calculus

Unit 6: Vectors in Terms of Polar Coordinates
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2.6.1(L)

In this exercise, we simply want to reinforce the idea that our
study of polar coordinates was motivated by problems involving
particles in motion under the influence of various forces. To
keep ourselves free of any coordinate system for the moment, let
us assume that a particle moves along the curve ﬁ{t). Notice that
by writing ﬁ(t) we are indicating that the position of the parti-
cle is a function of time, and, as yet, we have not specified what
coordinate system is to be used. In this exercise, we want to
investigate how the position, velocity, and acceleration of the
particle will be represented if we elect to use polar coordinates
rather than Cartesian coordinates or tangential and normal coordi-
nates. Obviously, the gquantities themselves do not depend on the

coordinate system, but their representation in terms of components
does.

Our first major problem concerns the subtle pitfall that occurs

when we try to define a pair of orthogonal unit polar vectors in
-+ -

the vein of i and j or % and ﬁ.

The problem stems from the fact that when a curve C is written in
the polar form r = £(8), r may be negative for some values of 0
(which is why we stressed this point so much in the previous
units). Namely, suppose we pick a value of 6, say 6 = eo, and we
locate the point, Po(ro,ao}, on the curve C where r_ = f{BO}. It
is then natural to think of the radius vector, ﬁ, which joins the
origin to Po' Pictorially,

PO(ro,eo)

27
0

Figure 1
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2.6.1(L) continued

Now it seems that a very obvious candidate for a unit vector when
we deal with polar coordinates is the vector obtained when we
divide E by its magnitude. From Figure 1, it would appear that
this vector is E/ro, since the magnitude of R appears to be r,-
The trouble is that P, may be located in the first quadrant for a
third quadrant value of Bo and a negative value of Tos since
(ro,eoi and (—ro, 6 + 180°) name the same point, even though one
of the "names"may not satisfy the polar equation of C. By way of
an illustration, consider the curve C whose polar equation is

r = cos B. If we let 80 = 240°, r, = cos 240° = —%. Thus, the
point (-l, 240°) belongs to C but it appears in the first quadrant,
not the third. Again pictorially,

In this case,

N
1

IR] = 3 kg

.

since r_ = -3

A A eGx e ul e B G TR aE e =a

Figure 2

Notice that in looking at Figure 2 without reference to the equa-
tion of C, we would be tempted to say that ry is % and that

80 = 60°, but we know that BO = 240° and that r = —%.

We could avoid this dilemma by insisting that in dividing R by its
magnitude we always think of r_ as being non-negative. In fact,
had we imposed this stringent condition when we first introduced
polar coordinates (and this condition is imposed, as we shall see
in Block 6, when one views complex numbers geometrically) the
present problem would not have occurred. On the other hand, this
condition, as we have tried to show in some of the exercises of

the previous units, would have introduced other unpleasantries.
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2.6.1(L) continued

From our point of view, the key idea is that we are already com-
mitted to an interpretation that allows r to be negative. If we
now introduce another definition of r that does not allow r to be
negative, we would then have two different concepts both named by
the same letter, and so similar in nature that misinterpret?tion
is almost assured of taking place.

To avoid this dilemma, we agree not to change the definition of r
and we also agree that we like the notion of defining a unit vector,
Gr' as being ﬁ divided by ry- For if we let Gr = E/ro, we obtain
the result that

- - 1
R = £, 0 (1)

which agrees with the first quadrant interpretation expressed in
Figure 1. The major observation to be made, however, is that
since r0+may bg negative, the most we can imply from equation (1)
is that R and u have the same direction - but they may (and, in
fact will, if r, is negative) have opposite sense.

Defining Er in this way is in keeping with our intuitive beliefs.
That is, when we study a curve C, we are interested in the curve,
not in the equation which expresses this curve. Thus, while the
equations are different r = cos 68 and r = -cos (6 + 7) name the
same curve. Therefore, given a point on this curve, we would like
Gr to be defined independently of which equation represents the
curve. One way of doing this is to have Gr determined by the ray

6 = 90, without reference to the equation r = £(8) which represents
C.

This is done in the textbook's definition in which Er is defined by

% 3] ¢ B
u. = (cos 6,)1 + (sin 8_)J. (2)

Namely, equation (2) defines Er solely in terms of 6 = 60. Our
only objection to definition (2) is that it is cloaked in the
language of Cartesian coordinates, rather than in a language which
does not depend on the coordinate system. Definition (1), on the

other hand, is independent of any coordinate system.

52563
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2.6.1(L) continued

As a final illustration of our remarks, consider the point on the
curve r = cos 6 which corresponds to the value of 6 = 120° (where
we have changed the previous example slightly to get away from the
first and third-quadrant orientation). The point in gquestion is
then (-l, 120°) and this point is in the fourth quadrant, even
though the ray 6 = 120° is in the second quadrant. Pictorially,

-+ o
ur = =-2R

Figure 3

-
From Figure 3, we see that R is OPO, and if we elect to use Carte-
sian coordinates, R is given by

%= (X cos 30007 + (& sin 30003 + 17 - 33
2 2 4 4
and since r, = -%, we obtain from definition (1) that
<> = -+ = = -5 - _l—_p ..1+
L R/rO = =2R = 51 + 53 (3)

It is now easy to verify that equation (3) agrees with definition

(2), namely
> >
4 = cos 120° 1 + sin 120° J = - %gj.

