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MATRIX ALGEBRA I N  THE STUDY OF FUNCTIONS OF SEVERAL VARIABLES 

Introduct ion 

In  Block 3, w e  emphasized t h e  form f ( x ) .  Notice t h a t  i f  we e l e c t-
t o  view t h e  r e a l  number system as  a 1-dimensional vector  space 

( i . e . ,  a s  t he  set of 1 - tup les ) ,  then f ( x )  may be viewed a s  a spec i a l  

case  of f (x ) .  In  o the r  words, we may iden t i fy  

£:En + R 

with 

Qu i t e  a p a r t  from t h i s  r a t h e r  t r i v i a l  i d e n t i f i c a t i o n ,  there  a r e  

many important reasons f o r  introducing the  study of mapping vector  

spaces i n t o  vector  spaces. The reason,we s h a l l  exp lo i t  i n  the  

development of Block 4 , i s  t h a t  t he  concept of systems of equations 

i n  s eve ra l  unknowns (var iab les )  lends i t s e l f  very n ice ly  t o  t he  

format of studying funct ions  from one vector  space i n t o  another. 

For example, r a t h e r  than a s i n g l e  equation of t he  form y = g(xl,  ...,xn) 
suppose we had a system of m such equations,  say 

The po in t  t h a t  w e  wish t o  e x p l o i t  i n  t h i s  chapter is  t h a t  the  

system of equations def ined by (1) can be viewed a s  a s i nq l e  vector  

funct ion which maps En i n t o  Em. To be more spec i f i c ,  we may view 

equations (1)a s  t h e  mapping which sends (xl,. .., xn ) i n t o  

(yl, ...,y ) ,  where yl, ...,ym a r e  a s  given by equations (1). That is ,m 
w e  may de f ine  4:En + E~ by 

I n  t e r m s  of a more concrete  example, suppose we have t h a t  



2Men we a r e  saying t h a t  equations (2) induce a function q:e4 + E , 
where 3 is defined by 

For example, equatioi (3) y i e ld s  

where ( 4 )  was obtained from (3) by l e t t i n g  xl = 1 and x2 -
= X3 -

X4 = 0. 

quations (2) a s  

P 

E~ 

Notice t h a t  such concepts a s  1-1, onto,  and inverse  functions were 

defined f o r  mappings of any s e t  i n t o  another. In  p a r t i c u l a r ,  then, 

w e  may ask whether g is 1-1 and/or onto, b u t  such inqu i r i e s  lead 

t o  extensive computational manipulations. For example,with respec t  

t o  equation ( 3 ) ,  asking whether 2 is onto is equivalent  t o  the  

a lgebra ic  problem: 
9 

any p a i r  of r e a l  numbers y and y2, do t he re  e x i s t  values
1 

x2, x3, and x4 such t h a t  

+ 3x2 + 4x3 + 2x43 

= x - 4x21 
+ 5x32 + 6x4 ? 

Notice t h a t  t h i s  is  again ( 2 ) ,  with a d i f f e r e n t  emphasis. 



In this context, equation (4) says that one solution of (2) if 
y1 = y2 = 1 is x1 = 1 and x2 = x3 = x4 = 0. There may, of course, 

be other solutions, in which case p would not be 1-1. 

Notice also that (2) is a fairly simple illustration of equations 


(1). In general, equations (1)may be so "messy" that the algebra 


becomes very difficult if not completely hopeless. 

. -. . I* . "  

There is, of course, one particularly simple choice of gl, ...,gm 

in equations (1) that is easy to handle algebraically, and that 

is the case in which the g's are linear combinations of xl, ...,xn. 
By a linear combination of xl, ..., and xn, we mean any expression 
of the form 

where al,. .., and an are constants. 
In fact, the first equations we learned to handle in our elementary 


algebra courses were of this type. All too soon we were taught that 


these were overly-simple., whereupon we moved on to "harder" equations 


such as quadratics, cubics, logarithms, etc. Yet the astounding 


point is that, in the midst of some very serious complex arithmetic 

t m 

which surrounds the calculus of several variables, we find that 

the "simple" linear combinations are the backbone of our investi- 

gations. More specifically, we have seen that if f is a differenti- 

able function of 5 = (xl,...,x ) at 5 = a (that is, if f Xn 
all exist and are continuous at 5 = 2) then X1 n 

where kl, ...,k + 0 as Axl, ..., Axn + 0." n 


- ,111 
Since the bracketed expression in (5) is a higher order infinitesi- 

mal, we see that for values of 5 nsufficiently near" 5 that Af is 
"approximately equal" to the portion of equation (5) that appears 

in braces, and this portion in braces is a linear combination of 

xl,. . ., and Axn. 3 



I f  t h i s  seems a b i t  "highbrow", l e t  us observe t h a t  we had a l ready 


used such r e s u l t s  i n  P a r t  1 of t h i s  course when w e  s tudied funct ions  


of a s i n g l e  (independent) r e a l  var iable .  In  t h a t  case,  t he  geo- 


metr ic  i n t e r p r e t a t i o n  was t h a t  i f  a curve was smooth a t  a po in t ,  


we could rep lace  t he  curve by i t s  tangent l i n e  a t  t h a t  po in t ,  


provided t h a t  we remained " su f f i c i en t ly  c lose"  t o  t he  po in t  i n  


question. In  o the r  woras, t he  l i n e a r  approximation given by (5) is  


a -l o c a l  property (as  opposed t o  a 310ba1 proper ty) ,  meaning t h a t  


once we g e t  f a r  enough away from 5, t he  l i n e a r  por t ion on t h e  r i g h t  


hand s i d e  of (5) no longer is a r e l i a b l e  es t imate  of Af. 


In  essence, then,  i f  w e  study the  l o c a l  p roper t ies  of functions of 


severa l  var iab les ,  we may view the  funct ions  a s  being appropria te  


l i n e a r  combinations of t h e  var iab les ,  provided only t h a t  our 


functions a r e  d i f f e r e n t i a b l e  (so  t h a t  equation (5) app l i e s ) .  


It i s  f o r  t h i s  reason t h a t  t he  sub j ec t  known a s  l i n e a r  algebra (and 


i n  many respec ts  t h i s  is a synonym f o r  matrix algebra) f inds  i t s  way 


i n t o  t h e  modern treatment of funct ions  of severa l  var iables .  While 


we must keep i n  mind t h a t  there  a r e  o the r ,  independent reasons f o r  , 

studying matrix a lgebra ,  the  f a c t  t h a t  it has  a "natural"  app l ica t ion  


t o  funct ions  of s eve ra l  r e a l  var iab les  (which, a f t e r  a l l ,  is  the  


sub j ec t  of t h i s  e n t i r e  course) is enough reason t o  introduce t he  


sub j ec t  a t  t h i s  t i m e .  


It should be noted, however, t h a t  i n  any "game" of mathematics w e  


never have t o  j u s t i f y  our reasons f o r  making up d e f i n i t i o n s  and 


ru les .  Consequently, while t h e  presen t  course mater ia l  serves  


a s  motivation, t he  f a c t  remains t h a t  our in t roduct ion t o  matrix 


a lgebra  i n  t h i s  chapter  can be understood without reference t o  


functions of severa l  r e a l  var iables .  


A t  any r a t e ,  our aim i n  t h i s  chapter is  t o  introduce matrix 


algebra i n  i t s  own r i g h t  without reference (except f o r  motivation) 


t o  t he  calculus  of severa l  var iab les .  Then., once t h i s  is  accomplished, 


w e  w i l l ,  i n  t h e  next  chapter,  r e v i s i t  funct ions  of severa l  r e a l  


var iab les  from the  new vantage point  of matrix algebra.  




An Introduction to Linear Combinations 


consider the two systems of equations (6) and (7) given below 
. * "  +g7, h . .  

