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Block 3: Partial Derivatives

Unit 4: (Optional) The Directional Derivative in n-Dimensional Vector

Spaces

3.4.1

By definition, the set —(-4—%-52—1) is
12,4,

{x:(4,3,2,1) »x = 15} (1)

If we now write x as (xl,xz,x3,x4), (1) becomes
{(xl,xz,x3,x4):(4,3,2,1)-(x1,x2,x3,x4J = 15}

or

{(xl,xz,x3,x4):4xl+3x2+2x3+x4 = 15} (2)
But (2) is the solution set of the linear algebraic equation

4x1+3x2+2x3+x4 = 18 (3)

Any vector having the same direction as (4,3,2,1) must have the

form, t(4,3,2,1), or, (4t,3t,2t,t). For such a vector to satisfy

(3) [which is what it means for the vector to belong to {4 %52 i ]
! r r

we must have

4 (4t)+3(3t)+2(2t)+(t) = 15

From this we see that 30t = 15, or t = %. With t = %, t(4,3,2,1)

becomes %(4,3,2,1) or (2,%,1,%). Thus by our definition of the
15
vector @320 ¢

§52 - (2,%,1,%} (4)

More generally, if c¢ is any number and g;(al,az,a3,a4} any vector,

S.3.4.1
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3.4.1 continued

c
{al,az,a3,a4)

{(xl,xz,xB,x4}:alxl+a2x2+a3x3+a4x4 = c}

If (tal,taz,taB,ta4) belongs to this set we must have

al(tal)+a2(ta2}+a3(ta3)+a4(ta4J = ¢,
whence
2 2 2 2
t{al ta, +aj"+a, ) = ¢
: 2 2 2 2 2 o ;
since a,“+a,“+a;"+a,” = [a|I* (This is why we use the Euclidean

metric.), it follows that

T Tl

Hence the vector in the direction of a which belongs to is

Ipla

-£L§ (al,az,as,a4), or, —555 a.
lla lal

Finally, this vector may be rewritten as

L

Tak
T

and this, in turn is

—g— u, where u is the unit vector in the direction of a.
=1
This result checks with our general result in the notes.

In terms of (4), c=15, a=(4,3,2,1). Hence Hgﬂ2=42+32+22+12=30.

Therefore,

u = 2 (4,3,2,1)
- r
= a Y30
and
S.3.4.2
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3.4.1 continued

By LS (M)
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If x = (xl,xz,x3,x4) and y = (yl,yz,y3,y4) each belongs to

c R
(al‘az'aB'ad) , then, by definition,

alxl+a2x2+a3x3+a4x4 = ¢ (1)
and

a)y,ta,y,tazysztay, = ¢ (2)

Adding equations (1) and (2), we obtain

al(xl+yl)+a2(x2+y2)+a3(x3+y3)+34(x4+y4) = 26 (3)

2c
(al,az.a3,a4)

From (3) we see that x+y belongs to

[I.e., a*(x+ty) = (al,az,a3,a4)-(xl+yl,x2+y2,x3+y3,x4+y4)

altxl+y1)+a2(x2+y2)+a3(x3+y3)+a4(x4+y4)

2c] 5

Thus, unless c=2c, it is impossible for the sum of two vectors in

C . Cc
— to also be in = .
a a

Of course, if c=0 then c=2c. In other words, the sum of any two

members of g is also a member of g =

S.3.4.3
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A Note on Exercise 3.4.2

Given the linear algebraic equation
a;x;t...tax =c (1)

we call the equation homogeneous if c=0.

Before we discuss the significance of such an equation, let us
review what the solution set of (1) locks like in the language of

vectors. Quite simply, if we let x = (x;,...,x ) and a = (ay,...a)),

then the solution set of (1) is the set = In Exercise 3.4.2 we
showed that unless c=0, the sum of two solutions of (1) was not

a solution of (1). On the other hand, if c¢=0, the solution set of
(1) is closed with respect to addition. In a similar way, it can
be shown that if c=0, the solution set of (1) has the additional
property that any scalar multiple of a member of the set is also

a member of the set. That is, if alxl+...+anxn = 0, then
t(alxl+...+anxn) = t(0)0= 0, or al{tx1)+...+an(txn) = 0. 1In other
words, if x belongs to = so also does tx, for any number, t.