At any rate, our results may be briefly summarized as follows:
Given the point (ro,Bo) on the curve C whose polar equation is

r = £(8), we draw the radius vector R from the origin to (ro,BoJ.

5.2.6.4
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2.6.1(L) continued -

If r_ is positive, then ﬁr is simply R/|R| (or+the vector of unit
length having the same direction and sense as R). If T, is nega-
tive, we define Er to be -R/|R| (or the unit vector having the
same direction as R but the opposite sense). In either case,

>

u, = ﬁ/ro, and in Cartesian coordinates, this is equivalent to

]

-
u
r

6.)i + (sin 63

(cos o) sin 6)3.

We now need an orthogonal companion for Gr' The quickest way to
get one is from our earlier result that a variable vector of

constant magnitude is orthogonal to its derivative. Thus, if we

assume that Gr is a differentiable function of B+(which means that
d u

4. varies "smoothly" with respect to 8), then —355 is orthogonal to
Er' Now, because we are free to choose what sense a vector can
d ﬁr
have, there are two unit vectors in the same direction as -
-

Since we want our system to have the same structure as 1 and 5 0

we choose the unit vector which is obtained from Er when ﬁr is

rotated 90° in the positive (countgrclockwise) direction. The
d u

unit vector in the direction of _EEE thus obtained is denoted by
5

Ug-
Once these ideas are clear in iour mind, the compugational notions
d du
-+‘ -+ +__r -+=_._.._._ -
that (1) R=r U, (2) Ug = —F5 and (3) u, 35 are guite
routine and they have been derived both in the text and in our

lecture.

From this point on, the exercise proceeds as an example of our
structure of vector calculus, with every step being an accepted

rule of the game. Thus,

-+ -+
R=ru (1)
Therefore,
> du
S OB L o Q2
V=3 = Tf a3 tae Y (2)
S.2:05
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2.6.1(L) continued

While (2) is a correct statement, the idea is that we woulg like v

-+ - -+ du
" ; T
expressed in terms of u, and Ug coordinates (not u, and =t
, coordinates). Y 5
| dur <-:"u‘r d"‘de
| Knowing that —== = ug and (by the chain rule) that —ac - der dt
' we may replace (2) by
I >
du
* r de dr »
VET 3 at tat Y%
e
8 dt dt r
or
+ dr = de »
V=3 Y% YT g Yer =

Notice that (3) lends itself to a nice physical interpretation (as
shown below) but that the validity of (3) requires no physical

insight. In other words, one beauty of our derivation, in terms
of the "game" idea, is that once a few "simple" properties are
assumed, more difficult properties follow as inescapable conse-
quences of the simpler ones - without the necessity of referring
to external models.

® 1f A6 is taken
to be of infini-
tesimal length, rdf
may be viewed as
circular arc length.

@® At the instant
the particle is
at Po’ its

-
u

velocity component
in the direction

do
Thus, r at may be

is the rate of viewed as the in-
change of the stantaneous speed
g of the particle at

RoslElon Yaator. P along the circle
ice., |v | o

pr ol 5 7
of ur is 3t which

centered at 0.
measures the

| instantaneous
rate of change

-
of |oP_|.
o
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2.6.1(L) continued

i
Now the definition of a is still g—‘;. Thus, from (3) we obtain

-
+ dv _ d (dr > dg =+
a—ﬁ—-ﬁ—-(—-—u +r—-u8). (4)

Since the derivative recipes are valid here, we may expand (4) to

obtain
s _dra ,ar® araey , _afey ., a0 %% 5
4. = a2 X dE aE dt dat “e at2 B dt dat

where the last three terms in (5) come from differentiating
de =
r 3t Yo
To convert (5) into terms involving only Gr and GB' we write
- -
] 6 de '’ dt dg dt

in (4), which is a product of three functions of t.

Er (since ——=— = -u_). With these substitutions (5) becomes

2 2 2
5 = [d r _ 48 }E + (r 9—% + 2 9& Qﬁ)ﬁe. (6)

You may feel that the components of Gr and ES don't seem "intui-
tive" in (6). Should this be the case, notice, again, the power
of "pure" mathematics. That is, (6) is an escapable consequence

of our structure - intuitive or not.¥*

*This is not really a new idea to us. In plane geometry, the
axioms were reasonably "self-evident'" to us. Yet something like
the Pythagorean Theorem which followed inescapably from these
axioms was not self-evident. In fact, it seems amazing that the
statement of the Pythagorean Theorem is even true!

- B Gy o.
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2.6.1(L) continued

Obviously, one can use egquations (3) and (6) without understanding
their derivation, but somehow the ability to work with polar
equations in a meaningful way is seriously impaired if the deri-
vations are omitted. Even more to the point, the derivations
should be understood if we wish to use vector calculus in polar
coordinates effectively.

As a final remark, let us summarize by a diagram that {u ,ue),

(T N), and (1,]] are entirely different coordinate systems.

