
Solut ions  
Block 2:  Vector Calculus 

Unit 6 :  Vectors i n  Terms of Po la r  coord ina tes  

I n  t h i s  e x e r c i s e ,  w e  simply want t o  r e i n f o r c e  t h e  i d e a  t h a t  our  

s tudy of  p o l a r  coord ina tes  was motivated by problems involving 

p a r t i c l e s  i n  motion under t h e  in f luence  of va r ious  fo rces .  To 

keep ourse lves  f r e e  of any coord ina te  system f o r  t h e  moment, l e t  
+ 

us  assume t h a t  a p a r t i c l e  moves a long t h e  curve R ( t ) .  Notice t h a t  
-+ 

by w r i t i n g  R ( t )  w e  a r e  i n d i c a t i n g  t h a t  t h e  p o s i t i o n  of  t h e  p a r t i -  

c l e  i s  a func t ion  of t i m e ,  and, a s  y e t ,  w e  have n o t  s p e c i f i e d  what 

coordinate  system i s  t o  be used. I n  t h i s  e x e r c i s e ,  w e  want t o  

i n v e s t i g a t e  how t h e  p o s i t i o n ,  v e l o c i t y ,  and a c c e l e r a t i o n  of  t h e  

p a r t i c l e  w i l l  be r ep resen ted  if w e  e l e c t  t o  use p o l a r  coord ina tes  

r a t h e r  than Car tes i an  coord ina tes  o r  t a n g e n t i a l  and normal coordi-  

na tes .  Obviously, t h e  q u a n t i t i e s  themselves do n o t  depend on t h e  

coord ina te  system, b u t  t h e i r  r e p r e s e n t a t i o n  i n  terms of components 

does. 

Our f i r s t  major problem concerns t h e  s u b t l e  p i t f a l l  t h a t  occurs 

when w e  t r y  t o  d e f i n e  a p a i r  of  or thogonal  u n i t  p o l a r  v e c t o r s  i n  
-+ -+ -+ -+ 

t h e  ve in  of  i and j o r  T and N. 

The problem s t e m s  from t h e  f a c t  t h a t  when a curve C is  w r i t t e n  i n  

t h e  p o l a r  form r = f ( 8 ) ,  r may be nega t ive  f o r  some va lues  of 8 

(which is  why we s t r e s s e d  t h i s  p o i n t  s o  much i n  t h e  previous 

u n i t s ) .  Namely, suppose w e  p ick  a va lue  of 8, say 8 = O0 , and w e  
l o c a t e  t h e  p o i n t ,  Po (ro,8 , on t h e  curve C where ro = f ( B o )  . It  

0 
i s  then n a t u r a l  t o  t h i n k  of t h e  r a d i u s  v e c t o r ,  3, which j o i n s  t h e  

o r i g i n  t o  Po. P i c t o r i a l l y ,  

Figure 1 
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2.6.1 (L) continued 


Now it seems that a very obvious candidate for a unit vector when 


we deal with polar coordinates is the vector obtained when we 

+ 

divide R by its magnitude. From Figure 1, it would appear that 

+ +

this vector is R/ro, since the magnitude of R appears to be rO. 

The trouble is that Po may be located in the first quadrant for a 

third quadrant value of Bo and a negative value of ro, since 

(rotBO) and (-ro , 8 + 180') name the same point, even though one 

of the Rnames"may not satisfy the polar equation of C. By way of 

an illustration, consider the curve C whose polar equation is 

r = cos.0. If we let = 240°, ro = cos 240° = --2I' Thus, the 

1
point (-TI 240°) belongs to C but it appears in the first quadrant, 
not the third. Again pictorially. 

In this case, 


since ro = --1 2 


Figure 2 


Notice that in looking at Figure 2 without reference to the equa- 


tion of ' C, we would be tempted to say that ro is l and that 

1
O0 = 60O ,  but we know that B0 = 240° and that r = -y. 

+ 
We could avoid this dilemma by insisting that in dividing R by its 


magnitude we always think of ro as being non-negative. In fact, 


had we imposed this stringent condition when we first introduced 


polar coordinates (and this condition is imposed, as we shall see 


in Block 6, when one views complex numbers geometrically) the 


present problem would not have occurred. On the other hand, this 


condition, as we have tried to show in some of the exercises of 


the previous units, would have introduced other unpleasantries. 
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2.6.1(L) continued 

From our point of view,. the key idea is that we are already com-

mitted to an interpretation that allows r to be negative. If we . . 
now introduce another definition of r that does not allow r to be 

negative, we would then have two different concepts both named by 

the same letter, and so similar in nature that misinterpret tion 

is almost assured of taking place. 
3 

To avoid this dilemma, we agree not to change the definition of r 

and we also agree that we like the notion of defining a unit vector, 
+ + + + 
ur, as being R divided by ro. For if we let ur = R/ro, we obtain 

the result that 

which agrees with the first quadrant interpretation expressed in 

Figure 1. The major observation to be made, however, is that. 

since r may be negative, the most we can imply from equation (1)
0, -t 

is that R and ur have the same direction - but they may (and, in 

fact will, if ro is negative) have opposite sense. 
+

Defining ur in this way is in keeping with our intuitive beliefs. 

That is, when we study a curve C, we are interested in the,curve, 

not in the equation which expresses this curve. Thus, while the 

equations are different r = cos 0 and r = -cos(8 + T )  name the 

same curve. Therefore, given a point on this curve, we would like 
-k 
u to be defined independently of which equation represents the r 
curve. One way of doing this is to have Gr determined by the ray 
0 = 0 without reference to the equation r = f(0) which represents.

0' 
rL C. 

This is done in the textbook's definition in which Zr is defined by 

-b 

(sin 00)j. 