Since % is closed with respect to the two important vector pro-
perties of addition and scalar multiplication, one often refers
to the solution set of a homogeneous linear equation as a solution

space.

3.4.3
c _ . _
a. (1) EF‘-ZT = {{X;Y) -a1x+a2y C}
c . P . .
Thus, while TEE:EET is the solution set of the linear algebraic
*

To say that s and t are solutions of (1) means that a131+...+ansn
and a;tyt...ta t both equal ¢, and by the sum of the two solutions
we mean the usual notion, as described in the exercise, of adding
the two solution vectors component by component. What the exercise
showed us was that if c#0 then x+t was not a member of the solution
set of (1).

S.3.4.4
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3.4.3 continued

equation a,xta,y = c, it is also the Cartesian equation of a

line in the xy-plane.

That is, in 2-dimensional space, g may be viewed as the set of
points in the xy-plane which lie on the line a;xt+a,y = c.

(2) similarly,

c - . _
m - {(XIYIZJ .alx+a,2y+a3z c]

so that, geometrically, we may view this as a set of points which
lie in the plane whose Cartesian equation is a,xta,ytazz = c.

Notice that while for n=2 and n=3, g has a nice geometric inter-

pretation (for n=1, the interpretation is even simpler since the

g = % which is a single point on the x-axis) the meaning of g

for n>3 is as real as in the cases n=2 or n=3, especially in terms

of being the solution set of the linear algebraic eguation

Xk iata X = 0
a ann

2 [ |

(Figure 1)

S5.3.4.5
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3.4.3 continued

The points {xl,yl) and (x,,y,) as drawn in Figure 1 belong to the

given line; hence, they are members of TE_EE_T . The sum of these
lf

two points is the point (x1+x2,yl+y2}, or, in terms of vectors, the
sum is the vector sum (xl,yl)+(x2,y2) where in this context
(xl,yl) is the arrow from (0,0) to the point (xl,yl}.

It should be clear from (Figure 1) that the sum of the two vectors,
if it begins at the origin, will not terminate on the given line.
(In terms of Exercise 3.4.2, {xl+x2,yl+y2) satisfies a;xta,y=2c

rather than a;x + ay = c) i

If ¢ = 0, however, our line passes through the origin

a x+a2y=0

1

(xlfyl)

(Figure 2)

In this case every vector from 0 to a point (xl,yl) on the line,
lies on the line. Thus, the sum of two such vectors will also

terminate on the line.

3.4.4

We already know that as a set, is the line alx+a2y = c.

Now, by definition, the vector is the vector in the direction of

mia |0

a with magnitude 2

e

Notice that the direction of a is at right angles to the line

S.3.4.6
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3.4.4 continued

a;xta,y = c. Namely, rewriting the equation of the line in the
a *
form y = - E£ x + él (if a2¢0 ), we see that the line has slope
B ’ ’ > + 22
™ == whereas the slope of a = (al,az) = ajita,J, is — . Since

a
2 1
the slopes are negative reciprocals of one another the lines are
at right angles.

So, thus far, we have (and our diagram is for the case that aj,
as, and ¢ are all positive, although similar results hold for all
other cases)

direction of £
vy ial,azl

>

a;xta,y = ¢

(Figure 1)

Applying some elementary geometry to Figure 1, we see that triangles

OPB and AOB are similar. Hence

8l

- AN (1)
OB AB
*

155 a2=0 then the line is given by a x=c which is parallel to
-
the y-axis, and the vector §=(a1,a2) is then ali which is
parallel to the x-axis. Thus, in this case, a is still perpen-
dicular to a1x+32y = c.
S.3.4.7
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3.4.4 continued

— c - c
But, OB = — ; OA = — , and
a; a,
2 2
- c c _ ¢ 2 2
AB = - 3 + - i al a2 al +a2
1 2
Therefore, from (1) we have
6? - OA 0B = 6.2 al — C = €
e a
BB & 2, 2 la, 2+a,2 =
& By 483 TAy A

C

Hence OP equals the magnitude of the vector = .