(=13

Given an acceleration vector,

b

r 3, at P, the vector is fixed,
independent of any coordinate

P system, but its components

depend on whether we express it

H4 B

P -+ .
in terms, say, of ur and u

> > 6
rather than T and N.

2:6.2

Just as we saw in our treatment of Cartesian coordinates, there is
a difference between the path traced out by a moving particle and
how the particle traverses the path. By way of a trivial analogy,
a winding road remains the same for each vehicle, but different
vehicles traverse it in different ways. In this context, a parti-
cle which moves according to the polar equation r = sinze, where 6@
is a function of time, traverses the same path regardless of how 6
varies with time. That is, it traces the curve r = sinzs. The
particular way in which 8 depends on t affects the position,
velocity, and acceleration of the particle at any time as it

moves along the curve. Thus, in this exercise,

S.2.6.8
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2.6.2 continued

The particle is here at t = 7 since then 6 = s

%]

etc.

Particle is here at t = 0

b. In the last exercise, we established that

Yo 69’
where
a'=.d2_r—r(@2
r
r dt2 dt
and
a%e dr de
a, = g St g S5 B2
5} dtz dt dt
. 1 8 _ 1 a%e
In this example, 6 = =t ; hence, =— = = and —= = 0. Moreover,
2 dt 2 2
dt
since r = sinzﬁ, %% = 2 sin 6 cos 8 = sin 26. Therefore,

3E - 36 gt - 5 sin 28, whereupon

dr
2 d(z9)
a’r _ 4'q¢) as _
o ds at ~ (eo8 28] (3) = 3 cos 26
Therefore,
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2.6.2 continued

2

_ 1 - ety s w L o E iy
a, = 3 cos 26 sin“ @ (53 =3 cos 26 7 sin 8 (1)
.2 s A ; N L
ag = (sin®6) (0) + 2 {7 sin 26) (E) = 7 sin 286 (2)
. 3.
or, since 8 = 3 t,
o Ll o L :
a, = 3zcos t 7 sin” 35, a, = 5 sin t. (2Y)

c. When t = 2;,8 = so

LA
3!’

; ; O I 3T
the particle is at P_(sin 3+3) ¢ OFL, (Z:3)-

Its components of acceleration at this point are obtained from (1)

and (2) with 6 = %

(or from (2') with t = %FL Hence,

. 2w X .29 X ool L3 T
Ry ogein ams NP TP 18 3)
and
clgn2ol lg o1
ag = 3 sin 5 = 5 (5/3) = /3. (4)
d. Drawn to scale, we have
=Ll
=3
C) The acceleration -
. = > _ ——
vector at P is P N u = P.0Q
. 4. =P S
® 4 5] o
7
s 2] = 53
‘k\\\.ﬂ |[p M| = %/i
3 “
Z PO(I.E) ,
> >
N ® B RS “Tevr ~ Fo
T > 1 >
agug = 373 g =
@ Letting N complete parallelogram
(rectangle) P MNT, the rule for addlng

vectors ylelds a = P T * P M P d LI TN

S$.2.6.10
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2.6.2 continued
e. By the Pythagorean Theorem

+, 2 2 2
EY

]
—
H
o) ~J
—
+
—_—
L
)
—
3]

Therefore,

> Y97 _ 9.88
16 ~ 16 -

2]
Il

2 2

a, = 3% - 1§D (1)

dt
L o 4% ,drade 53

6 dtz dt dt
2 2 2
Now, since 6 = et, both as and &0 = et = f and (Qﬁ) = {et) = 62.
dt dtz dt
Then, since r = 1 + cos 8, we have
dr: . s
as - sin 6.
Therefore,
de _dr 46 _ __t _.; - y
3t - ds at - e sin 6 = -8 sin 6
S 2.6
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2.6.3 continued

a’r _ d(-6 sin 6) de

dt2 de dt

I

(-6 cos 6 - sin B)et

Il

(-0 cos 6 - sin 8)6

= -(92 cos 6 + 6 sin 8).
Thus, (1) becomes
a_=-(8% cos 6+ 6 sin 8) - (L + cos 8)02
2 2

= -2 68 cos 6 - 6 sin 8 - © (3)

ag = (1 + cos 8)68 + 2(-6 sin 8) (8)

2

= 8 4+ B cos B8 -2 B° sin 6. (4)
y Ing ,
b. When t = 1n 5 0 =e = 5 and since the equation of the curve
is r =1+ cos 6, r = 1 when 6 = %.
Hence, the particle is at (1,%) when t = 1ln %. To find its accel-
eration in Gr and ﬁe coordinates, we use (3) and (4) with 6= %.
Since sin % = 1 and cos % = 0, we obtain
= EE =T 2+ m ~ -4 (5)
R R ! =
and
i 12 !
ag=z-2(00) =3 (1 -1 =-(3.4). (6)
8:2.6.12
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C.

2.6.3 continued

We have:
-
u
r
o
u
6 | Py
->
w, Yr
F 3
B T -
) b gt T
Q —< ]
° 1
a="P |
. - & a = OM
PW=nu a u
EQE S r'r I
= u
(o} 5] [
aaﬁe =P 7T =-3.4 EB I
ek e Q |
a=au, apYp
Y _ _
S M

— -3 —
{ﬁr may be thought of as either 6?0 or POW, but a. must = POS,
since ;r by definition originates at the point in question on the
curre.)