+
Namely, equation (2) defines ur solely in terms of 0 = 0 Our 

0' 
only objection to definition (2) is that it is cloaked in the 

language of Cartesian coordinates, rather than in a language which 

does not depend on the coordinate system. Definition (I), on the 

other hand, is independent of any coordinate system. . A -
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2.6.1 (L) continued 


As a final illustration of our remarks, consider the point on the 

curve r = cos 8 which corresponds to the value of 8 = 120" (where 

we have changed the previous example slightly to get away from the 

first and third-quadrant orientation). The point in question is 

then (4,120") and this point is in the fourth quadrant, even 
though the ray 8 = 120" is in the second quadrant. Pictorially, 

Figure 3 

-+
From Figure 3 ,  we see that d is OPo, and if we elect to use Carte- 
sian coordinates, R is given by 

-P 1 + 1 I t - 4 3
R = (Z  cos 300°)i + (-2 sin 300") 

-+

j + ~1 4J 

1and since ro = -7,we obtain from definition (1) that 

It is now easy to verify that equation ( 3 )  agrees with definition 

(21, namely 

-+ -+ -+ 1+ fi? 
u = cos 120" i + sin 120" j = --i + 2,.r 2 


At any rate, our results may be briefly summarized as follows: 


Given the point (ro,Oo) on the curve C whose polar equation is 

+ 

r = f (0) , we draw the radius vector R from the origin to (rot eO) . 
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2.6.1 (L) continued 


If ro is positive, then Zr is simply (or the vector of unit 

+ 

length having the same direction and sense as R). If ro is nega- 

-+ + 

tive, we define u to be -R/lftl (or the unit vector having the 

r-+ 


same direction as R but the opposite sense). In either case, 

-+ -+ 
ur = R/ro, and in Cartesian coordinates, this is equivalent to 

+ -+ + 
u r = (COS Bo)i + (sin eo) j. 

-+ 
We now need an orthogonal companion for ur. The quickest way to 


get one is from our earlier result that a variable vector of 


constant magnitude is orthogonal to its derivative. Thus, if we 

+ 

assume that ur is a differentiable function of ,,(which means that 

d u-. 
+ 

u varies "smoothly" with respect to 81, then --Ais orthogonal to 
dB
+r 

u Now, because we are free to choose what sense a vector can 
r' 

d Gr 

have, there are two unit vectors in the same direction as -. 
Since we want our system to have the same structure as 

A 

i and 
do,

5,  
+ + 

we choose the unit vector which is obtained from ur when ur is 


rotated 90' in the positive (count~rclockwise) direction. The 


unit vector in the direction of -d0ur thus obtained is denoted by + 
ue' 

Once these ideas are clear in your mind, the computational notions 

+ + -+ 'r -+ a it,-that (1) R = r ur, (2) U, - -, and (3) -ur = -de are quite 
routine and they. have been derived both in the text and in our 

lecture. 

From this point on, the exercise proceeds as an example of our 


structure of vector calculus, with every step being an accepted 


rule of the game. Thus, 


Therefore, 
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2.6.1 (L) continued 


While (2) is a correct statement, the idea is that we woulg like 

+ + + d ur 
expressed in terms of ur and ug coordinates (not ur and -

dt 
coordinates1 . 

d Gr d f r  d G r d O  
Knowing that -= u8 and (by the chain rule) that -dt -- - -d0 dt, 
we may replace (2) by 


-+ d"rd8 drfv = r - - + - 

d0 dt dt r 


= r u  + dB + -drf 8 d t  dt r 

Notice that (3) lends itself to a nice physical interpretation (as 

shown below) but that the validity of (3) requires no physical 

insight. In other words, one beauty of our derivation, in terms 

of the "game" idea, is that once a few "simplem properties are 

assumed, more difficult properties follow as inescapable conse- 

quences of the simpler ones - without the necessity of referring 

to external models. 

@ At the instant 
. the particle is t @ If A0 is taken 

to be of infini- 
at Po, its tesimal length, rd0 

velocity component 
in the direction 

may be viewed as 
circular arc length. 

-+ dr 
of ur is - whichdt 
is the rate of 
change of the 
position vector. 
i.e. , /vrl 

0 

.Thus, r may be 

viewed as the in- 
stantaneous speed 
of the particle at 
Po along the circle 

measures the centered at 0. 

instantaneous 
rate of change 

+ 
of ~ O P ~ ] .  
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2.6.1 (L) continued 

-+ d'' Thus, from ( 3 )  we obtainNow the definition of a is still -dt' 

Since the derivative recipes are valid here, we may expand (4) to 

obtain 

where the last three terms in (5) come from differentiating 
d0 -dt u0 in (4), which is a product of three functions of t.r -

-+ + 
To convert (5) into terms involving only ur and u,, we write 

A 

d ;r 'r - d0 + -+-- - - - - -
a 
'r) - -dt 0 

,andp----dt dt u0 (since u = - dt d0 dt 

-- U0de (since -= -ur). With these substitutions (5) becomesdt r dB 

2 - d r ;a = - dr d0 -+ - - dr d0 -
dt2 dt dt Ue + dt dt + 2 U0dt . 