In other words, the vector g is the vector which is perpendicular

to the line g and extends from the origin to the line. In other

words the magnitude of the vector g represents the (perpendicular)

distance from the origin to the line. In the event c=0, the line

passes through the origin, in which case this distance is zero,

and this checks with the fact that % is the zero-vector.

While we do not want to pursue the geometry of n-dimensions further

here, in general, for any n-dimensional vector space the vector

g represents the minimum distance between the origin, 0=(0,...,0),

HE S s s

L3 L3

B S S S S B E BE EE e

and any point (member) in the set g 5
3.4.5
a. We have f(x) = |E|F .
Therefore, since, in general
’ f(a+tu)-f(a}}
_ lim - = -
S.3.4.8
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3.4.5 continued

in this case we have

2 2
Lin [ la+tul®-|lal ]
T 0 t

£, (@) u (1)

We should point out that the bracketed expression in (1) makes

perfectly good sense without our having to resort to n-tuple

notation. However, if we feel more at home with the n-tuple

notation, we may think of x as being the n-tuple (xl,...,xn), a

as being (al,...,an), and u as being (ul,...,un). If we do this,

then we have:

a+ tu= (al + tul,...,an + tu ),

= n
whereupon
2 2 2
llattu“ = (a;+tu;) “+.. .4 (a +tu))
- 2 2 2 2 2
= (al +ooatay }+2t{alul+...+anun)+t (ul +o..tu )

Accordingly, since ”3“2 = {a12+...+an2),

2 2. 2 2
lattu(l-lla]® = 2t(aju;+...a v )+t" (uy "+ ou 7).

Therefore, if t#0,

2
n

2 2
la+eal®-llal®

2
T = 2(alu +...+anun}+t{ul o reSE o b

1 ) (2)

From (2), we obtain

5.3.4.9
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3.4.5 continued

= 2(aju,+...+a u ) = 2a-u (3)

t ) g nn

o [|@¢tgn2-ngn2}

t»0"

[As an aside notice that (3) could have been derived in n-space
without recourse to n-tuple notation. Namely,

lattu|? = (attu) - (a+tw) = ara+2tacurt’ucy,
and since a*a = |@ﬂ2 and u-u = Hg”z, this means that
lattul®-|la]? = la|+2ta-u+t? |ja]®-lla)® = 2ta-u+rt?[ulf .

Hence,

la+tu |- [la|?
E

= 2a+u + t|pf

and letting t+07 we obtain the same result as in {31

In any event if the result of (3) is substituted into (1), we

obtain

£' (a) = (2a-u)u (4)

Hopefully, (4) clearly illustrates how, once a is chosen, the

direction and the magnitude of the directional derivative,

f'u(g), depends on u.

In particular, for both parts (b) and (c) of this exercise,
a= (1,2,5,3,1). In part (b) our direction is that of (1,3,4,-1,2),

so that

G & (1,3,4,-1,2) _ (1,3,4,-1,2) .

- ”{1:3:4:‘112) “ /3T g
5.3.4.10
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3.4.5 continued

while in (c¢) our direction is that of (2,1,2,1,2), so that

g = $2,1,2,1,2) _ (2,1,2,1,2)
- “{2!102'1!2} || /ﬂ'

Putting these results into (4) we have

£, (@) = [2{1,2,5,3,1)-“'3'4"1'2’ ] (Lp3 o401, 200 (5)
= V31
= 2 [1+6+20-3+2](1,3,4,-1,2)
= 2. (261 (1,5,4,~1,2)
31 r r r r
52
= ﬁ (lr3:4:"112)
52 156 208 52 104, e

31 31T 3T 31 3T

[0f course we could have computed (5) in the form

—_— 1-1- '

[ 2 (1+6+20-3+2)
3

] (1,3,4,=1,2) _ 52 (7)
/31

from which we may now read at once that the directional derivative

is the vector in the direction of u with magnitude equal to 22 .