2.6.4(L)

Our aim here is to show how polar coordinates can be used for

theoretical gain as well as for the solution of specific motion
problems.

In a central force field, by definition, the force is in the di-
rection of ﬁ, assuming, of course, that our central force is at
the origin. Now, since F = mé, we have that ; is a (positive)
scalar multiple of a. Hence, E and a have the same direction.
Therefore, since ? is in the direction of ﬁ, a is also in the di-
rection of R. (Note that without Newton's Second Law, we cannot

-+
conclude that F and a have the same direction.)

S.2I6.13
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2.6.4 (L) continued

This, in turn, makes the component of acceleration in the direc-

tion at right angles to R equal to 0. That is,
a, =r ——+ 2 =— = = 0. (1)

Since 6 never appears other than in a differentiated form, we may
simplify the differential equation in (1) by letting, say, u = %%.

2
. du _ 4 ,de, _ d”e
In this case, - aE (HE) = E:E, and (1) becomes
du _ _, dr
rax = -2 3¢ U (2)

Rewriting (2) in differential form, we have

r du = -2u dr

and upon separating variables, we obtain

du _ _dr
i (3)
whereupon
1 1
> Inf|u| + ¢; = 1ln —
2 1
Iz
or
In|%| = &= ln|u| + In c, (where 1n c, = c,)
2 2 2 1
1
= 1n]u|2 i
2

N =

= 1n c,|u|

S.2.6.14
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2.6.4(L) continued

Therefore,

1

1 2
I}'l = czlu, = (4)

Squaring both sides of (4) yields

1 _ = 2
;5 = cu (where c cy )i (5)

Recalling that u = g—t, (5) yields

[a+]

Since ¢ is a constant, (6) implies that r2 gﬁ-is constant.
dt
Therefore, £ r2 as is constant. Notice, however, that 1 r2 a8
2 dt 2 t
%%, so that
g% = constant.

In other words, the particle moves so that the rate of change of

area it sweeps out is constant.

2.6.5(L)

The main aim of this exercise aside from the computational techni-
ques involved or from the physical importance of the result is to
emphasize that when we deal with central force fields the chances
are that polar coordinates are going to be the most advantageous.

For this reason, the ellipse is written in the polar form

-— e
=1 "¢ cos o (0 s e<1) (1)

rather than in the more familiar Cartesian form. The interested
reader can test by direct substitution of Cartesian coordinates

that (1) is indeed the equation of an ellipse.

5.2.6.15
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2.6.5(L) continued

The other learning experience of this exercise is to help you see
how the knowledge that we are in a central force field allows us
to side-step some rather tedious computations. In particular,
based on the results of the previous exercise, in a central force

field, we can always replace r2 g% by a constant.

In any event, we have (since the force is directed toward the

origin) that the acceleration is also directed toward the origin

(since E = m;J. Therefore, ag = 0 and we have
2 2
=+ d'r de >
a=|—%-xr(s-) |u_,
[dtz dt ] r
so that
2 2
3l = |95 - 0D | (2)
dt
From (1)
dr _ -c(e sin 8) deé (3)
at (1 - e cos B)z at
Si - or r2 = c2 we rewrite (3) to
ince r = 1T "¢ cos 6 B B e ke

(1 - e cos 8)
take advantage of this substitution. Therefore,

2
-k S——|esino g
(1 - e cos 6)

_ 1 2 3 ae
= E—r e sin © 3t

2

= -& (r g%} sin 8. (4)

(o4

In the last exercise, we saw that r2 as . k in any central force

dt
field.

Thus, (4) takes on the simpler form

S.2.6.16
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2.6.5(L) continued

& - - in s, (5)
From (5),

QEE = B8 opg g S0

a2 dt

2
2 o |_ex de _ _ do
la] = |- cos 6 3¢ - r(5E '. (6)
: 2 de dae . k .
Since r = ot k, we may replace gt in (6) by ;7 to obtain
2
|a] = -%; cos 8 l% -k E
r r
2 2
= -355 cos 0 - 53 .
cr r

Factoring out 35 (there's no harm in keeping one eye on the de-
r
sired answer) we obtain

2 2
2] = = R een b=
= EE ~= cos § - >
r2 r
and since |n| = |-n|, we obtain
2
L=k |8 &
la] = 7 |c cos 6 + Z|. (7)

5.2.6.17
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2.6.5(L) continued

From (1),

and since is a constant, the desired result holds.

2.6.6 (L)

In all the exercises of this section, we have assumed that our
particle was moving in the xy-plane, even though we used polar
coordinates. A more general problem is that of a particle moving
in space in a central force field. The interesting thing is that
in this case, too, the path of the particle is a plane curve.

This fact can be established mathematically, assuming no physical
2—!'

knowledge other than § = ma = mgﬂ%. This is precisely the aim
dat

of this exercise.

