Unit 6: Equations of Lines and Planes

1. Lecture 1.060

Equations of Lines and Planes		$\therefore A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$
Planes: Surfaces = Lines: Curres Contesian Coordinates $\begin{aligned} & P_{0}\left(x_{0}, y_{0}, z_{0}\right) \text { is in } p \text { lane } \\ & \vec{N}=A \vec{c}+B_{j}+C_{k} \overrightarrow{~ i n ~} 1 \text { to pbre } \end{aligned}$	$\begin{aligned} & \vec{R} \cdot \vec{P}_{P} P=0 \\ & (A, \beta, C) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0 \\ & A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 \end{aligned}$	is equation of plane through ($x_{0}, 4, z_{0}$) with. (A, B, C) as a normal Example $2(x-1)+3(y+2)+4(z-5)=0$ passes through $(1,-2,5)$ and her $2 \vec{k}+3 \vec{\jmath}+4 \vec{k}$ as a normal.

Note (1) For fixed A, B, C $A x+B_{y}+C z=0$ is a family of pavallel planes. Each has $A \vec{\imath}+B \vec{y}+C \vec{k}$ a_{2} a normal.	(2) Equation of plane is linear. $a x+b y+c z=d,$ which "pencualizes" $\begin{gathered} a_{x}+b_{y}=d \\ (\operatorname{lin} x) \end{gathered}$	(3) Plane has 2 degress of freedom Example $x+2 y+3 z=6$ Mas pick two of three unknowns at random, and solve for the third. $\begin{aligned} & (0,0,0) \\ & (x-6)+2(y-0)+2(z-0)=0 \\ & (0,0,2) \end{aligned}$

Study Guide
Block l: Vector Arithmetic
Unit 6: Equations of Lines and Planes

Lecture 1.060 continued

Block l: Vector Arithmetic

Unit 6: Equations of Lines and Planes
2. Read Thomas, section 12.8
3. Exercises:
$1.6 .1(\mathrm{~L})$
Find the equation of the plane determined by the points $A(1,2,3)$, $B(3,3,5)$, and $C(4,8,1)$. (see Exercise 1.5.2)
1.6 .2

Show that $y=2 x$ is the equation of the plane which passes through ($0,0,0$) and has $2 \vec{i}-\vec{j}$ as its normal.
$1.6 .3(\mathrm{~L})$
a. What is the equation of the line which is parallel to $3 \vec{i}+4 \vec{j}+2 \vec{k}$ and passes through $(-2,5,-1)$?
b. At what point does this line intersect the $x y$-plane?
1.6 .4

Find the directional cosines for the line
$\frac{x-1}{6}=\frac{y+2}{3}=\frac{z-4}{2}$.
1.6 .5

At what point does the line which is parallel to $2 \vec{i}+3 \vec{j}+5 \vec{k}$ and which passes through $(-1,3,-2)$ intersect the plane given in Exercise 1.6.1?
$1.6 .6(\mathrm{~L})$
a. Find the distance from $(7,8,9)$ to the plane $2 x+3 y+6 z=8$.
b. At what point does the line through $(7,8,9)$ perpendicular to the plane in a. intersect this plane?
c. Find the distance between the planes $2 x+3 y+6 z=22$ and $2 x+3 y+6 z=8$.

Study Guide
Block 1: Vector Arithmetic
Unit 6: Equations of Lines and Planes
1.6 .7

The points $A(1,1,4)$ and $B(3,4,5)$ are on the line L, while the points $C(3,4,-1), D(4,6,2)$, and $E(8,9,7)$ are in the plane M. At what point does the line L intersect the plane M ?
1.6 .8
a. Find the angle between the planes whose Cartesian equations are $3 x+2 y+6 z=8$ and $2 x+2 y-z=5$.
b. Find the Cartesian equation of the line which is the intersection of the two planes given in part a.

1. By computing $(-1)(1-1)$ in two different ways, use the rules and theorems of arithmetic to prove that $(-1)(-1)=1$.
2. Find a unit vector which is normal to the curve $y=x^{3}+x$ at the point $(1,2)$.
3. Let $A(1,3,5), B(3,4,7)$ and $C(-1,0,-1)$ be points in space. Find a unit vector such that it originates at A; lies in the plane determined by A, B, and C; and bisects $\Varangle B A C$.
4. Let P denote the plane determined by the points $A(1,2,3), B(3,3,5)$, and (4, 4,9).
(a) Determine the measure of $\Varangle B A C$.
(b) Find the equation of the plane P.
(c) What is the area of $\triangle A B C$?
(d) At what point do the medians of $\triangle A B C$ intersect?
(e) What is the equation of the line which passes through C and is parallel to $A B$?
5. Find the distance of the point $P_{o}(2,3,4)$ from the plane whose Cartesian equation is $4 x+5 y+2 z=6$. Also determine the point at which the line through P_{o}, perpendicular to the plane $4 x+5 y+2 z=6$, intersects this plane.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Calculus Revisited: Multivariable Calculus
 Prof. Herbert Gross

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