. . - , I.-- - 1 

-. .-
C 

z1 = Y1 + 2y2 - 4 ~ 3  
. . i .  - 1 

i , (6) 

z2 = 2~~ - 3y2 + 5 ~ 3  

and 


y1 = X1 + 3x2 - 2x3 + 4x4 1 


In this case, it is easy (although, possibly tedious) to express' 

z1 and z2 explicitly in terms of xl, x2, x3 and x4. Namely, we 

simply replace yl, y2, and y3 in (6) by their values given in (7) , 
and we obtain 

z1 = -13x1 - 33x2 + 20x3 - 14x4 

(8 )  
z2 = 18x1 + 52x2 - 33x3 + 33x4 . 1 

While obtaining (8) from (6) and (7) was not difficult, the fact 


is that by using specific coefficients, we may not have noticed 


a rather interesting relationship between how the coefficients in 


(6) and (7) were combined in order to obtain the coefficients in (8 )  . 
To understand better what went on, we will restate equations (6) 

and (7) in a manner that better emphasizes the coefficients. This 



leads to the idea of double subscripts. For example, in equations (6), 


let us pick a single letter, say a, to represent a coefficient, and 


we shall then use a pair of subscripts, the first to tell us the 


row in which the coefficient appears and the other, the column. 


For example, by a13 we would mean the coefficient in the first 


row, third column on the right hand side of (6). Translated into 


the language of the 2's and pCs, this would mean the c~e~ficient 
of 

+y3 in the expression far zl. In terms of the actual coefficients 


s
4 . 
i - . > ~  t .  : --

given in equations (6) , we have: 
> , z ' . 1 

In a similar way, we may generalize a e  coefficients in (7) by 


using the letter b with double subscripts. Again, in terms of 


our specific choice of coefficients in (71, we would have: 

*,'- .  

If we now rewrite equations (6) and (7) in t h i s  more general form, 

we obtain 

and 


Substituting the values for y as given in (10) into equations (9), 


we obtain 




or. 


We may emphasize equations (11) further by introducing the notation 


where, 


If we examine the subscripts in (12) we find the following relationship. 


Each c consists of a sum of three terms, each of the form ab. The 


-first subscript of a matches the first subscript of 2, the second 
subscript of -b matches the second subscript of 2,  and the second 



subscript of -a matches the first subscript of b taking on all values -
1,2,3, That is, using C-notation, equations (12) become 


Equations (13) can be further abbreviated by letting cij denote 

the coefficient of xi in the expression for zi. That 

is , we may abbreviate (13) as 
3 . 
-

cij - C airbrj where i = 1.2 and j = 1,2,3. 

With this discussion in mind, we can generalize equations (6) and 


(7) as follows. 


and let 


then 




C 

where 
k 

cij = L a. b ; i = 1,...,n and j = 1,...,m.Ir rj 

r=1 


Notice that k,m, and n can be any positive integers [in equations 


(6) and (7), we had n = 2, k = 3, and m = 41 subject only to the 
conditions that the value of k in (14) must equal the value of k in 

(15). That is, zl, ..., and zn are linear combinations of yl, ...,yk, 
and each of the variables yl, ...,yk is a linear combination of 

This discussion is adequate to motivate the invention of matrix 


notation and the subsequent study of matrix algebra. We shall 


pursue this development in the next two sections. 


An Introduction to Matrices 


Matrix Algebra may be viewed as a game in the same way that many other 


mathematical systems have been introduced into our course as 


games. To say, however, that a matrix is a "rectangular array of 


numbers" (which is the common introductory definition) hardly 


describes (or justifies) the seriousness of the topic, nor the 


reasons that such great effort was expended to develop the subject. 


For our purposes, there is no need to trace the chronological develop- 


ment of matrix algebra. Rather, it is sufficient to supply one 


meaningful motivation for the invention of matrix algebra in terms 


of the content of our present course. 


Recall that we had considered systems of linear equations of thg 

typeI 

and 




I 
.- - ,  	 - .-. . ---,,.a)---- - - - - -

W e  then saw t h a t  w e  could express zl, ..., and zn a s  l i n e a r  combina-

t i o n s  of xl, ..., and xm, where t h e  coe f f i c i en t s  of the  new l i n e a r  1 
system were completely determined by the  coe f f i c i en t s  of the  

equations (16)  and (17) .  I 
In  p a r t i c u l a r ,  

-where 

ci j  = ailbij + ai2bZj + ... + aikbkj; i =l, . . . ,n ;  j = l , . . . , m  1k (18) 
-	- Z airbrj ( i f  w e  use C-notation) 


r=l 


Certa inly ,  nothing i n  our  development of equations (18) requires  

t h a t  w e  know anything about vec tor  a lgebra ,  b u t  it is i n t e r e s t i n g  
t o  note  t h a t  whenever w e  a r e  given an expression such a s  xlyl + ... + 
xnyn, where t he  x ' s  and the  y ' s  a r e  r e a l  numbers, we may view the  

sum a s  t h e  d o t  product of two n-tuples. Namely, 

[Recall  t h a t  we used t h i s  technique i n  t he  textbook's approach t o  
t he  grad ien t  vector  a s  a spec i a l  d i r e c t i o n a l  der ivat ive . ]  

In  any event,  i f  w e  e l e c t  t o  view (18) i n  terms of a d o t  product, 

w e  ob ta in  

Our f i r s t  vector  on t h e  r i g h t  hand s i d e  of (18a) ,  i n  terms of 

equations ( 1 6 ) ,  r epresen ts  t he  coe f f i c i en t s  of yl, ..., and yk 

i n  t h e  expression f o r  zi. The second vector represen ts  t h e  

d i f f e r e n t  c o e f f i c i e n t s  of t he  va r i ab l e  x i  i n  equations ( 1 7 ) .  



Ln other  words, if w e  look a t  the arrays o f  coeff icients  i n  equaaons 
(16) and (17), the f i r s t  factor  on the r i g h t  hand s ide  of (18) seems 
t o  be a *rown vector, while the second.vector seems t o  be a "columnu 
vector. More suggestively, perhaps we should have wri t ten (18) a s  

Again, keep i n  mind that our df&ouss~& is i n  the form of foresight 
toward the  invention of matrix-algebra and t h a t  theze is no great-  
need to become e c s t a t i c  over equations (18a) and (18b). What is  
important is t h a t  w e  can now %avant a oonvmient "shorthandn t o  
summarize our resul t s .  l y ,  re l ist  the c o e f f i c i u l t ~  of 

equations (1) and (2) "in the orde-r of t h e i r  appearancen. That: is, 

~, 

&ch of the  parenthesised &p.$&~s i n  (19) is then cal led 
a matrix. This, hopefully. imppliwa it least a p a r t i a l  mot iva t i~n  
as  t o  why a matrix is defined a s  a xerrtangular array of numbers. 

To indicate more precisely the "size" of the rectangular arxay, w e  
include the  number of rows and laolm which make up the matrix. 
(This is saietinres ca l l ed  the dimes~oi~n Forof'tha m a t r i x . )  
example, i f  a matrix has 3 r o w  and 5 oofumns w e  r e fe r  t o  it a s  a 
3 x 5 (or, 3 by 5) matrix, where it is conventional t o  l ist the 

number of rows f i r s t ,  followed by the number of columns, More 
generally, i f  p and q denote any posi t ive whole numbers, by a 
p x q matrix we mean any rectangular array of numbers consisting 
of p raws and q columns, 

It is a l so  conventional t o  enclose the matrix i n  parentheses, jus t  
a s  we have done i n  (19) .  By way of a few examples, 



is ca l l ed  a 2 by 3 matrix s ince  it has two rows and three columns; 

is  a 3 by 5 matrix s ince  it has t h r ee  rows and f i v e  columns. Notice 

from t h i s  example tha$+the matrix is made up of r e a l  numbers, no t  
necessar i ly  i n t e g e ~ ~ s  ,. . :.., 

:. 

Now it should be c l e a r  from our previous discussions  i n  t h i s  course 

t h a t  newly-defined concepts without s t r u c t u r e  a r e  of l i t t l e ,  i f  any, 

bene f i t  t o  us. I n  t h i s  sense,  t h e  expression given by (19) hardly 

helps  us - u n t i l  w e  compare it with  equations (18) ,  (18a),  o r  ( l a b ) .  