-+ -+ 
You may feel that the components of ur and u0 don't seem "intui-

tive" in (6). Should this be the case, notice, again, the power 

of "pure" mathematics. That is, (6) is an escapable consequence 

of our structure - intuitive or not.* 

*Thi s  i s  n o t  r e a l l y  a new i d e a  t o  u s .  I n  p l a n e  g e o m e t r y ,  t h e  
ax ioms were  r e a s o n a b l y  " s e l f - e v i d e n t "  t o  u s .  Ye t  someth ing  l i k e  
t h e  Py thagorean  Theorem which  f o l l o w e d  i n e s c a p a b l y  from t h e s e  
ax ioms was n o t  s e l f - e v i d e n t .  I n  f a c t ,  i t  seems amazing t h a t  t h e  
s t a t e m e n t  o f  t h e  P y t h a g o r e a n  Theorem i s  e v e n  t r u e !  
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2.6.1 (L) continued 


Obviously, one can use equations (3) and (6) without understanding 


their derivation, but somehow the ability to work with polar 


equations in a meanfngful way is seriously impaired if the deri- 


vations are omitted. Even more to the point, the derivations 


should be understood if we wish to use vector calculus in polar 


coordinates effectively. 


+ +
As a final remark, let us summarize by a diagram that (ur,ue), 

+ + + + 
(TIN), and (i,j) are entirely different coordinate systems. 


Given an acceleration vector, 

+ + 
a, at P, the vector is fixed, 

independent of any coordinate 

system, but its components 

depend on whether we express it 


+ -P 
in terms, say, of u and ue 


+ +r 
rather than T and N. 


a. 	 Just as we saw in our treatment of Cartesian coordinates, there is 


a difference between the path traced out by a moving particle and 


how the particle traverses the path. By way of a trivial analogy, 


a winding road remains the same for each vehicle, but different 


vehicles traverse it in different ways. In this context, a parti- 

2
cle which moves according to the polar equation r = sin 8, where 8 

is a function of time, traverses the same path regardless of how 8 

2
varies with time. That is, it traces the curve r = sin 8. The 

particular way in which 8 depends on t affects the position, 


velocity, and acceleration of the particle at any time as it 


moves along the curve. Thus, in this exercise, 




- - 
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2.6.2 continued 


I TThe particle is here at t = .rr since then 8- = T 

etc. 

Particle is here at t = 0 

b. In the last exercise, we established that 


where 


and 


1 dB 1 d28
In this example, 8 = -2t ; hence, fi = and -= 0 .  Moreover, 
dt2 

2 drsince r = sin 8, -= 2 sin 8 cos 8 = sin 28. Therefore,d8 

- - - - - -dr do -
dr -
dt dB dt sin 2 0 ,  whereupon 

Therefore, 
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2.6.2 	 continued 


1 2 1 2 
ar = 2 cos 20 - sin 0 (Z) = -12 COB 20 - 1 sin 2 8 


2 1 1 1 
a
8 

= (sin 0) (0) + 2 (T sin 20) (T)= T sin 20 


or, since 8, = z1 t, 


a = 21 cos t - g1 sin2 t-2I ae = 3 sin t. 
r 

271 T 2 n T  3 n 
c. 	 When t = -3' 0 = 5, so the particle is at Po (sin 3'3) , or, (T,T). 

Its components of acceleration at this point are obtained from (1) 

and (2) with 8 = 7n (or from (2 ' ) with t = 
2lr 

Hence, 

ar = 	-1 -2n 1 sin2 n  = 1 1 3  7cos - 1 (-$ - a (a] = -= 

and 


Drawn to scale, we have 


@ 	The acceleration 
C 


vector at Po is PoN 


s 


@ Letting N complete parallelogram 
(rectangle) PoMNTI the rule for adding 

-	 + 
vectors yields a = POT + P M = POT + TN 

0 
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2.6.2 continued 

e .  By t h e  Pythagorean Theorem 

Therefore ,  

2.6.3 
I 

a. Again, 

t d0 2 t d0 
2 2

Now, s i n c e  0 = e , both  and --- e = 8 and (=) = (et) = 8 .  
d t 2  

Then, s i n c e  r = 1 + cos  0 ,  w e  have 

Therefore ,  
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2.6.3 	 c o n t i n u e d  


2 

- =d 	 r d ( - 8  s i n  8) d 8  -
d t 2  d 8  d t  


= (-8 c o s  8 - s i n  8 ) et 


= (-8 cos 8 - s i n  8) 0  


= - ( e 2 c o s  13 + 8 s i n  8 ) .  


Thus ,  (1) becomes 


ar 	= - ( 8
2 

cos 8 + 8 s i n  8) - (1+ c o s  8 ) e  2  


= -2 82 cos 8 - 8 s i n  0  - 82 


a e  = 	 ( 1  + COS 8 ) 0  + 2( -8  s i n  8 ) ( 8 )  


8 + 8 c o s  8  -2 o2 s i n  8. 


71 


IT 1n2b. When t = I n  21 e = e  = 3, and  s i n c e  t h e  e q u a t i o n  o f  t h e  c u r v e71 

i s  r = 1 + cos 8, r = 1 when 0 = -71 
2 ' 

IT 	 71Hence, t h e  p a r t i c l e  i s  a t  (l,T)when t = I n  T. To f i n d  i t s  a c c e l -
+ +

e r a t i o n  i n  ur and  ue  c o o r d i n a t e s ,  we u s e  (3)  and  (4).  w i t h  9 = 2
2 ' 

S i n c e  s i n  -IT = 1 and c o s  -IT
2 

= 0, we o b t a i n  

and 

71 	 71 ITa 	= - -
8 	 2 2 ( 7 - )  = -2 (1 - IT) =s - ( 3 . 4 ) .  
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c .  W e  have: 

(Zr may be thought  of  a s  e i t h e r  soo r  P 2 ,  b u t  Zr must = P 2 ,  
-+ 

s i n c e  a  by d e f i n i t i o n  o r i g i n a t e s  a t  t h e  p o i n t  i n  ques t ion  on t h e  r 
c u r r e .  