We look at

e

> dR
Rxa't'-

and differentiate this with respect to t to obtain

-
dr

>
d(R x 3¢ =(§xdzi)+(§§-x§-§) i
dt dt2 dt dt
- -
: dR dr _ 7 . ;
Now in any event =— xXx = = 0 since any vector crossed with itself

dt dt
has this property. Hence, (1) may be rewritten as

S.2.6.18
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2.6.6 (L) continued

=P
dR

a(R x &= 22

->
dtdt=Rx— (2)
dt

Equation (2) is valid for any twice-differentiable vector function
of t.

The point is that since we are in a central force field, by

definition
- >
F = kR (3)

and by Newton's Law

-+ 2+
F = m——f (4)
dt
22 N
Comparing (3) and (4) we see that Q_% and R have the same direc-
dt
a’k _k 2
tion (i.e., =5 - = R). Since vectors which have the same direc-
dt
tion yield E as their cross product, we have that in a central
> _ a°R
force field R x = 0.
dt

Putting this result into (2) yields

d+
> R
d(R x F¢)

_ -+
at = 0. (5)

> +*
c where ¢ is a constant

-
Thus, from (5), we have that R x =—
vector.

-
- -
But what is the physical meaning of R x %%? R is the position

e
vector to the particle while %% is its velocity. Hence, ¢ is per-
pendicular to the plane determined by R and V. Since ¢ is a con-
stant, this plane can never change direction. Hence, E and v are
always in the same plane when we have a central force field. We
may then let this plane be denoted as the xy-plane without loss of

generality.

S5.2.6.19
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2.6.6 (L) continued

There is, of course, more information that can be deduced from

-+

R x % = E, but we leave such deductions to the interested reader.
Our purpose was more to continue our emphasis on the value of

vector calculus in the study of motion.

At least, by now, everyone should be convinced that vectors supply
us with a powerful analytic tool - too powerful to be relegated to
the role of merely being broken up into X%, y, and z components!

S.2.6.20
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Quiz

1. Fre) =5t T -2sint 3~
F(t) = t2 1+ 2 cos t 3 +c (1)

*

[equivalently, F(t) = (t5+cl]I + (2 cos t+cz)§, and ¢ = clI+czg]
Therefore,
F(0) =01 + 2 cos 0 +¢&=2§+¢ (2)
But we are also given that
7o) =27 + 33 (3)
Comparing (2) and (3) yields
2§ + ¢ =21 + 33
or
c=21+73 (4)

Substituting (4) into (1), we obtain

5

t> 3 + 2 cos t 3 4 21 « 3

F(t)

(ts+2JI + (2 cos t+l)§

(a) When the equation of the curve has the form y = f(x), the
curvature, Kk, is given most conveniently by

* + -+ B +
The key point is that if F(t) = fl(t)u1 + fz(t)u2 and u, and

-
uy are any constant vectors (not just constant in magnitude)

>, = > . >
then F'(t) fl'(t)ul + f2 (t)uz.

S.2.0.1
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2. continued

[y

[eT o
R‘

B = (1)

@

2 2
In this exercise y = e®. Therefore X = d = &% ana (%%) - er

(=1

’

d
dx 2

Putting these results into (1) yields

X
K = Lj?f (2)
[1+e2¥]
(b) If x=2n/3, 2x =2 n/3 = en(v3)2 = tn 3 .
Hence, e* = FRY3 Y3, and e2X _ n 3 _ 5

Therefore equation (2) becomes

K = Y3
(1+3)372
or
K =/% (3)

(c) To find the maximum (or minimum) value of k we compute g&

from equation (2) and then find the values of x for which

95 = 0. We obtain
dx

S.2.0.2
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Block 2: Vector Calculus
Quiz
2. continued
3/2 1/2
a# (l+e2x) & ex[ %(1+e2“) 2eZx]
dx 3
(l+e2x)
1/2 ]
_ (1+e2x) o X [(1+e2x) _ 3e2x
2x 4
(1+e™)
X
- ____57_e > [1-2¢%%) (4)
(1+e2%)
b4 2x 5/2
Since neither e” nor (l+e”™™) can be zero (i.e., the exponential

is positive), we see from equation (4) that

G b wr 15267% = 0
dx
d=p ezx = %
++ 2% = n % or X = % in %
1/2
“+ x = Rn(%) = n % = ¢n % V2

*
Hence the maximum curvature of y = e® occurs at the point

V2 /2

(&n L T
* de
Of course, one could compute 5 to make sure that we have found
a maximum rather than a minimugxcurvature. However, a glance at
the curve y = e® shows that the curve "flattens out" very rapidly
as we move away from (ﬁn/% ,/% ) in either direction.