While (6) and (7) are equivalent, (6) stresses the answer in

n-tuple notation.]

2(1,2,5,3,1) .(2,1,2,1,2) ] (2;1:2:1,2)

V14

Hh
&
Il
| o— |

= 2 (242410+4342) u
/7

=38 (8)
1

S.3.4.11
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3.4.5 continued

Notice that the u's in (7) and (8) refer to different directions,
and that in (7) and (8) the magnitudes (as well as the directions)
are unequal.

d. Using traditional notation, we would have

_ 2 2 2 2 2
f{xl,xz,x3,x4,x5] = X TR, AR TR, X, ;

whence Vf(a) = (2%, 4 2%, ,2%5,2%,,2x;)

i

I

(2al,232,2a3,2a4,2a5)
= 2(al,a2,a3,a4,asj

Therefore

£' (a) = VE(a)+u

u

z(alfazra3ra4 :as) b (ullu23u3lu4 rus)

2a-u

which checks with (3).

3.4.6

From Exercise 3.4.5, we know that

f'E(Q) = (2a-u)u

Therefore,

S.3.4.12
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3.4.6 continued

e g @ I =llza-waull

or, since |ul=1,

e (all = |2a-ul

= 2|E-u| (1)
Recalling that for the Euclidean metric,
lasu| < llall flull = fall
we see from (1) that
e @Il < 2[al (2)
As a partial check of (2), we may refer to parts (b) and (c) of
Exercise 3.4.5 in which we saw that Hf‘u(g)H = 22 ang 38

= V31 V14

respectively. In this case a was (1,2,5,3,1). Hence

la|| = /IF¥4¥25%9+I = /40

or

2|lal]l = 2v30 = 4/10

Equation (2) tells us that the magnitude of each directional

#
Remember, according to our defimition, f'u(i) is a vector, not a

number. This differs from the usage in the text where what is
there called the directional derivative in the direction u is
what we would call ”f'u(g)u . The difference is quite trivial,

but worth noticing.

S.3.4.13
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3.4.6 continued

derivative cannot exceed 4/10. 1In particular, then, both 2= and

38 must be less than 4/10, and a check shows that this is indeed

the case. (By the way, when comparing the magnitudes of numbers
involving square roots, it is often convenient to square each
member, realizing that the larger square corresponds to the larger

number. )

The next subtlety concerns whether there is a direction u for which

Hf'u(g)|lwill take on the upper bound, 2|la].

If we return to (1) and pick u to be in the direction of a, i.e.,

1

u =

o

we find that

I
L)

Jlf'E (a) ||

]

2|all

Hence, in this example, the maximum magnitude of any directional

derivative occurs in the direction of a and the maximum magnitude

Therefore, according to our definition of f'(a) as given in the

is 2]a

notes,
lal (=
f'(a) = 2|ja (—)
=]
= 22
(I.e., if £(x) = "5"2 then f'(a) = 2a).
S.3.4.14
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3.4.6 continued

In terms of the approach used in the text, our f'(a) should
correspond to the gradient of f at x = a, i.e., vf{g).
To check this, we have:

. R 2 2
f(x) = |x]|© implies E(Xgreeex ) = X7 obx
Hence,

5
Vf(xl,...,xn) = (2xl,...,2xn) = Z(xl,...,an
Therefore

ﬁf(al,...,an) = 2(a1,...,ani: and letting (al,...,an) = a,

VE(a) = 2a.

3.4.7

This exercise is perhaps the most significant in our entire
discussion of what it means for a function of several real variables
to be differentiable. The main point that arises is that, from a
very important point of view, the directional derivatives do not
tell the whole story, and, of even more significance, there is
much strong feeling that the definition of a derivative should

be independent of the concept of a directional derivative. That
is, from a logical point of view, there are many reasons why one
should first find a definition of a derivative, and then, as a

special case, define the notion of a directional derivative.