2 . 6 . 4 ( L )  

Our aim here  i s  t o  show how p o l a r  coord ina tes  can be used f o r  

t h e o r e t i c a l  g a i n  a s  w e l l  a s  f o r  t h e  s o l u t i o n  of s p e c i f i c  motion 

problems. 

I n  a c e n t r a l  f o r c e  f i e l d ,  by d e f i n i t i o n ,  t h e  f o r c e  i s  i n  t h e  d i -  
+ 

r e c t i o n  of R,  assuming, of course ,  t h a t  our  c e n t r a l  f o r c e  i s  a t  
-+ + + 

t h e  o r i g i n .  Now, s i n c e  F = ma, we have t h a t  F i s  a ( p o s i t i v e )  

s c a l a r  m u l t i p l e  of g. Hence, 
-+ 
F and 2 have t h e  same d i r e c t i o n .  

+ + +
Therefore,  s i n c e  F is  i n  t h e  d i r e c t i o n  of R ,  a i s  a l s o  i n  t h e  d i -  

+ 
r e c t i o n  of R. (Note t h a t  wi thout  Newton's Second Law, w e  cannot 

-+ 
conclude t h a t  F and have t h e  same d i r e c t i o n . )  
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This,  i n  t u r n ,  makes t h e  component of  a c c e l e r a t i o n  i n  t h e  d i r e c -  

t i o n  a t  r i g h t  angles  t o  6 equa l  t o  0 .  That is, 

Since  8 never appears o t h e r  than i n  a d i f f e r e n t i a t e d  form, w e  may 

s impl i fy  the d i f f e r e n t i a l  equat ion i n  (1)by l e t t i n g ,  say,  u = d 9-
9 d t '  

du d d e  -I n  t h i s  case, -dt = dt- and (1)becomes- d3, 

Rewriting (2)  i n  d i f f e r e n t i a l  form, w e  have 

r du = -2u d r  

and upon s e p a r a t i n g  v a r i a b l e s ,  w e  o b t a i n  

whereupon 

o r  


lnl--l 
1 

= 
1 i n J u l  + I n  c2 (where i n  c2 = cl) 




- - 
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2.6.4 (L) continued 


Therefore, 


Squaring both sides of (4) yields 


I -- - cu (where c = cZ2) = 2 
r 


Recalling that u = -dt' (5) yields 

L r 2 d e  

c dt' , 


Since c is a constant, (6) implies that r2 is constant. 


l r 2 d B = 
Therefore, 5 r2 dt is constant. Notice, however, that 5 dt 


- so that 
dt' 


dA 

dt -- constant. 

In other words, the particle moves so that the rate of change of 


area it sweeps out is constant. 


2.6.5(L) 


The main aim of this exercise aside from the computational techni- 


ques involved or from the physical importance of the result is to 


emphasize that when we deal with central force fields the chances 


are that polar coordinates are going to be the most advantageous. 


For this reason, the ellipse is written in the polar form 


C 
r 	= 1 - e cos 8 (0 6 e < 1) 

-	 rather than in the more familiar Cartesian form. The intereste6 

reader can test by direct substitution of Cartesian coordinates 

that (1) is indeed the equation of an ellipse. 
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The o ther  learning experience of t h i s  exercise  i s  t o  help you see 

how the knowledge t h a t  w e  a r e  i n  a cen t r a l  fo rce  f i e l d  allows us 

t o  s ide-s tep some r a the r  tedious computations. I n  pa r t i cu l a r ,  

based on the  r e s u l t s  of t he  previous exercise ,  i n  a cen t r a l  force 

f i e l d ,  w e  can always replace r2 dB by a constant. 
d t  

I n  any event, we have (s ince the  force is d i rec ted  toward t h e  

o r ig in )  t h a t  the acce le ra t ion  i s  a l s o  d i rec ted  toward the  or ig in  
-* -b 

(s ince F = m a ) .  Therefore, a = O'and w e  have
8 

so  t h a t  

From (1) 

d r  -c(e s i n  6) dB- =  
dt (1 - e cos 6)2 dt-

L 

Since r = -
C 

ms o r  r2 = C 
2, we rewr i te  ( 3 )  t o  

(1 - e cos 0 )- * 

take advantage of this subs t i tu t ion .  l 'heref ore ,  

d r  - -- cA e s i n  8 -d8 dt - ' [(I  - e cos 6) 
d t  

- 66- --
c r2 e s i n  e -d t  

e 2 dB = -- (r =I s i n  8. 
C 

I n  t h e  l a s t  exercise ,  we saw t h a t  r2 2 = k i n  any cen t r a l  fo rce  

f i e l d .  

Thus, ( 4 )  takes  on the  simpler form 
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2.6.5 (L) continued 


-dr = --ek sin 0 .
dt C 


From (5), 


dLr-= --ek de cos 8 dt 

dt2 C 


whence (2) becomes 


de k
Since r2 2 = k, we may replace in (6) by 5 to obtain 

r 

COS 0 - -
4 r r 


- r k 2 1  
2
..cos 8 - $/.
2 


Cr r 


Factoring out 12 (there's no harm in keeping one eye on the de- 
r 

sired answer) we obtain 


21 1 = -I I --eE cos 0 - -I2 r 
r k2 


and since In/ = I-nl, we obtain 



Solutions 

Block 2: Vector Calculus 

Unit 6: Vectors in Terms of Polar Coordinates 


2.6.5 (L) continued 


From (1) , 

1 1 - e c o s e - i  e
- = - - - - COS 6,r c C C 


so that ( 7 )  becomes 

and lince Ig(is a constant, the desired result holds. 

In all the exercises of this section, we have assumed that our 

particle was moving in the xy-plane, even though we used polar 

coordinates. A more general problem is that of a particle moving 

in space in a central force field. The interesting thing is that 

in this case, too, the path of the particle is a plane curve. 