85.2.09.3
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Block 2: Vector Calculus
Quiz

2. continued

_ X
% y=e
Q0
:«l\{'b & -
S : 2 _ X
> ﬂea _— osculating circle of y=e” at (4nv/3,v3)
(env3,V3)
|
|
~Z |(£n/§'/§)' where y=ex has maximum curvature
- _=__ — ) X
-1 1

(Pictorial Summary)

3. (a) R=n(t?+1I + (t-2 tan )3

Therefore
=
+ _dR 2t ( 2 ) +
V=== i+(1 - J
at - 2, 1+£2
2t + t2-1 ) &+
el o J (1)
t"+1 (t+l
Therefore
5.2.0.4
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Block 2: Vector Calculus

Quiz

3.

continued

o (T

4t2+(t4—2t2+l)
2 2
(t7+1)

_ ’{t2+1)
= T

(t2+1)

1 ft/sec

Therefore the particle moves at the constant speed of 1 ft/sec.

d( 2t ) _ (£241)2-28(28) _  2-2¢2
ae\z.-) ~ 2 = 3
= (t2+1) (t2+1)
jl(tz—l) _ (32t (t2-n2e | at
dt\, 2 - 2 - 2
tid (£2+1) (£2+1)

Hence from equation (1) we obtain

> _av _ 2-2¢2 . _at % 54
dtat T, 7 T 7
(£2+1) (£2+1)
5.2.0.5
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Block 2: Vector Calculus

Quiz

3. continued

S 2
+ 2-2¢2 TR
|a| = —2———-2' + S——

(£%51) (t2+1)

_ v/ 4-8t®+at+16t”
7

(t2+1)

2
(2+2t2)

(t2+1}

24282 2(t%+1)
sl Bl T
(£“+1) (t°+1)

2

I

[and this is maximum when (t2+l) is minimum.,] (3)
(£2+1)

(t2+1) > 1 and equals 1 <+ t=0

Therefore |;] is maximum when t=0, and this maximum value is
2 ft/secz.

d. We know that with respect to tangential and normal components
+ dzs =3 ds \2 2>
i=9g tew (RPN ‘)
dt
. + _ ds ds _
since |v| = 3§ , we have from part (a) that Fg = 1.
S.2.Q0.6
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Block 2: Vector Calculus
Quiz

3. continued

2
d”s (ds)Z *

Hence =0 and |==) =1 .
a2 aL

Putting these results into (4) yields

a=«xN (5)

Therefore, if a = aT$ + aNﬁ, aqn = 0 and ay = K

-
e. Since |V(t)| = 1 = constant, we have that v - g% = 0.
v

Therefore a (= ) is either 0 or else it is perpendicular to v.

dt
From equation (3), a # 6 for all t; hence

> -
a | v .

Since v is in the direction of T, 2 L F; and (since a is in the

xy-plane) therefore a is parallel to N. In other words, ais a
scalar multiple of N, which is consistent with equation (5).

f. The acceleration, {a|, of the particle at any time t is independent
of the coordinate system being used (although, of course, the

various components of a depend on the coordinate system).

From equation (5) we have that |a| = |k N| = |«|, and since by
convention k is always non-negative, it follows that

al (6)

On the other hand, we know from equation (3) that

- 2

lal = =
(t™+1)

* d

lv| = E% implies that the sense of the path has s increasing with
t. In this problem, even if this convention weren't obeyed, the
same results would follow since then %% = =1 whereupon
dzs ds .

7 = 0 and at = 1.
dt

S.2.0.7
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Block 2: Vector Calculus
Quiz

3. continued

Comparing this with equation (6) it follows that

4, a. Pictorially, what we have is

N
"

-

v/
P, (-5,-12) -~

33
Now since R = 0Py = -51 - 123, |R| = \f(—52)+t-12}2 =13
Therefore,
R 5 + 12 =+
_= - i-3= 3 (1)
]‘ﬁl 3 13
S.2.0.8
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Solutions
Block 2: Vector Calculus

Quiz

40

continued

> -+
The key point is that since Gr is defined by R = r u_ we see that

r
Er has the opposite sense of R (hence, also of TgT ) when r is
R
negative, which is the case in this problem.
In other words,
s _ R
s r
g IR
so that by equation (1),
b = 12 = (2)

-5
ur=ﬁl+ﬁj

-
Yg
direction (i.e., +90°). Again pictorially,

is obtained by rotating u 90° in the counterclockwise

n (ﬁ¥ may be viewed as being
in either of the two positions

&>
u shown)
N
? X

0
a
u N 1_
% 781

Po

There are several ways open to us for computing GG‘ One way is to
-
recall that u,_ = cos 81 + sin 8} and Ee = -sin 81 + cos 93 [i.e.,
du

> T

Ug = 35 or GB cos (6+490°)71 + sin(6+90°)73].
T+ -i%- J, the fact that

Since we also know that u_ = 5%
> + ; + £ <
u_ = cos 81 + sin 63 implies that

_ 5 . _ 12
cos 0 = i3 and sinf = 13 e

5.2.0.9
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Block 2: Vector Calculus
Quiz

4, continued

Hence, =-sinf = - %% , whereupon Ee = -sin 61 + cos 83 implies
- 12 T a D2
il i3 13 Y

(Another way to find U, would be to utilize the fact that

U_+ug=0. Then let d, = xi + y3, 4 _= f% T+ %% 3. Therefore
a_-u,.=0 + Sx + 12Y - 0, or = 2% Hence u, has the form
r'Y ;T TR ' y 17 ° 8
> _ 7 _5x 7T _ X o A
u, = xi 17 ) = 13 (121 - 53)
-+ X e + 13x : -+
Therefore, |ue| = 15 121 - 5j] = 55~ , and since |ua| =1,