Once w e  make t h i s  comparison it is  not  d i f f i c u l t  t o  imagine a new 

matrix, which can be formed by su i t ab ly  combining the  two matrices 

i n  ( 1 9 ) ,  which tells us how the  c o e f f i c i e n t s  look when zlr. . . ,  and 

a a r e  expressed i n  terms of xI,...I and xm. n 

In  p a r t i c u l a r ,  t he  matr ix  w e  seek should be t he  one whose en t ry  i n  

t h e  i t h  row, - i t h  column is obtained by do t t i ng  the i t h  row of t he  

-f i r s t  matrix i n  (19) [no t ice  t h a t  each row of t h i s  matrix may be 

viewed a s  a k-tuple] wi th  the  i th column of t he  second matrix i n  

(19) [again no t i ce  t h a t  each column of t h i s  matrix may be viewed 
a s  a k-tuple]. W e  a r e  no t  saying t h a t  t h i s  procedure is "natural"  

what we a r e  saying is t h a t  i f  w e  look a t  equation (18b) and t h e  two 
matrices i n  (19) ,  t he re  is  a s p e c i a l  way of combining t h e  two 

matrices i n  (19) t o  form a matrix which conveys t h e  information 

required by equations (18). 

We use t h i s  a s  motivation f o r  def ining t h e  product of two matrices. 

Defini t ion 

where-
k i = l , . . . ,n  

ac i j  = irbrj '  



o r  i n  n-tuple,  d o t  product notat ion,  

\ I 
where w e  have used t h e  not ion of a column vector  (k-tuple) t o  

emphasize what t h e  i t h  row of t he  f i r s t  matrix i n  (5) is  being 
do t ted  with t h e  j t h  column o f  t he  second matrix i n  ( 2 0 ) .  

Note: 

1. A l l  t h a t  i s  required i n  (20) t o  form the  product of two matrices 

is t h a t  t he  number of columns i n  t be  f i r s t  matrix equal t he  number -
of -rows i n  t he  second matrix.  

2. More s p e c i f i c a l l y ,  d e f i n i t i o n  (20) 'tells us t h a t  an n  by k 

matrix mul t ip l ied  by a  k  by m matrix i s  an n  by m matrix ( t h a t  i s ,  

t he  product g e t s  i ts number of rows from t h e  f i r s t  matrix, and i t s  

number of columns from the  second matr ix) .  

3. An "easy" way t o  remember t h i s  alignment is  i n  t e r m s  of 

equations (16) and (17). Namely, i n  equations (16) the  number 

of columns (on the  r i g h t  hand s i d e  of t he  equations) is determined 

by yl , . . . ,  and yk; while i n  equations (17) t he  number of -rows is  . 

determined by yl, ..., and yk. 

Example : 

Equation (21) follows from d e f i n i t i o n  ( 2 0 ) .  For example t o  f ind  

t h e  en t ry  i n  t h e  2nd row, 3rd column of t he  matrix on t he  r i g h t  

hand s i d e  of ( 2 1 ) .  we d o t  t he  2nd row of t he  f i r s t  matrix on 

t h e  l e f t  hand s i d e  of (21) with the  3rd column of t he  second matrix 

on t h e  l e f t  hand s i d e  of ( 2 1 ) .  That i s :  



(Notice t h a t  commas a r e  used when w e  w r i t e  the  row o r  column a s  

a t r a d i t i o n a l  n-tuple, bu t  t h e  commas a r e  not  used t o  separa te  

e n t r i e s  of t h e  matrix,  o r  the  components of a column vector.)  

In  (21) we saw t h a t  a 2 by 4 matrix mult ipl ied by a 4 by 3 matrix 

yielded a 2 by 3 matrix, a s  should be t he  case. 

To i d e n t i f y  (21) wi th  our motivation f o r  "inventing" de f in i t i on  

(20) ,  n o t i c e  t h a t  i f  

I Z1 = 2yl + 3y2 + 4 ~ 3+ 5y4 

z2 = 3y1 - Y 2 - - 2 ~ 3+ 3y4 

and 

Then 

A s  a f i n a l  note  f o r  t h i s  sec t ion ,  l e t  us keep i n  mind t h e  f a c t  
t h a t  t h e  d e f i n i t i o n  of matrix mul t ip l ica t ion  may not  seem na tura l ,  

bu t  by t h i s  t i m e  it is  hoped t h a t  w e  understand t h e  "gameP 

s u f f i c i e n t l y  w e l l  s o  t h a t  w e  r e a l i z e  w e  make up r u l e s  and def in i -  

t i o n s  i n  accordance with  t he  problems we a r e  t ry ing  t o  solve. I n  

t h i s  respec t ,  t he  idea of making a chain r u l e  subs t i t u t i on  i n t o  

systems of l i n e a r  equations i s  enough motivation f o r  defining 

matrix mul t ip l ica t ion  a s  w e  did. 



D 


Matrix Algebra 


Having defined.matrices in the previous section, we now wish to define 


a structure (i.e., an algebra) on them. To this end, we first decide 


upon an equivalence relation by which we shall decide when two matrices 


may be said to be equal (equivalent). While our definition need not 


be based upon "reality", the fact is that our entire discussion has 


been motivated in terms of systems of linear equations. Thus, it 


seems reasonable that our definition o'f equivalent matrices should 


reflect this discussion. 


Since we probably agree that two systems of equations must, among 


other things, have the same number of variables (dependent and 


independent), it seems realistic to require that two matrices have 


the same dimension (i.e., the number of rows in one must equal the- 


number of rows in the other as must the number of columns) before we 


even consider them to be equivalent. In other words, if the number 


of rows are the same, then both sets of equations have the same 


number of dependent variables, while if the number of columns is 


the same, both sets have the same number of independent variables. 


If we then agree that each equation is written in "lowest terms" 


(that is, the left hand side of each equation has a coefficient of l), 


we see that the systems of equations are the same if and only if 


the two systems have the same coefficients, term by term. 


With this as motivation, we begin our arithmetic of matrices by 


specifying a particular dimension and limiting our study (at any 


given time) to this particular dimension. Thus, we might begin 


with the set S of all m x n matrices, where m and n are fixed 


positive whole numbers (which may be equal, but don't have to be). 


If a matrix belongs to our set S, we will denote it by a capital 


(upper case) letter (this is not at all crucial, but it fixes our 


notation). It is customary to use the corresponding lower case 


letter to denote the various entries of a matrix. Thus, a common 


notation might be that if A E S we will write A as (aij), where it 


is clear since i names the row and A has m rows, that i must equal 


either 1,2,..., or m. Similarly, since A has n columns and j 


denotes the column, j must equal one of the numbers 1,2,..., or n. 




Sometimes we.dea1 with more than one s e t  of matrices a t  a t i m e  ( t h a t  

is, d i f f e r e n t  dimensional matrices may be s tudied i n  the  same inves t i -  

ga t ion) .  For t h i s  reason, the  s e t  S i s  of ten  wr i t t en  a s  S(m,n) t o  

remind the  "user" t h a t  w e  a r e  considering m x n matrices spec i f i ca l l y .  

When t h i s  notat ion is used, i f  w e  w r i t e  (ai j)€S(m,n),  it is t a c i t l y  

understood t h a t  i = l , . . . , m  and t h a t  j  = 1,...,n. To make su re  t h a t  

t h i s  notat ion i s  c l e a r  t o  you, simply observe t h a t  i n  S(2 ,3) ,  f o r  

example, (a i j )  i s  an abbreviation f o r  t he  2 x 3 matrix 

At,any r a t e ,  let  us now assume t h a t  w e  a r e  dea l ing  with t h e  set of 

m x n matrices,  S (m,n) . We say t h a t  t h e  two matrices A = ( a .  .) and 
1 3

B = (b.  .) , both of which a r e  elements of S(m,n) , a r e  equal 
1 3  

(equivalent) ,  wr i t t en  A = B, i f  and only i f  

-
ai - bi f o r  each -i = 1,...,m and each j = 1,.. . ,n. 

Notice t h a t ,  while d e f i n i t i o n  (22) was motivated by r e f e r r i n g  t o  our .  

matrix "coding system" f o r  handling equations (16) and (17), t h e  

d e f i n i t i o n  s tands  on i ts own. Indeed, t he  v e r i f i c a t i o n  t h a t  t h e  

d e f i n i t i o n  of matrix equa l i t y  a s  given by (22) is  an equivalence 

r e l a t i o n  i s  s o  elementary t h a t  we a r e  even too embarassed t o  ass ign 

it a s  an exercise .  