This fact can be established mathematically, assuming no physical 
+ + dLiknowledge other than F = ma = m- This is precisely the aim 

dt2' 
of this exercise. 

We look at 


and differentiate this with respect to t to obtain 


+ 
dR dZ 
+Now in any event -dt x -dt = 0 since any vector crossed with itself 

has this property. Hence, (1) may be rewritten as 
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Unit 6: Vectors in Terms of Polar Coordinates 


2.6.6 (L) continued 


Equation (2) is valid for any twice-differentiable vector function 


of t. 


The point is that since we are in a central force field, by 


definition 


and by Newton's Law 


2+ + 
Comparing (3) and (4) we see that -and R have the same direc-

dt2 

tion (i.e., -2+ -- - g). Since vectors which have the same direc-
2 m


,dt 
tion yield 6 as their cross product, we have that in a central-

+ d21tforce field R x ---si. = 0. 

Putting this result into (2) yields 


Thus, from ( S ) ,  we have that 
-+ 
R x di -- $ where b is a constant 

vector. 

-+ d6 -+But what is the physical meaning of R x =?R is the position 
-+ 

vector to the particle while $
A 

is its velocity. Hence, c is per-
-+ -+ 

pendicular to the plane determined by R and 2 .  Since c is a con-

stant, this plane can never change direction. Hence, 
-+ 
R and 2 are 

always in the same plane when we have a central force field. We 

may then let this plane be denoted as the xy-plane without loss of 

generality. 



*.y. , 
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Unit 6: Vectors in Terms of Polar Coordinates 


2.6.6 (L) continued 


There is, of course, more information that can be deduced from 

+ + + 
R x v = c, but we leave such deductions to the interested reader. 

Our purpose was more'to continue our emphasis on the value of 

vector calculus in the study of motion. 

At least, by now, everyone should be convinced that vectors supply 

us with a powerful analytic tool - too powerful to be relegated to 

the role of merely being broken up into x, y, and z components! 



S o l u t i a n s  
lock 2: Vector Calculus 

Quiz  

$(t)= t5 -+
1 + 2 cos  t t-J 	 + +c 

5 -t t + -t t *[ equ iva len t ly ,  $(t)= (t +cl) i  + (2 cop t+c2)  3 ,  and c = c1I + C ~ J ]  

Therefore ,  

$ ( o )  = o? + 2 cos  0; + ;= 25 + s 

~ u t  a r e  a l s o  g iven t h a t  w e  

+
~ ( 0 )= 21  + 3; 


Comparing (2)  and ( 3 )  y i e l d s  


s u b s t i t u t i n g  ( 4 )  i n t o  ( I ) ,w e  o b t a i n  

+ 
~ ( t )t5 1 + 	 2f + 3= 2 cos  t f + 

2. 	 ( a )  When t h e  equat ion  of t h e  curve has t h e  form y = f (x), t h e  

cu rva tu re ,  K, is given most conveniently by 

* 	 -b -+ -b -b 
The key p o i n t  i s  t h a t  i f  F ( t )  = f l ( t ) u l  + f 2 ( t ) u 2  and ul  and 

-b 
u2 a r e  any c o n s t a n t  v e c t o r s  ( n o t  j u s t  c o n s t a n t  i n  magnitude)  

-b 	 + +
then  F 1 ( t )  = f l l ( t ) u l  + 	f 2 ' ( t ) u 2 .  
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2. continued 

XIn  t h i s  exerc i se  y = ex. Therefore $ = 32 
= e and ($)2 = eZx 

dx 

Put t ing  these  r e s u l t s  i n t o  (1)y ie ld s  

Hence, e = ek n n =  fi, a n d e Z x = e  = 3. 

Therefore equation (2) becomes 

d~
( c )  TO f ind  the  maximum (o r  minimum) value of K we compute 

from equation (2) and then f i nd  the  values of x f o r  which 

dK = 0. W e  obtaindx 



Solutions 
‹ lock 2: Vector Calculus 
Quiz 

2- continued 

5/2
s i n c e  nei ther  ex nor ( l+e2x)  can be zero ( i . e . ,  the exponential 

is p o s i t i v e ) ,  w e  see from equation ( 4 )  that  

* X
Hence the  maximum curvature of v = e occurs a t  the point  

Z* 
O f  c o u r s e ,  one c o u l d  compute t o  make s u r e  t h a t  we have found 

dx 
a maximum r a t h e r  than a minimum c u r v a t u r e .  However, a g l a n c e  a t  

t h e  curve  y = e X shows t h a t  the  curve  " f l a t t e n s  out"  very  r a p i d l y  

a s  we move away from (en: i n  e i t h e r  d i r e c t i o n .,a ) 



' .  	 Solut ions  
Block 2: V e c t o r  Calculus 
Quiz 

2 .  	 continued 

f i ( ~ n " $ . " $ ) ,where v=ex has maximum curvature 

( P i c t o r i a l  Summary) 


2 -1 t
3 .  	 (a)  & = Rn ( t  +1): + (t-2 tan t)7 

Therefore 

Therefore 



- - 
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3. continued 

Therefore the p a r t i c l e  moves a t  the constant speed of  1 f t / sec .  

b. 


Hence from equation (1 )  w e  obtain 



: ' so lu t ions  -o Block 2: Vector Calculus 
Quiz 

3- continued 

-- 2 2[and t h i s  is maximum when (t +l) is minimum.] ( 3 )  

(t2+1) 

(t2+1)8 1 and equals 1 ++ t=O 

+
Therefore la1 is maximum when t = O ,  and t h i s  maximum value i s  

22 f t / s e c  . 
d- W e  know t h a t  with respec t  t o  t angent ia l  and normal components 

1;1 Since = 
 , w e  dshave from p a r t  (a )  t h a t  = 1. 