The usual approach for doing this involves revisiting the concept
of a differential in l-dimensional space. Recall, that we showed
that if f was differentiable at x=a, then there was a neignborhood
of a, say N(a), such that for every number, a+h, in N(a),

lim

hs0 k=0 (1)

f(at+th)-f(a) = f£'(a)h+kh where

sl 3-4 .15
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3.4.7 continued

(Perhaps (1) will look more familiar to you if you notice that h

simply is what we called Ax previously.)

I1f we look at (1), we notice that once x=a is fixed, f'(a) is a
fixed constant, whose value depends only on a, (and, of course, f)
and not on h. The interesting logical point (even though we might

not be able to give any reason why we might want to do so) is that
we can begin the study of l-dimensional calculus by actually using
a slight refinement of (1) to define a derivative.

More specifically, suppose a given function f is defined in a
neighborhood of x=a. We then define f to be differentiable at
x=a, if there exists a neighborhood of a, N(a), such that for
every number a+h in N(a), there exists a constant, C, such that

lim

f(a+h)-f(a) = Ch+kh, where h0

k=20 (2)

Notice that the only difference between (1) and (2) is that in

(2) £'(a) is replaced by C. Certainly, we had better do something
like this if we are assuming in equation (2) that the derivative
has not yet been defined!

The main point is that our original definition of differentiable
is equivalent to the definition given in (2). That is, either
definition implies the other. For example, if we accept our
original definition, we know from Part 1 of our course that (1)

is true, and once (1) is true we need only choose C to equal f'(a)
to establish the truth of (2).

Conversely, if we assume that (2) is true, we can show that our
constant C must be what we would have previously called f'(a).

To see this in more detail we need only divide both sides of (2) by
h (which is permissible in the sense that since we shall let h-+0,
h#0) to obtain

f (a+h)-f (a)

L = C+k, where J3® x = ¢ (3)

h-+0

S.3.4.16
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3.4.7 continued

If we now let h+0 in (3), we obtain

lim f (a+h) -f (a) ] _ lim lim
h>0 [ h = hs0 C T hao ¥ '
lim

and since C is a constant and k = 0, it follows that

h=+0

lim [ £ (a+h) -f (h) ] g (4)

h+0

But, by our original definition of derivative,

_ lim [f(a+h)-f(h) ] '

so that (4) implies
c = £'(a) (5)

A further implication of (5) is that if the constant C, as stipulated
by (2), exists it is unique. That is, C must equal £riga).,

With these preliminaries out of the way, let us now ask what is so
important about the definition of a derivative as implied by (2).
While the main reason will not seem too important in the relatively
simple l-dimensional case (simple, because there is only one degree
of freedom, and this means that, geometrically, there is only one
direction), it will shed some light on the other dimensional

vector spaces.

The key idea is that if we look at the left side of equation (1) or
(2), all we see is the difference between the two numbers f (a+h)
and f(a). No mention is made of any direction. Well, from this

point of view, it seems that it would be nice if we could define

S5.3.4.17
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3.4.7 continued

a derivative in n-space so that an expression such as f(a+h)-f(a)
makes sense without reference to direction, especially since even
in n-space we want h+0 to connote the idea that the answer does

not depend on the path by which h-+0.

A second, although not necessarily an important, problem is that

our definition of directional derivative does not cover all possible
paths. That is, when we wrote a direction in the form tu and then
let t+0+, we were in effect limiting our approach to straight

lines. For example in the case n=2, why couldn't h+0 along some
path other than a straight line? Figure 1 discusses this idea

in a bit more detail.

(1) In the expression f(a+h)-f(a), no
direction is mentioned. That is,
for the given £, a, and h, f(a+h)-f(a)
regardless of whether we view the
path as Cl,Cz, or C3.

(2) The directional derivative requires
that the path be C2'

(Figure 1)

In other words, in referring to Figure 1, how would we indicate
that we wanted to take a limit of f(at+h)-f(a) along the curve

C3? We could invent some nice excuses, such as saying that near
a, Cq is approximated adequately by the tangent to C; at a, but is
this what we really want to say? Or, if it is what we want to

say, does the concept carry over into all n-dimensional spaces?