The next s t e p  i n  forming our a b s t r a c t  s t ruc tu re ,  with o r  without 

p r a c t i c a l  motivation, would be t o  def ine  t he  "sum" of two matrices 

of S(m,n). Notice here ,  t h a t  "sum" means a binary operation on 

elements of S(m,n), t h a t  is, a r u l e  which t e l l s  us how t o  combine 

two elements of S(m,n) t o  form another element of S(m,n). ~ c c o r d i n g  

t o  t h i s  "loose" i n t e r p r e t a t i o n  of "sum", it seems t h a t  the  d e f i n i t i o n  

given by (20) f o r  matr ix  mul t ip l ica t ion  could qua l i fy  a s  being ca l l ed  

a "sum" s ince  it combines matrices t o  form matrices. The problem is 
t h a t  d e f i n i t i o n  (20) need not apply t o  elements of S(m,n)[ that  is ,  

t o  m by n matr ices] .  For, among other  th ings ,  we have seen t h a t  w e  

can only mult iply  two matrices (according t o  "mult ipl icat ion" a s  

defined by ( 2 0 )  i f  t h e  number of columns i n  the  f i r s t  matrix equals 

the  number of rows i n  t h e  second. In  p a r t i c u l a r ,  then t o  multiply 

an m by n matrix by an m by n matrix, we must have t h a t  n = m 

( s ince  t h e  number of columns i n  t he  f i r s t  matrix is  n and the 



number of rows i n  t he  second is  m ) .  The po in t  is, however, t h a t  we 

have agreed t o  pick m and n  a t  random, s o  t h a t - i t  need no t  be 

t r u e  t h a t  m = n; ( In  f a c t ,  it seems t o  t he  contrary t h a t  i f  m = n,  

our choice was hardly random.) .. 

To be su re ,  we could now make t h e  r e s t r i c t i o n  t h a t  m = n ( i n  which 

case  an element of S(m,n) i s  ca l l ed  a square matrix t o  ind ica te  a  

rectangular  a r ray  i n  which t he  number of rows i s  equal t o  the  number 

of columns). For t he  time being, however, w e  would l i k e  t o  f ind a 

binary operat ion on S(m,n) t h a t  does no t  requi re  t h a t  m = n. One-
way of doing t h i s  i s  t o  agree t o  add two matrices -term 9 -term. 

That is ,  i f  (ai j )  and (bi j) belong t o  S (m,n) , we w i l l  def ine  t he  sum 

(ai j )  + b ) t o  be t he  matrix (ci j), where 
13 

To i l l u s t r a t e  d e f i n i t i o n  (23) ,  we have a s  an example: 

(2 + 3) (3  - 2 )  (1+ 3) ( 4  - 1) 

1: (-5+ 7)  (3  - 4 )  ( 2  + 3) (-6+ 5) (-1 ~:-:)+I;1 -I=(=I-:: -11. 
In  t h i s  example, w e  have added two 2 by 4 matrices t o  obtain  another 

2 by 4 matrix. 

An i n t e r e s t i n g  f a c e t  of d e f i n i t i o n  (23 )  is  t h a t  it preserves our 

usual vector  addi t ion.  Surpr is ing a s  it may seem, we may view an 

m by n  matrix a s  an mn-tuple. I f  t h i s  sounds l i k e  a tongue-twister, 

we a r e  saying,  f o r  example, t h a t  a  2  by 3  matrix may be viewed a s  a 

6-dimensional vector  (6- tuple) .  For example, while it might be 

more convenient t o  w r i t e  

than 



the fact is that our definition of matrix equality as given by 


equation (22) is the same as our definition of equality for vectors. 


With respect to the notations given by (24) and (25), to say that 


says that aij = bij for each i = 1.2 and each j = 1.2.3; and this is 

the same as saying that 

Of course once this analogy is made, it becomes rather natural to 

introduce the counterpart of scalar multiplication, and to this end, 

we have : 

If (a..)~ 
S(m,n) and c is any real number, we define 

1 3  


That is, definition (26) tells us that to multiply a matrix by a 


given scalar we multiply each entry of the matrix by the given 


scalar. This is analogous to scalar multiplication in vectors 


where to multiply a vector by a given scalar we multiplied each 


component of the vector by the given scalar. 


At any rate, as we have said so often, we do not need to justify our 

definitions as given by (22) , (23), and (26) . We may simply accept 
them as rules of the game, or definitions. (We shall try to avoid 

the semantics of whether we are dealing with rules or with defini- 

tions. What is important is that they give us a mathematical 

structure on the set of matrices S(m,n) regardless of how we 

interpret them.) 

Once (22), (23), and (26) have been accepted, we can, of course, 


prove various theorems about matrix addition and "scalar" 


multiplication. (Again, the proofs are trivial but possibly boring, 


so we shall not supply too many proofs here.) 


For example, 




(i) A + b = B + A .  

For l e t t i n g  A = (ai j )  and B = (b .  .) w e  have 
1 3  . 

A + B =  a . + b . = (a i j  + b i j )  = (bi j  + aij)*= b . + ( a . . )
13 13 13 13 


For, [ ( a i j )  + (b.  . ) ]  + (c. .) = ( [ a i j  + b i j ] )  + (cij)
11 13 

-- (laij  + bij]  + C .  .)
13 


-- (aij + [bij + c i j l )  

= ( a . )  + ( b i j + c  ) 
1j i j  

( i i i )  There e x i s t s  0 ES(m,n) such t h a t  A + 0 = A f o r  each A E S(m,n) . 
. . 

For w e  need only de f ine  0 = (aij) by aij = 0 f o r  each i and j. Fgr 

example i n  S(2,3) . . 

(iiii) Given A E S (m,n) , t he re  e x i s t s  -A E S(m,n) such t h a t  A +(-A) =O . 
For i f  A = ( a i j ) ,  w e  need only l e t  -A = (-aij) . By way of i l l u s t r a t i o n  

* This  i s  t h e  c r u c i a l  s t e p ,  We know t h a t  a i  and b a r e  numbers , 

and f o r  numbers, we a l r e a d y  have t h e  commuta~iver u f a  f o r  a d d i t i o n ,  
i . e . ,  a

ij + bi j  = bij  + a i d .  I 

rl  



Other results are 


c (A + B) = cA + cB where c is a scalar, A and BeS (m,n) . 
(vi) c1 (c2A) = (c r: )A where cl and c2 are scalars, and AES (m,n) .1 2  


(vii) (cl + c2)A = C A + c A; c1,c2 scalars, AES (m,n) .1 2 


Notice that properties (i) through (vii) hold regardless of whether 


we are allowed to use the binary operation defined by definition 


(20), which we called the product of two matrices. If, however, we 

wish to be able to use this definition of a product, then, as we 

mentioned earlier, we may look at the special case m = n for which 

the product as defined by (20) makes sense. 

Thus, we now switch to the special case of S(n,n) wherein we mean 


the square matrices of dimension n by n, for some fixed positive 

integer, n. Since properties (i) through (vii) hold for S(m,n) 

regardless of the values of m and n, they hold, in particular, if n = 

m. In other words, our arithmetic on S(n,n) inherits at the outset 


properties (i) through (vii) but in addition we may now talk about 


multiplication as defined by (20). We would now like to investigate 


to see what properties of matrix multiplication apply to our matrix 


algebra. 


Again, rather than be too abstract at this stage of the development, 

let us omit formal proofs from here on, and instead demonstrate our 

results for the case n = 2, indicating,when feasible, how these 

results genPralize. To begin with, if we use AB,as defined in (20), 

to denote the product of A and B, it turns out that we cannot 
-
conclude that AB = BA. 

As an example, let A = (:) and I3 = (1 l) . 

Then 




whi le  

a comparison of (27) and (28) shows t h a t  AB f BA. 

The f a c t  t h a t  AB need n o t  equa l  BA does n o t  mean t h a t  w e  cannot 

f i n d  elements o f  S ( n , n ) ,  A and B, such t h a t  AB = BA. For example, 

suppose now t h a t  w e  l e t  

Then 

While 

Comparing (29)  w i t h  (30)  w e  see t h a t  i n  t h i s  c a s e  AB = BA. 