(3)

X =+ %31 The value x = + 1 makes EB a clockwise rotation of Gr;

hence, x = - é%, whereupon y = - f% (-%%} = §§ , and as a result
* P + _ 12 » 5i. %
ue = X1 +y] = 3 + i3 1)

b. The most straightforward approach here is to express i ana 3

in terms of Er and EG since v is already known in terms of i
}. To this end we have
> 5 iF 12 % 1 o | +
ur—ﬁ1+ﬁ] 13ur—51+12]
L. or

= 12 + 5 = + _ aad T
ug = - 331 + 13 J 1311B = =121 + 53
Therefore -
12(13 4 ) = 12(51 + 123) N = ~

5 - . Therefore 156 u, + 65 ug = 1697
5(13 ueJ = 5(=121 + 53)

and

or

"?_lz+ By o= 4

J=13 % Y13 % (4)
S.2.0.10
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Block 2: Vector Calculus
Quiz
4. continued
Similarly
5(13 ) = 5(51 + 123)
} therefore Gsﬁr - 156 Ga = 1697
-12(13 Ug) = -12(-121 + 53)
therefore
=38 -8 3 (5)
Utilizing equations (4) and (5), we have
v=231+ 43
_ 5 =» _E-p 12 » 5 =
= 3(T§ u, 3 ua) + 4(I§ u, + i3 ue)
16
= %% ar - 13 Ee (6)
" -+ + dur -+
C. Since R =r ur and Jo = Ug we know that
->
> _dR _ dr = de
V—a?—a-ﬁ-ur"'rd—t ue.
: dr _ 63 dae _ _ 16 .
From equatign (6) it follows tEat 3 =13 and r gc = - I3 - Since
at t = 0, |R| =13, and r = -|R|, r = -13. Hence
as _ _ 16 _ dae _ _ 16
rET DTV &ET-T
therefore
de _ 16
dt 169 (7)
S.2.0,.11
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Block 2: Vector Calculus
Quiz

4,

continued

d. Here we recall the formula for curvature in terms of velocity
and acceleration. Namely

> >
v X a
K:J——L
3

(8)
-+
vl
Now
v=31+43
e
a=1+63
1. |v| = 5, therefore |v| = 125
2. Vv x a= 18k - 4K, therefore |V x a| = 14 .
Putting these results into (8) yields
& w0 o
- 125
5. R=ru +
r
§=g%+r+r?1—gae &
Differentiating v with respect to t (recalling that
- -+ - -+
du du du du
r _ r df _ do = 8 _ 6 de _ _de = .
b = Tﬂ; aE ~ at Y and = =F FE= ac ur), we obtain
2 2 2
+ dx do - d’e dr d6 >
a = r(z5) 0 [ + 2 =— -] u (2)
dti dt r dtz t dt G
S.2.Q.12
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Block 2: Vector Calculus

Quiz

6. a. Since

X=rc

osBand y = r sinf, we multiply both sides of

r = sin 0 + cos 6 by r to obtain

2 . w
r“" =r sin 8 + r cos 8
or
x2 + y2 =y + X
2 2
therefore (x"-x) + (y"-y) =0
2 1 2 Ly o &
therefore (x -x+z) + (y'-y+p) = 3
1,2 12 X
therefore (x-il + {y-j =
therefore C is a circle centered at (%, %} with radius\[g = %

(1)

V2

*
The only subtlety here is that multiplying by r guarantees that

the origin (r=0) satisfies (1). This causes no problem (i.e.,
extraneous point) if the origin also satisfies the original
equation. In our problem r = sin 8 + cos 8 » r = 0 wherever
tan 8 = -1 (i.e., sin & + cos 6 = 0). Therefore (0, %g) [the
origin] is on the given curve,

S.2.Q.14
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Block 2: Vector Calculus
Quiz

5

continued

In this problem r = sin 26 and 6 = 3t2 therefore

ae a2

8
= 6t, = = 6 ’
at dt

Also r = sin 206 = sin 6t2 therefore

%% « 12t cos 6t

ar 2 2
= 12 cos 6t° + 12t[-12t sin 6t7]
at

12 cos 62 - 1442 sin 62

Putting these results into (2) yields

2

2 = [12 cos 6t2 - 1442 sin 6% - 36t% sin stzlﬁr

+ (6 sin 6t% + 2(12¢ cos etz}st]Ge

2

(12 cos 5t2-180t

2 3 T m

When t = , 5= 3 - 13 therefore 6t2 =3z .