In any event, without worrying further about the reasons for our
investigation, it turns out that a very acceptable definition of
a derivative in n-space can be obtained by mimicking the definition

given in (2) for 1l-dimensional space.

S.3.4.18
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3.4.7 continued

Given that EeEn, we define a function f to be differentiable at
x=a if there exists a neighborhood N(a) of a such that for every

point (n-tuple) a+h in N(a)
f(ath)-f(a) = C-h+k|h|| (6)

where Tﬁﬂ+o k = 0 and C is a constant vector which depends on

f and a but not on E.

While (6) may be accepted as a definition without further guestion,
the more serious-minded among us might wonder how we decided to
vectorize (2) to obtain (6). Clearly, once C replaced C and h
replaced h, in terms of existing operations, we have no choice but
to interpret the product as a dot product. Namely, since the left
side of (6) is a number, the right side must also be a number, and
only the dot product combines two vectors to produce a number.

As for the second term on the right side of (6) we observe that a
very easy way to make sure that h+0 independently of any direction
is to make sure that its magnitude approaches 0. That is, |h[0

is equivalent to saying that h+0 in every direction. Once we agree
to replace h by |h||, k must also be a number since the right side
of (6), as we have previously mentioned, is a number.

[Although we will certainly admit that one might have elected to
use a more complete vectorization of (2) to obtain

f(ath)-£f(a) = C+h+k-h, k=0 (6")

our claim is that (6) serves our needs as well as (6').]

At any rate, suppose we use either (6) or (6') to determine the
directional derivative of f at a in the direction of h. We would
let

1=

u =

|=

or h = |h|u (Here, |h|l plays the role of t in our notes), whereupon

equation (6) yields
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3.4.7 continued

f(a+|h|jl)-£ (a) h

Il =R

+ k (7)

(Had we used (6'), we would have obtained

£ (a+[ln[lu) -£ (a) h
(k) > <pe
fIn =11

In any event, from (7), we may deduce that

. f(a+|h|h)-£(a) ;
L % [ 2tk — } = C+u (since Al k=0 (8)
I |0 I ] [ [~0
Now, we already know that

£ (a+|hfu)-£ (a)

f'u(E} _ lim . [ u

= b0 14
so that (8) yields
f.E(E) = (Cru)u (9)
From (9), it follows that
ety @ 11 = lceul (10)

From (10), we see that [|f' (a)|| is maximum when u has the same

direction as C and when this happens
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il &L & fa &a

.

3.4.7 continued

lceul = | liclaew | = | licll alPl = lcll (since [ul=1)

In other words, C is the vector in whose direction f‘utg) has the

maximum magnitude, and this maximum magnitude is precisely lg

.

This, in terms of (6), says that C is what we have called f'(a).

The true beauty of (6), however, lies in the fact that it never uses
the concept of direction and that, from it, we can derive the
directional derivative in every direction. It is for this reason
that definition (6) is given in the more elegant textbooks. In
still other words, one can compute with (6) without any restriction

as to direction.

As a final note, it should be observed that if one were to write
(6) in n-tuple notation, we could let a = (al,...,an),
C= (cl,...,cn), and h = (hl,...,hn). Then (6) would become:

f{al+hl,...,an+hn) - f(al,...,an)

B 2 2
= eyhyteeke b + K \/hl *ppeth

If we now divide each side by say, hl and let h2=...=h =0,
we obtain
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3.4.7 continued

f(al+h1,a2,...,an)—f{al,...,an) %

By

and now letting h1+0, we see that

Y f(al+hl,a2,...,an)—f(al,...,an)
h-+0 h

fx (al,...,an) =

1 1

; lim _
Cl (since “h“"ok = 0)

In a similar way we see that

c, = fxz(al,...,an),..., and .. = fxn(al,...,an],

so that

C= {clgactfcn) = [f {2);--.'f

(a)]

X

which agrees with the text's definition of gradient.

This is another way of showing that
f'(a) and 3f(g)

are equivalent.

2
* hl
Notice that '—— = 1 if h, is positive but -1 if h

hl A |

[ 2
That is,+[h;" = |h1].

1 is negative.
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