Granted t h a t  w e  do n o t  need an " i n t u i t i v e "  reason a s  t o  why AB 

need n o t  e q u a l  BA, t h e  f a c t  remains t h a t  it might be h e l p f u l  i f  

we could g e t  a  " f e e l i n g "  about  what is  happening. To t h i s  end, it 

may prove h e l p f u l  i f  w e  r e t u r n  t o  our i n t e r p r e t a t i o n  i n  terms of  

systems o f  equat ions .  For example, wi th  A and B a s  i n  equat ions  

* R e c a l l  our  d e f i n i t i o n ,  t h a t  e q u a l i t y  r e q u i r e s  t h e  m a t r i c e s  t o  
b e  e q u a l  term by term.  Thus ,  a s  s o o n  a s  t h e  term i n  t h e  1 s t  row, 
1 s t  column o f  AB was unequa l  t o  t h e  term i n  t h e  1 s t  row, 1 s t  column 
o f  BA, we c o u l d  c o n c l u d e  t h a t  AB # B A .  



(27) and (28) ,  we s e e  t h a t  AB denotes t he  systems of equations 

z1 = Y1 + 2y2 Y1 = x1 + X21 and 

Z 2  = 3yl + 4y2 y2 = x1 + 2x2 

while BA denotes the systems 

Hopefully, it is c l e a r  t h a t  both systems (31) and (32) allow us 

t o  express zl and z2 i n  t e r m s  of xl and x2, bu t  t h a t  it need no t  

happen t h a t  both systems y i e ld  t h e  same re l a t i onsh ips  between t h e  

Z ' S  and t h e  x ' s .  

What happened i n  equations (29) and (30) was a r a t h e r  i n t e r e s t i ng  

spec i a l  case. Without worrying here  about how we picked t h i s  

spec i a l  example, look a t  the  systems of equations defined by AB i n  

(29).  W e  have 

Solving f o r  zl and z2 i n  terms of xl and x2 i n  (33) y i e ld s  

z1 = 9(x1 - 2x2) + 2(-4x1 + 9x2) = X1 I 
From (34) we see  t h a t  xl and x 2 i n  (33) ,  may be replaced by z

1 
and z2,  and t h i s ,  i n  tu rn ,  says t h a t  equations (33) may be wr i t t en  

a s  

and 



y1 = Z1 - 2z2 

(36b)
y2 = -4z1 + 9 Z 2  .1 

. . . .  . 
Then, what w e  have shown i n  (34) is  .that the  systems (35a) and 

(35b) a r e  inverses  of one another. That i s ,  equations (35b) follow 

from (35a) merely by solving (35a) f o r  yland y2 i n  terms of z1 
and 
; 

Conversely, equations (35a) may be obtained from equations (35b) 

by solving (35b) f o r  zl and z2 i n  t e r m s  of yl and y2. I n  summary, 

i n  t h i s  example, . . 

obtain  e i t h e r  

A glance a t  (36) may provide a h i n t  as t o  why l1 O )  is  ca l led  t he  
i d e n t i t y  matrix (and i s  usual ly  dens tqdby  I*)!' That is ,  

z2 = Ozl + l z 2  J , e t c .  

Another reason t h a t  In is  ca l l ed  t h e  i d e n t i t y  matrix follows from the  

*In t h i s  s p e c i a l  c a s e ,  n = 2 .  In g e n e r a l  one u s e s  I t o  denote  the 
element  o f  S ( n , n )  each o f  whose d i a g o n a l  e n t r i e s !? i s  and a l l  
o t h e r  e n t r i e s  a r e  0 .  (By t h e  d i a g o n a l  e n t r i e s  o f  ( a  ) we mean 
a a ) In  o t h e r  words,  t h e  i d e n t i t y  o fm a t ~ ~ x  S ( n , n )  
i & ' i e ; 8 ~ e d  by ?: and i s  t h e  matr ix  



[where, of course, the multiplication indicated in (37) is as 

given by (20) . I  

Again, in the special case n = 2, it is easy to see that 

and 


Moreover, the structure behind why this happens is relatively easy 


to see for each choice of n. For example, the term in the ith row, 


jth column of (aij)In comes from dotting the ith row of (aij) with 


the jth column of In. But the jth column of In has zeros everywhere 


except in the jth row (by how In is defined). Thus, the required term 


is 


While we have just seen that for two matrices A and B, it need not 

be true that AB = BA, there are properties of matrix multipli- 

cation that resemble properties of "regular" multiplication. We 

shall leave all proofs for the exercises, but it is not hard to 

show that if A,B, and C belong to S(n,n), then: 


and 


A(B + C) = AB + AC. 

we have also seen that the matrix (aij) for which aij = 0 if i # j 
and aij = 1 if i = j is the identity matrix, In, and has the 



property that for all A in S(n,n), 

AIn = InA = A . 
Equations (38), (39), and (40), especially if we identify the 


matrix In with the number 1, are structurally equivalent to rules 


of regular arithmetic. 


There is, however, one very major difference between matrix multi- 

plication and numerical multiplication which we shall mention here, 

but the discussion of which will be postponed to the next section. 

Namely, in numerical arithmetic if a# 0, then there is a number 

denoted by a-l, such that a (a-l) = 1. In matrix algebra, it need 

not be true that for a non-zero matrix A (recall that non-zero means -
that at least one entry of the matrix is different from 0, since the 

zero matrix has 0's for each entry there exists a matrix denoted by 

A - ~such that 

Notice that if our last assertion is true, it means that various 

theorems concerning numbers whose proofs depend on the fact that 

multiplicative inverses exist need not be true about matrices. In 

particular, there may be pairs of matrices, neither of which is the 

zero matrix, whose product is the zero matrix, or there may be 

matrices A,B, and C such that AB = AC but A is not the zero matrix 

and B does not equal C. 

As illustrations, consider the facts that 


although neither factor is the zero matrix, and 


even though (: 



C 

While from one point of view, it is with dismay that we do not have 

the luxury of the cancellation rule in matrix algebra, it turns out 

that all is not lost. Namely, in many of the most practical appli- 

cations of matrix algebra, we are concerned only with matrices A for 

which A-' exists. In fact such matrices are of such importance that 

they are given a special name - non-singular matrices. That is, A 

is called non-singular if d l  exists, and it is called singular if 

A-l does not exist. 

The point is that for non-singular matrices, the cancellation law 

does apply. To see this, assume that A-' exists and that AB = AC. 

We can then multiply both sides of the equality by A", use the 

fact that multiplication is associative, and then conclude that 

B = C. In more detail, 

Similarly, if A is non-singular and AB = 0 then B = 0. Namely 

If we restrict certain statements to non-singular matrices, then, 


with the exception of the fact that multiplication is not commuta- 


tive, the structure of "ordinary" algebra applies to matrix algebra. 


In summary, let Sn 
--
denote the set of all n x n matrices. Then with 

equality, addition, and multiplication as defined previously; and . -

6.26  



with 0 and I also as defined before, we have: 


1. A + B = B + A  


4. If A € S n  then there exists -A eSn such that A + (-A) = 0 

6. A1 = IA = A, for each AESE 

The rules which do not carry over from ordinary arithmetic are the 


commutative rule for multiplication and the rule of multiplicative 


inverses; In many pure mathematics studies we often single out 


matrices whichcommute with respect to multiplication (one such 


matrix, by definition is I), but in most practical cases it is 


crucial to assume that multiplication of matrices is a non-commutative 


operation. 


On the other hand, the blow that multiplicative inverses need not 


exist is softened by the fact that we often deal with non-singular 


matrices so that the following two theorems are in effect: 


(a) If A is non-singular and AB = 0, then B = 0. 

(b) If A is non-singular and AB = AC, then B = C. 