0|5

Equation (3) then becomes

a2 = (12 cos % - 180 {f%] sin g)ﬁr + (ssin§+144[{flcos§}ﬁe
> >
= =157 ur + 6 ue
Therefore
a, = =157 and ae = 6

5.2.0.13
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6. continued
b xz + y2 = r2
y = r sin ©
3
therefore {x2+y2) = y4 >
6 4 , 4
r =r sin 0
2 o4
therefore r~ = sin 6 (2)

Equation (2) is equivalent to the pair of equations

r = gin 8 and. p = =gin’®

and these two equations describe the same curve, namely:

r = sin2e
traces top part first

) -sin20

= traces bottom part first

Letting S be the region enclosed by r = sinze, 0<8<m we have that

T m
1 P | . 4
As-ff rdS—ffs:Lnsde ,
0 0

and since the area enclosed by the curve is twice the area of S
(since the top and bottom parts are congruent), we have that the

desired area is

§.2.Q.15
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6. continued

i 2 2
f (sin®“6) de =
0

f"(l—cos 29)2 a6 =
0

- i 2
I f (1-2 cos 26+cos“28)de =
0

m
%f (1-2 cos 20+ [h—cgﬁ—‘-‘ﬁ] ) dp =
0

1

i
%f (3-4 cos 26+ cos 49)de
0

& [36-2 sin 20+F sin 46 |7 =
6=0

3m

I

7. r© = sinze

therefore %%4=2 sin B cos 6

$.2.0.16
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7. continued
therefore
r 2 '
_ = _ sin” 8 _ sin 6 _ 1
tan V= 5 "7 SIn 6 cos. 0 ~ T ecos § - I 9
de
(provided sin 6 # 0, otherwise we cannot divide by it).
In particular when 6 = 60°, tan y = % tan 60° = % V3 .
Therefore | = tan—l/%-r 41°, and this is the angle that the
tangent line to C at (%, 60°) makes with R. Pictorially
: #
/3u
/
N/
7%
‘ PO(T' 60°)
|
\
“) \
60°) \¢ R
> X
However, the slope of the line is, by definition, tan ¢ and
¢ =y + 60°.
Therefore
1 3
tan¢=tan¢!+tan60°=§/§+/3- _752‘_3/-3-
I-tan § tan 60° 1 T3
1 - if?/? 2
8. 1. Clearly the origin belongs to each curve. For example it

belongs to Cy in the form (0,m), and to C, in the forms (0,0),
(0,2m), and (0,4mw).

2. To find the other solutions, we next look at simultaneous
solutions and this leads to

$.2.0.17
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8. continued

1l + cos 68 = sin

|

Recalling that cos 6 23

cosz(-g-)-sin2 %) (=1-251n2 8 or 2 cos

equation (1) yields

. 29 .8 B
2 sin i:"Slnf"z—O
or
+
T N
s:.nf——T

Since |sin % | € 1 we may discard the negative sign in +/I7 in

(1) to conclude

sin 8o VIT -1
z= T 1

s 8
therefqre sin > ~ 0.78

3] % ]
therefore 5 v 52° or 3 N 128°
therefore 6 ) 104°, 256°

Hence (0.78, 104°) and (0.78, 256°) are simultaneous points of

intersection.

3. Since (r,8) and (r,6+2mn) name the same point, the
"simultaneous-technique" in (2) should be broadened to include

2 2

(1)

1),

(2)

(3)

(4)

1 + cos 8 = sin (B+§nn) = sin (% + 7n)

or

l + cos 8 = cos mn sin % (5)
S.2.0.18
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8. continued

When n is even, equation (5) is the same as equation (1) (since
cos ™ = 1 for n even), but when n is odd, equation (5) becomes

l + cos 8 = - sin % (6)
Letting cos 68 = 1 - 2 sin2 % in (6), we obtain

2 -2 sin2 % = - sin %

or

2sin® 3 -sin 3 -2=0 (7)

Solving (7) yields

1 - VI7

i 0 _
sin G 2 e— % - 0.78 (8)

Equation (8) yields the same points (but by different names) as

those obtained from equation (4).

4, The final possibility involves the fact that
(r,8) = (-r,6+7m+2mn).

Hence we look at

- sin % = 1 + cos(8+m+2mn)

1 + cos (8+m)

I

=1 - cos 6

2

N @

) = 2 sin

N @

therefore - sin % =1 - (1-2 sin

S.2.0.19
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8. continued

therefore sin % (2 sin % + 1) =0

therefore sin % = 0 or sin % = - % .

If % = 0 we obtain the origin, and if sin % = - %, we have

% = %} ¢ lé“ . Therefore 0§ = %; or § = 5%1 (this is not strange
since the full curve r = sin 5 requires that 0<6<4m).

When 6 = %;—, r = sin % + r = sin %; = = % . Therefore

(- %, %;} is a point of intersection. [In the form (- %, %;J it

satisfies CZ: in the form (%, l%1} is satisfies Cl: and in "simplest"

—_ 1l 4 |
form it is (j!‘jl} = (7, 240°)].
From 6 = l%E we obtain that (%, %F} = (%, 120°) is also a point
of intersection.

[We would have obtained these same two points had we solved
- +
1+ cos 6 = - sin (5)].

In any event there are five points of intersection = the origin,

(0.78, 104°), (%, 120°), {%, 240°), and (0.78, 256°).

Pictorially,

r=1+ cos 6

5.2.0.20
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8.

continued

Left portion traced out as 8
goes from 0 to 2m

Right portion as 6 goes from
2m to 47

Notice this curve intersects
itself!

Superimposing the diagrams, we have

%0.78,104°) . — ~ ~ ~
(%,120°)

{%,240°) gin |

(0.78,256°)

§.2.0:21
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