Solu t ions  
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3. continued 

* 
= 0 and (g)2=1 . 

P u t t i n g  t h e s e  r e s u l t s  i n t o  ( 4 )  y i e l d s  

+ -+
Therefore,  i f  a = aT$ + a#, aT = 0 and % = K . -

+ 
-+ 

e. Since  l;(t)~= 1 = c o n s t a n t ,  w e  have t h a t  v % =  0. 

+ dZ +Therefore a (= i s  e i t h e r  6 o r  else it i s  perpendicular  t o  v. 
-+

From equa t ion  (3) , a # d f o r  a l l  t; hence 

+
Since v i s  i n  t h e  d i r e c t i o n  of *, 2 -I *; and ( s i n c e  Z i s  i n  t h e  

-+ + 
xy-plane) t h e r e f o r e  a is p a r a l l e l  t o  8. I n  o t h e r  words, a is  a 

-+
s c a l a r  m u l t i p l e  of  N ,  which i s  c o n s i s t e n t  wi th  equat ion  (5). 

2 .  The a c c e l e r a t i o n ,  1 , of t h e  p a r t i c l e  a t  any t i m e  t i s  independent 

oE t h e  coord ina te  system being used (al though,  of  course,  t h e  
-b

var ious  components of a depend on t h e  coordinate  system).  
-+

From equat ion  (5) w e  have t h a t  121 = I K N I = 1 K 1 , and s i n c e  by 

convention K i s  always non-negative, it fol lows t h a t  

On t h e  o t h e r  hand, w e  know from equat ion  (3)  t h a t  

= 2 

(t2+1) 

* 
121 = -ds i m p l i e s  t h a t  t h e  s e n s e  o f  t h e  p a t h  h a s  s i n c r e a s i n g  w i t hd t  

t .  I n  t h i s  p r o b l e m ,  e v e n  i f  t h i s  c o n v e n t i o n  w e r e n ' t  o b e y e d ,  t h e  
ds same r e s u l t s  w o u l d  f o l l o w  s i n c e  t h e n  - = -1 whereupon 

9 0 d t  
- =d L s  0 and (g)L= 1 

d t  
2 



-
u-
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3 .  continued 

Comparing t h i s  with equation ( 6 )  it follows that 

4 .  a .  P ic tor ia l ly ,  what we  have is  

7 )Now since % = = - 5 1  - 123. 151= , /(-52)+(-12)2 =0 3 ~  13 

Therefore, 



Solu t ions  
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4. continued 

+ 	 + -+ 
The key p o i n t  i s  t h a t  s i n c e  ur i s  def ined by R =,r ur w e  see t h a t  
-+ 
u has t h e  oppos i t e  sense  of  3. (hence, a l s o  of ,-) when r i s  
r IRI  

nega t ive ,  which i s  t h e  case  i n  t h i s  problem. 

I n  o t h e r  words, 
-b 

s o  t h a t  by equat ion  (1), 

+ 
u

8 
i s  obta ined by r o t a t i n g  	u  r ' 90° i n  t h e  counterclockwise 

d i r e c t i o n  (i.e., +90°) .  Again p i c t o r i a l l y ,  

may be viewed a s  being 

i n  e i t h e r  of t h e  two p o s i t i o n s  

shown) 

(;; 

+There a r e  s e v e r a l  ways open t o  us f o r  computing u8. One way is  t o  
+ -t t -+ * t 

r e c a l l  t h a t  ur = cos 81 + s i n  81 and u8 = - s in  €11+ cos 81 [ i . e . ,
22 


+ - uu + 
Ue - $ o r  U 8 = cos (8+90°)	T + s i n  (e+900) 31. 

-Since  we  a l s o  know t h a t  2 5 - f + 1 2 t  t h e  f a c t  t h a t  r - 1 3  i3-+ 
u = cos 0-f + s i n  85 impl ies  t h a tr 

5 	 12cos  8  = - and s i n  8  = -13  	 13 



-
 m a . ., . , _ ...-. , ,  - .. , ,  * . 
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4. continued 

12 + -+ -tHence, - s i n 8  = - , whereupon u8 = - s i n  81 + cos  83 impl ies  

+ 5 t  u = - m8 

(Another way t o  f i n d  f, would be t o  u t i l i z e  t h e  f a c t  t h a t  -
+ + + -+ t + 
u -u  =O. Then l e t  ug = XI + y ~ .u = *i ++=l2*J .  Therefore 
+r +e 5xr 
u *u =O + = +  %=0 ,  o r  y = -=. Hence ug has  t h e  form r 8 1 3  

+ X -+ + 
Therefore,  (ug l  = 1121 - 531 = -13X I and s i n c e  lugl  = 1, 

12 12 12 +x = +. The value  x = + makes ue a clockwise r o t a t i o n  of  ur 
1 2  5 1213, whereupon y = - - (-4= - I and as a r e s u l thence, x = - - 12 13 13 

-+ t 
b. The most s t r a igh t fo rward  approach he re  is t o  express  1 and J 

+ + + -+ 
i n  terms of ur and ug s i n c e  v is a l ready  known i n  terms of  1 and 

f . To t h i s  end w e  have 

Theref o r e  

12(13 <)= 1 2 5  + 12;) -+ + 
Therefore 156 ur + 65 ug = 169; 

5(13 = 5 (-12f + 55) 



S o l u t i o n s  
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4 .  cont inued 

S i m i l a r l y  

5 (13  f r )  = 5(5x  + 12;) 

t h e r e f o r e  65Gr - 156 Ge = 1691 
-12 (13 f,) = -12 (-12: + 53) 

t h e r e f  o r e  

U t i l i z i n g  e q u a t i o n s  (4)  and (5) , w e  have 

+ 

v = 3:
 + 4; 


+ + dur + 
c .  Since  R = r u and = ue w e  know t h a t  r 

d r  63 d o _ - _l6
From equa t ion  (6 )  it fo l lows  t h a t  dt = -1 3  and r dt - 1 3  ' s i n c e  

a t  t = 0 ,  151 = 13 ,  and r = -131, r = -13. Hence 

t h e r e f o r e  



, ; * - -

- , ' 
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4 .  continued 

d. H e r e  w e  r e c a l l  the formula for  curvature i n  terms of  ve loc i ty  

and acceleration. Namely 

Now 


3 
1. 1$1 = 5 ,  therefore I$i = 125 

2. 