These two theorems need not be true if A is singular. (Certainly, 


* S i n c e  i t  n e e d  n o t  b e  t r u e  t h a t  AB = B A ,  i t  i s  n o t  e n o u g h  t o  s a y  
A 1  = A ,  f o r  t h e n  s i n c e  I A  n e e d  n o t  e q u a l  A 1  we c o u l d  n o t  c o n c l u d e  
t h a t  I A  a l s o  w a s  e q u a l  t o  A ,  F o r  t h a t  r e a s o n  we s t a t e  t h e  r u l e  a s  
we d i d .  I n  r u l e  (3 )  w e  d i d  n o t  h a v e  t o  d o  t h i s  b e c a u s e  b y  r u l e  (1) 
we know t h a t  A + 0 = 0 + A .  T h e r e f o r e  o n c e - A  + 0 = A i t  i s  
a t h e o r e m  t h a t  0 + A = A s i n c e  0 + A = A + 0. 



it is  poss ib le  t h a t  theorems (a)  and (b) hold f o r  c e r t a i n  matrices 

even i f  A is  s ingular .  For ins tance assume t h a t  A i s  any s ingula r  

matrix and t h a t  both B and C a r e  t he  zero matrix. T r iv i a l l y ,  i n  

t h i s  case,  t h e  r e s u l t s  s t a t e d  i n  the  two theorems a r e  t rue .  What 

we mean i n  general  is t h a t  i f  a l l  w e  know is  t h a t  A is s ingula r  

and t h a t  B and C a r e  a r b i t r a r y  matrices,  then w e  cannot conclude, 

without add i t i ona l  information, t h a t  i f  AB = 0,  B = 0,  o r  i f  AB = AC, 

t h a t  B = C.) 

In  t h e  next  s ec t i on  w e  s h a l l  focus our a t t e n t i o n  on non-singular 

matrices.  In  p a r t i c u l a r ,  we s h a l l  be i n t e r e s t e d  i n  t h e  analog of 

t he  a lgebra ic  equation 

-
which we so lve  i n  a r i thmet ic  a s  x = a 'b provided a # O.* 

The matrix analog w i l l  be t h a t  AX = B and A is non-singular, then 
-1X = A  B. 

The o ther  computational problem t h a t  we s h a l l  i nves t i ga t e  i s  t h a t  of 

t r y ing  t o  cons t ruc t  dl e x p l i c i t l y  once A is  a given non-singular 

matrix. In  o ther  words, while it is  n ice ,  f o r  a given A, t o  know 

t h a t  A-' e x i s t s ,  it is important t h a t  w e  be ab l e  t o  exh ib i t  it i f  

w e  hope t o  compute such expressions a s  A"B. 

Matrix Equations 

I f  A is  an n x n matr ix ,  we def ine  A-' t o  be t h a t  matrix such t h a t  
-1

AA-' = A A = In, where In is  the  n x n i d e n t i t y  matrix. 

Note t h a t  A-l-- A.need no t  e x i s t  f o r  a given matrix,  The point  i s  

t h a t  -i f  A-I-does e x i s t ,  w e  may use t h e  proper t ies  of matrix algebra 

* I f  we w a n t  a f u r t h e r  u n i f y i n g  t h r e a d  b e t w e e n  m a t r i x  a l g e b r a  a n d  
n u m e r i c a l  a l g e b r a ,  l e t  u s  d e f i n e  a number t o  b e  n o n - s i n g u l a r  i f  i t  
h a s  a - i n v e r s e .  Then t h e  ' numer i ca l '  r u l e  t h a ta u l f i p l i c a t i v e  i f  
a # 0 ,  a e x i s t s ,  i s  e q u i v a l e n t  t o  s a y i n g  t h a t  0 i s  t h e  o n l y  
s i n g u l a r  number .  I n  o t h e r  w o r d s ,  t h e  t h e o r e m s  t h a t  ( i )  a 0 a n d  
a b  = 0 i m p l y  t h a t  b = 0 and  ( i i )  a # 0 and-ab = a c  i m p l y  t h a t  b = c ,  
may b e  r e s t a t e d  a s :  ( i t )  If a i s  n o n - s i n g u l a r  t h e n  a b  = 0 i m p l i e s  
b = O . ( i i l )  If a i s  n o n - s i n g u l a r  t h e n  a b  = a c  i m p l i e s  b = c .  



discussed in the previous section to solve the matrix equation* 


In (44), we assume that A is a square matrix of dimension n x n, 


but that X can be any matrix of dimension n x m. That is, the 


product AX is defined as soan as the number of columns comes from 


the number of columns in the second factor.) 


If A-l exists, we solve (44) as follows 


AX = B implies that 

-1 -1A (AX) = A B, 

but, since matrix multiplication is associative, 


Putting this into (45) , shows that 

But by definition of AB1, we have that A - ~ A= In, so that (46) 

becomes 

Finally, since In is the identity matrix, InX = XI** and, 

accordingly, (47) becomes 

* We do  n o t  t a l k  a b o u t  A
-1 

u n l e s s  A i s  a  s q u a r e  m a t r i x .  Among o t h e r  
r e a s o n s ,  w e  h a v e  t h e  s t r u c t u r a l  p r o p e r t y  t h a t  f o r  b o t h  A A - 1  and  A-IA 
t o  b e  d e f i n e d ,  i t  m u s t  h a p p e n  t h a t  A i s  a  s q u a r e  m a t r i x .  F o r  i f  A i s  
n x m ,  AA-1= In i m p l i e s  t h a t  A-1i s  m x n .  But  i f  A - l  i s  m x n ,  
A - l A  c a n n o t  e q u a l  In u n l e s s  m = n ,  s i n c e  t h e  number of  rows i n  A-1A 
e q u a l s  t h e  number o f  rows i n  A-l. 

** The r u l e  I n X  = X a s  s t a t e d  i n  t h e  p r e v i o u s  s e c t i o n  r e q u i r e d  t h a t  
X b e  a n  n x n m a t r i x .  N o t i c e  t h a t  a s  l o n g  a s  X i s  n by  m ( e v e n  i f  
m f n )  I n X  = X. 

- ,C ' 



I f  w e  now compare (44 )  and (48) we see  t h a t  a quick, bu t  mechanical, 

way t o  solve AX = B f o r  X is t o  multiply both s ide s  of the  equation 

on t h e  l e f t *  by A - ~ .  This mechanical approach i s  s imi l a r  i n  

s t r u c t u r e  t o  our approach i n  ordinary a r i thmet ic  where we solve 

ax = b by dividing both s ides  of t he  equation by a (i.e., multi-

plying by a- l )  provided t h a t  a # 0. 

Our major aim i n  t h i s  s ec t i on  is t o  show how we may determine 

dl, i f  it e x i s t s ,  once A is given. For once w e  can do t h i s ,  the  

problem of solving matrix equations such a s  ( 4 4 )  becomes very easy. 

Before doing t h i s ,  however, l e t  us i l l u s t r a t e  how the  method of 

solving matrix equations works once w e  know A-l. Recall  t h a t  i n  

equations (29) and (30) w e  saw t h a t  

By d e f i n i t i o n  of A-l,t h i s  information tel ls  us t h a t  i f  

suppose now ' tha t  X is t h e  2 x 3 matrix 

Then B must a l s o  be a 2 x 3 matrix. For i l l u s t r a t i v e  purposes l e t  

* In numerical arithmetic, we do not have to worry about the order 
factors since ab = ba. In matrix algebra, multiplication need not 
be commutative. In particular, A-1B need not equal BA-1, so order 
is important. In terms of ( 4 5 ) ,  had we written 

-1
AX = B implies (AX)A-' = BA 

this would be permissible, but we could not "cancel" A and A-' 
in (AX)A-1 since this would require that (AX)A-~ = A-~(AX), which 
need not be true. 




Under these  condi t ions ,  equation ( 4 4 )  takes  on t he  form 

By t h e  way, no t ice  t h a t  i f  w e  multiply t he  two matrices on the  l e f t  

s i d e  of (49) we ob ta in  

and, by d e f i n i t i o n  of matrix equa l i ty ,  t h i s  y i e l d s  the  system of 

equations 

9xll + 2~~~= 1 


9x12 + 2~~~= 2 


9x13 + 2x = 3
23 

4xll + X = 4 t21 

4x12 + X22 = 5 


4x13+ x ~ 6 ~ , = 

J 
From a  d i f f e r e n t  point  of view, then,  equation (49) i s  a convenient 

shorthand notat ion f o r  expressing equations (50) .  