-+ 
v x 

+ 
a = 18g - 4$, therefore 1;
 x 21 = 14 


Putting these re su l t s  in to  ( 8 )  y ie lds  

14
K = -
125 

Differentiating w i t h  respect t o  t (recal l ing that 

we obtain 



--,, 3.c,;,7~nn; 
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l: Solut ions 

E-',- lock 2: Vector Calculus

*' ':% puiz 	 Ih< 

6. a. Since x = r cos 8 and y = r s in8,  we multiply both s ide s  of 

r 	= s i n  8 + cos 8by r t o  obtain  


* 

r2 = r s i n  8 + r cog 8 

2 2 x + y  = y u x  


2 2
therefore  (x -x) + (y -y) = 0 


t h e r e f o r e  (x2-x+$1 + (y2-y+i)  -- 21 


therefore  (x-I)1 2  + (Y-$ = 7 1 


therefore  C is a c i r c l e  centered a t  w i t h  r a d i u s G  = JS 

* 
The o n l y  s u b t l e t y  h e r e  i s  t h a t  m u l t i p l y i n g  by r g u a r a n t e e s  t h a t  

t h e  o r i g i n  (r=O) s a t i s f i e s  ( 1 ) .  T h i s  c a u s e s  no  p rob lem ( i . e . ,  
e x t r a n e o u s  p o i n t )  i f  t h e  o r i g i n  a l s o  s a t i s f i e s  t h e  o r i g i n a l  
e q u a t i o n .  I n  o u r  p rob lem r = s i n  8 + c o s  8 + r = 0 w h e r e v e r  

t a n  8 = -1 ( i . e . ,  s i n  8 + c o s  8 = 0 ) .  T h e r e f o r e  ( 0 ,  
3n 

[ t h e  
o r i g i n ]  i s  on t h e  g i v e n  c u r v e .  



-- - 
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5. c o n t i n u e d  

2
I n  t h i s  problem r 	= s i n  20 and  0 = 3 t  t h e r e f o r e  

A l s o  r = s i n  20 = 	s i n  6 t 2  t h e r e f o r e  

-- 1 2 t  cos 6 t2dr -
dt 


2 2 


at2 = 1 2  c o s  6 t 2  + 1 2 t [ - 1 2 t  s i n  6 t  ] 


= 1 2  cos 6 t 2  - 1 4 4 t2 s i n  6 t  2 

P u t t i n g  t h e s e  r e s u l t s  i n t o  (2 )  y i e l d s  

+ 	 2 2 
a = [12 cos 6 t 2  - 1 4 4 t  s i n  6 t 2  - 3 6 t  s i n  st2];, 


2
+ 	 [6  s i n  6 t 2  + 2 ( 1 2 t  c o s  6 t  ) 6 t l C e  

2 2 2 2 + = (12 c o s  6 t 2 - 1 8 0 t  s i n  6 t 2 ) G r + ( 6  s i n  6 t  +144t  c o s  6 t  ) u O  ( 3 )  

When t = fi- , t 2 = - -3a - IT t h e r e f o r e  6 t  2 = a .6 36 


E q u a t i o n  ( 3) t h e n  becomes 


+ IT a a + 	 I T - +  
a = (12 cos - 180 [=I s i n  Z)ur + ( 6 s i n 3 1 4 4  [&]cosZ)ue 

T h e r e f o r e  

ar = -15a and  ae = 	6 
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6. continued 

y = r s i n  8 

2 2 3 
= y4 +t h e r e f o r e  (x  +y ) 

4r6 = r4 s i n  8  

4t h e r e f o r e  r2 = s i n  €I 

Equation (2)  i s  e q u i v a l e n t  t o  t h e  p a i r  of  equat ions  

2 2 r = s i n  8 and r = - s i n  €I 

and t h e s e  two equa t ions  desc r ibe  t h e  same curve ,  namely: 

2 
r = s i n  8 

t r a c e s  t o p  p a r t  f i r s t  

2 r = - s i n  8 

t r a c e s  bottom p a r t  f i r s t  

2L e t t i n g  S be t h e  region encl=.ed by r = s i n  8, 0 < 8 6 ~w e  have that. 

and s i n c e  t h e  a r e a  enclosed by t h e  curve i s  twice t h e  a r e a  of S . 
. . 

( s i n c e  t h e  t o p  and bottom p a r t s  a r e  congruent) ,  w e  have t h a t  t h e  ' ' 

d e s i r e d  a r e a  i s  
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6 .  	 continued 

2

( s i n  	8 )  d0 =S 

2 

0 

2A f (1-2 cos  28+cos 281d8 = 
4 


fB 
(3-4 c o s  20t cos  48)de = 

0 

1	- [38,-2 s i n  20f1
T s i n  40 
8 
e=o 

2

7 .  	 r = s i n  0 


therefore = 2 s i n  8 cos  8 
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lock 2:  Vector  Ca lcu lus  

Qu iz  

7.  cont inued  

t h e r e f o r e  

-r 2 1
t a n  J, = - = s i n  0 -- sin = t a n  0
d r  2 s i n  8 c o s - 0  2 cos  0 
is 


(provided  s i n  0 # 0, o t h e r w i s e  w e  cannot  d i v i d e  by i t ) .  

I n  p a r t i c u l a r  when 8 = 60°,  t a n  J, = 
1 t a n  60° = 2 /5 . 

There fo re  ) = tan-'? 3 41° , and this i s  t h e  a n g l e  t h a t  t h e  

t a n g e n t  l i n e  t o  C a t  3 60°) makes w i t h  R. P i c t o r i a l l y  

However, t h e  s l o p e  of  t h e  l i n e  is ,  by d e f i n i t i o n ,  t a n  I$ and 

I$ = ) + 60°. 

The re fo re  

t a n  J, + t a n  60° - id3 + 43 id3 
tan I$ = 1- tan  I) t a n  60° -	 = - 3 =  - 3J5 

1 - ;J5J5 1-2 

8. 1. C l e a r l y  t h e  o r i g i n  be longs  t o  each  curve .  For  example it 

belongs  t o  	C1 i n  t h e  form ( 0 , r) , and t o  C2 i n  t h e  forms (0,O) , 
(0,27r) , and ( 0 , 4 r )  . 
2. To f i n d  t h e  o t h e r  s o l u t i o n s ,  w e  n e x t  look a t  s imul taneous  

s o l u t i o n s  and t h i s  l e a d s  t o  
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Solutions 
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8. continued 

1 + cos 0 = sin 8 T 

Recalling that cos 8 

equation (1) yields 

= 2 8 2 8 cos sin ( 1  (=I-2sin2 or 2 cos2 El), 

2 sin2 + sin -€I2 - 2 = 0  

8Since Isin - I B 1 we may discard the negative s.ign in +  2 -
( 1) to conclude 

m  in 

8 m - 1sin = 4 

8therefore sin 2- 2 0.78 

8therefore - 'L2 

therefore 8 % 

852O or - 'L 128O2 'L 

104O, 256O 

Hence (0.78, 104O) and (0.78, 256O) are simultaneous points of 

intersection. 

3. Since (r,8) and (r,8+2rn) name the same point, the 

"simultaneous-technique" in (2) should be broadened to include 

1 + cos 8 = sin ( 1 = 8sin (T+ rn) 

or 

1 + cos 8 = cos mn sin 8 
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8. continued 

When n i s  even,  equa t ion  (5)  i s  t h e  same a s  equat ion  (1) ( s i n c e  

cos -mn = 1 f o r  n  e v e n ) ,  b u t  when n  is  odd, equa t ion  (5) becomes 

1 + cos 8 = - s i n  -2 
8 

l e t t i n g  cos 0 = 1 - 2 s i n 2  i n  (6), w e  o b t a i n  

2 8 82 - 2 s i n  Z =  - s i n -2  

2  8  82 s i n  T - s i n  T - 2 = 0 


Solving ( 7 )  y i e l d s  


s i n  -e = 1 - 4 7 7  
Q - 0.782 4 Q 

Equation (8 )  y i e l d s  t h e  same p o i n t s  ( b u t  by d i f f e r e n t  nmeg i  ,%as 

t h o s e  ob ta ined  from equa t ion  ( 4 )  . 
4 .  The f i n a l  p o s s i b i l i t y  invo lves  t h e  f a c t  t h a t  

Hence w e  look a t  

- s i n  -8 
= 1 + cos(8+.rr+2m)2 


= 1 + cos (8+lr) 


= 1 - COS 8 


t h e r e f o r e  - s i n  8 
= 1 - (1-2 s i n 2  ) = 2 s i n  2  8  

Z 
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8, continued 

t h e r e f o r e  s i n  8 (2  s i n  % + 1) = 0 

t h e r e f o r e  s i n  -e 
2 = 0 o r  s i n  0 = - Z 

1 

8 9 1 
If T =  0 W e  o b t a i n  the o r i g i n ,  and i f  s i n  -2 = - Z, w e  have 

- = - ,6 . Therefore 8 = - o r  6 =  1171
8 771 118 771 7- ( t h i s  is n o t  s t r a n g e  3 
s i n c e  t h e  f u l l  curve r = s i n  -8 r e q u i r e s  t h a t  0<?3<4a). 2 

When 8  = -7n , r = s i n  -8 
+ r = s i n  -7n = - 1 . Therefore3 2 6 

1 771p a i n t  of i n t e r s e c t i o n .  [ In  the  form (- 5, it 

1 l o rs a t i s f i e s  C2; i n  t h e  form (Z, T )  i s  s a t i s f i e s  C1; and i n  "simplest"  

1 4s 1form it is (Z, = (2, 240°)] .  

From 8 = -3 
1 2 r  1w e  o b t a i n  t h a t  (2, = (r, 120.) is a l s o  a  p o i n t  

of i n t e r s e c t i o n .  

[We would have obta ined these  same two p o i n t s  had we so lved  
B+a1 + cos 6 = - s i n  ( - + I .  

I n  any even t  .there a r e  f i v e  p o i n t s  of i n t e r s e c t i o n  = the o r i g i n ,  

(0.78, 104O), tZ I1 120°) ,  (2, 240°),  and (0.78, 256O). 

p i c t o r i a l l y ,  

aisTI ;, (-
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8 .  continued 

L e f t  portion traced out a s  0 

goes from 0 t o  IT 

Right portion a s  8 goes from 

2n to  4r 

Notice t h i s  curve i n t e r s e c t s  

i t s e l f !  

Superimposing the diagrams, we have 
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