A t  any r a t e ,  re tu rn ing  t o  (49) and mimicking our procedure i n  

obtaining (48) from ( 4 4 )  , we have 

Therefore, 



Therefore, 

Theref ore,  

In t h i s  particular example, we happen t o  know that 

Hence, (51) becomes 

Equation (52) y i e lds  X exp l i c i t l y .  

Notice that  by the def in i t ion  of matrix equality,  equation (52) 

a l s o  tells us that 



and t h a t  t h i s ,  i n  t u rn ,  is the  so lu t ion  of t he  system of equations (50) .  

Hopefully, t h i s  i l l u s t r a t i o n  s t a r t s  t o  show us a connecticn between 


so lu t ions  of systems of l i n e a r  equations and so lu t ions  of matrix 


equations,  and, i n  p a r t i c u l a r ,  why matrix algebra has a na tura l  


app l ica t ion  t o  systems of l i n e a r  equations. 


A s  a p a r t i c u l a r  example, suppose w e  consider the  system of m equations 

., i n  n unknowns given by 

Clear ly ,  one does not  need a knowledge of matrices t o  understand 

the  system of l i n e a r  equations given by (53) .  With t he  use of ' . -
matrix no ta t ion ,  however, t h e  system (53) has a very conveneient repre- 

sen ta t ion .  Namely, w e  l e t  A denote t h e  m by n matrix ( a i j ) ,  we 
l e t  X denote t he  n by 1 matrix (i.e., t h e  column vector)  whose 

e n t r i e s  a r e  xl, ...,xn; and we l e t  B denote the  m by 1 matrix whose 

e n t r i e s  a r e  bl, ...,b m ' In  o the r  words, we rewr i te  (53) a s  

t h a t  is ,  

[As a check, multiplying t h e  two matrices on t he  l e f t  s i de  of (54) 


y i e l d s  


and, r e c a l l i n g  our d e f i n i t i o n  of matrix equa l i t y ,  equation (55)  


is  equivalent  t o  t h e  system (53) 1 


-1
The key point  is  t h a t  t o  solve (53) it i s  s u f f i c i e n t  t o  compute A . 

For, i n  t h i s  event,  equation (54) y i e ld s  




whereupon we may equate xl, ...,x n in terms of the a's and b's, 


Again, by way of illustration, given the system of linear equations 


9x1 + 2x2 = 5 


4x + X2 = 1
1 
 I 

we write 


Hence, 


but, since 


Therefore, 




Hence, x1 = 3, x2 = -11. 

[Check: 9 (3) + 2(-11) = 5, 4(3)  + (-11) = 1; s o  t h a t  xl = 3, x2 = -11 

is the  so lu t i on  of (56).I 

W e  a r e  not  implying t h a t  matr ix  algebra should be used t o  so lve  two 

l i n e a r  equations i n  two unknowns, bu t  we a r e  hoping t h a t  our simple 

examples a r e  helping you f e e l  more a t  home with inverse  matrices and 

matrix equations. We a l s o  hope t h a t  you understand t h a t  a r i thmet ica l  

procedures f o r  solving n l i n e a r  equations i n  n unknowns become a t  

b e s t  cumbersome f o r  l a r g e r  values of n. Consequently, a convenient 

device f o r  f ind ing  A-' may prove he lpfu l  i n  solving systems of l i n e a r  

equations.  

A t  any r a t e ,  l e t  us now introduce a technique f o r  f inding A-' f o r  

a given A. There a r e  many rec ipes  f o r  doing t h i s ,  but  we pre fe r  t o  

give a p a r t i c u l a r l y  simple i n t e r p r e t a t i o n  (an i n t e rp re t a t i on  t h a t  can 

be learned meaningfully even by t h e  junior high school s tudent ) .  The 

i n t e r p r e t a t i o n  we have i n  mind can, i n  f a c t ,  be presented independently 

of any knowledge of matrices.  

By way of i l l u s t r a t i o n ,  consider t h e  system of equations 

We invoke t h e  following f a c t s  without formal proof (hopefully they 

w i l l  seem "self -evident")  . 
(i)I f  both s i d e s  of an equation a r e  mult ipl ied by a non-zero constant ,  

t he  new equation has t he  same so lu t ion  set a s  t h e  o ld  one. (For 

example, while x + 2y + 32 = 7 and 2x + 4y + 62 = 1 4  a r e  d i f f e r e n t  

equations,  they a r e  equivalent  i n  t he  sense t h a t  a s p e c i f i c  3-tuple 

(xo'y0' z 0) i s  a so lu t i on  of one equation i f  and only i f  it i s  a l s o  

a so lu t ion  of t h e  o ther  equation.) 

(ii)I f  we rep lace  any equation i n  a system by i t s e l f  p lus  any o ther  

equation i n  t h e  system, we again do not change the  so lu t ion  s e t  of the  

o r i g i n a l  system. This r e s u l t  i s  of ten  r e f e r r ed  t o  "as equals added 

t o  equals a r e  equal". (Again, by way of i l l u s t r a t i o n ,  suppose we 

replace t he  f i r s t  equation i n  (57) by t he  s u m  of the  f i r s t  and the  

t h i rd .  This would give us a new system of equations 

6.35 




The po in t  is t h a t  (57) and (58),  while being systems of d i f f e r e n t  

equations,  s t i l l  have t h e  same so lu t ion  set.) 

F ina l ly ,  

(iii) I f  we change t h e  order  i n  which t h e  equations appear i n  a 
system, w e  again do no t  change t h e  so lu t ion  set of t he  system. 

Together with these  three'"axiomsn, l e t  us introduce t h e  notat ion 

t h a t  when w e  say two systems of equations a r e  equivalent ,  w e  mean 
t h a t  they have t he  same so lu t ion  set. For example t he  systems (57) 
and (58) would be ca l l ed  equivalent;  and l e t  us agree t o  wr i t e ,  

f o r  example, 

t o  i nd i ca t e  t h a t  two systems a r e  equivalent.* 

The po in t  i s  t h a t  t he re  is  now an exce l l en t  system f o r  solving 

equations such a s  (57) ,  a system which we s h a l l  r e f e r  t o  a s  the 
diagonal izat ion process. 

Essen t ia l ly ,  what we do i s  ob ta in  an equivalent  system of equations 

which has t h e . f i r s t  va r i ab l e  (unknown) appear nowhere below the  

f i r s t  equation, t h e  second unknown nowhere below t h e  second equation,  
the  t h i r d  unknown nowhere below the  t h i r d  equation,  e t c .  A modified 
version of t h i s  i s  t o  have t he  f i r s t  unknown appear only i n  the  

f i r s t  equation,  t he  second unknown only i n  t he  second equation, e t c .  

*The i n t e r e s t e d  r e a d e r  s h o u l d  n o t i c e  t h a t %  a s  d e f i n e d  a b o v e  i s  i n d e e d  
a n  e q u i v a l e n c e  r e l a t i o n .  T h a t  i s  (1) any  s y s t e m  h a s  t h e  same s o l u t i o n  
s e t  a s  i t s e l f ,  ( 2 )  i f  t h e  f i r s t  s y s t e m  h a s  t h e  same s o l u t i o n  s e t  a s  
t h e  s e c o n d ,  t h e n  t h e  s e c o n d  h a s  t h e  same s o l u t i o n  s e t  a s  t h e  f i r s t ,  
and  (3) i f  t h e  f i r s t  a n d  s e c o n d  s y s t e m s  h a v e  t h e  same s o l u t i o n  s e t  
and  a l s o  t h e  s e c o n d  a n d  t h i r d  s y s t e m s ,  t h e n  t h e  f i r s t  s y s t e m  h a s  t h e  
same s o l u t i o n  s e t  a s  t h e  t h i r d .  



I f  w e  use  (57) a s  an example, w e  observe t h a t  i f  t h e  second equat ion  

i s  rep laced  by i t s e l f  minus t w i c e  t h e  f i r s t  equa t ion ,  then t h e  

r e s u l t i n g  equa t ion  has  no x t e r m  i n  it. [ In  t e r m s  of our axioms 

(i), (ii), and (iii), w e  f i r s t  r e p l a c e  t h e  f i r s t  equat ion  by t h e  

equa t ion  w e  o b t a i n  when w e  mul t ip ly  bo th  s i d e s  by -2. I n  t h e  new 
system, w e  then  r e p l a c e  t h e  second by t h e  second p lus  t h e  f i r s t .  

That is : 

Replacing -2x - 4y - 62 = -14 ,by x  + 2y + 32 = 7 y i e l d s  

I n  t h e  l a s t  system of equations,we n e x t  r e p l a c e  t h e  t h i r d  equat ion  

by t h e  t h i r d  minus t h r e e  t imes  t h e  f i r s t .  I n  more d e t a i l ,  

Therefore,  i f  w e  r e p l a c e  -3x - 6y - 92 = -21 by x + 2y + 32 = 7 and 

-2y - 22 = -7 by 2y + 22 = 7, it fol lows t h a t  (57) is  equ iva len t  t o  

(59 
.. i 

That i s ,  t h e  systems of  equa t ions  given by (57) and (59) have t h e  

same s o l u t i o n  set. The advantage o f  (59) l ies  i n  t h e  f a c t  t h a t  

whi l e  it i s  l l o f f i c i a l l y ' l  a  system of t h r e e  equat ions  i n  t h r e e  

unknowns, it i s  e f f e c t i v e l y  a  s impler  system of two equat ions  i n  two 

unknowns, s i n c e  t h e  l a s t  two equa t ions  i n  (59) involve  only  y  and 2; 

and once y  and 2 a r e  determined from t h e s e  two equa t ions ,  w e  f i n d  

x immediately from t h e  f i r s t  equat ion .  [Note: I n  p r a c t i c e  w e  

o b t a i n  (59)  very qu ick ly  from ( 5 8 ) ,  omi t t ing  s e v e r a l  in te rmedia te  ' 

s t e p s .  For example, we u s u a l l y  say ,  given ( 5 9 ) ,  " r e p l a c e  t h e  2nd 

equat ion  by t h e  2nd minus twice  t h e  l s t ,  and r e p l a c e  t h e  3 r a  .. , 



equation by the 3rd minus three times the lst, whereupon (59) is 

obtained in one step. ] 

Our next step in the diagonalizatign process is to eliminate y 


(the 2nd variable) everywhere below the 2nd equation (in this case, 


in the 3rd equation), We do this by replacing the 3rd equation in 


(59) by the 3rd, minus twice 'the second. That is, (59) is equivalent 


to 


We refer to the system (60) as being in diagonalized form. While 


(57) and (60) are equivalent, the beauty of equations (60) is that 

we never have to solve more than one equation in one unknown. For 

example, from the third equation in (60) we can immediately "pick off" 

the value for z (i.e., z = -1312) then, with this value of z ,  we may 

go to the second equation in (60) to find the value of y, and then 

knowing both y and 2, we can go to the f i r ~ t  equation and determine 

X. 

Another way of doing the same thing is to eliminate y from every 

equation except the 2nd in (60). To do this, we need only replace 

the first equation in (60) by the first minus twice the second. 

This would yield 

Again, while (61) is equivalent to (57) , the advantage of (61) 
is that once we know z ,  we can find both x and y directly 

(independently of one another). 


?he final simplification of (61) occurs if we decide to eliminate z 


from both the first and second equations. There are several ways for 


doing this, but one rather straight-forward way is to replace the 


first equation in (61) by -2 times the first equation. This yields 




The c o e f f i c i e n t s  i n  (62) a r e  now "adjusted" s o  t h a t  we now need only 

t o  rep lace  t he  f i r s t  equation i n  (61) by t h e  f i r s t  plus t he  t h i r d ,  

and t h e  second equation by the  second plus  the  t h i r d  t o  obtain  

Again, while (57) and (63) a r e  equivalent ,  no t ice  t h a t  t he  so lu t ion  

set f o r  (63) is p a r t i c u l a r l y  easy t o  w r i t e  down by inspection!* 

A s  a check, i f  we l e t  x = 13/2, y = 10, and z = -13/2 i n  (57) we 

obtain  ~ 

r 

The technique i n  obtaining (63) from (57) d id  not  depend on the  

s p e c i f i c  values of t he  constants  on t he  r i g h t  hand s i d e  of the  

equations i n  (57) .  More general ly ,  equations (57) could have been 

given i n  t h e  form 

* T e c h n i c a l l y  s p e a k i n g  t h e  s y s t e m  

i s  t h r e e  e q u a t i o n s  i n  t h r e e  unknowns. I t  i s  t h a t  t h e  s o l u t i o n  s e t  
{ ( 1 ,  - 2 ) o f  t h i s  s y s t e m  i s  " h i g h l y  s u g g e s t e d "  by 
t h e  s y s t e m  i t s e l f .  



Of course, it becomes complicated to keep track of the various computa- 


tions when bl, b2, and b3 are used in place of specific numbers. One 


device for handling (64) is the use of matrices as a codi.nq or place 


holder system. That is, we may think of a 3 x 6 matrix in which the 


six columns are labeled x,y,z,bl,b2, and b3, respectively.* In this 


way, for example, the row 

2 4 3 8 5 6 


would be an abbreviation for 


Thus, the matrix code far (64) would be 


We then perform the same operations on the matrix as we did upon 


the equations. That is, we replace the second row of (65) by the 

second row minus twice the first and the third row by the third row 


minus three times the first. This yields 


For practice in understanding our matrix code, notice that (66) tells 


us that the system of equations 


+ 	2y + 32 = bl 


y + 22 = -2bl + b2 

- 2y - 22 * -3bl + b3 	 (67) 

* More g e n e r a l l y ,  had  we b e e n  g i v e n  n  e q u a t i o n s  i n  n unknowns,  
o u r  c o d i n g  m a t r i x  wou ld  h a v e  b e e n  n by 2n w i t h  t h e  co lumns  
" h o l d i n g  t h e  p l a c e  o f "  x l ,  ...,xn ,b l ,  ...,b . n 

**Analogous  t o  o u r  d i s c u s s i o n  a b o u t  s y s t e m s  o f  e q u a t i o n s ,  we c a l l  
two m a t r i c e s  ( % ) e q u i v a l e n t  ( n o t e ,  not e q u a l )  i f  one  i s  o b t a i n e d  
f rom t h e  o t h e r  by  t h e  t h r e e  o p e r a t i o n s  p r e v i o u s l y  a s sumed  f o r  s y s t e m s  
o f  e q u a t i o n s .  



i s  equivalent  t o  t he  system (64) .  

Moreover, (67) ac tua l ly  t e l l s  us how it "evolved" from (64) .  


Namely, observe t h a t  bl, b2,  and b3 i d e n t i f y  each o f ' t h e  th ree  equations 


i n  (64) .  That i s  b l re fe rs  t o  t he  f i r s t  equation,  b2 t o  the  second, 


and b3 t o  t he  t h i r d .  Thus, f o r  example, -2bl + b2 t e l l s  us t o  


sub t r ac t  twice t he  f i r s t  equation from t h e  second. In  o ther  words, 


t he  equation 

- C 

is obtained from (64) by subs t r ac t i ng  twice t h e  f i r s t  equation i n  

(64) from t h e  second equation i n  (64) (Thus, our matrix code always 

t e l l s  us how t o  check whether a  new equation i s  cor rec t . )  

We next  'reducen (66) by making the  e n t i r e  second column (except 

f o r  t he  1 i n  t he  second row) cons i s t  of zeros. That is ,  we replace 

t h e  f i r s t  row of (66) by t h e  f i r s t  minus twice t h e  second, and t h q  

t h i r d  by t h e  t h i r d  p lus  t w i c e  the  second. This y i e l d s  

Again, (68) " t r ans l a t e s "  i n t o  

and (69) i s  equivalent  t o  (64). Moreover, (69) t e l l s  us at 5 glance 

what might not have appeared a t  a 2  obvious (64) .  For example, 

22 = -7bl + 2b2 + b3 t e l l s  us t h a t  i f  we add the  t h i r d  equation i n  

(64) t o  twice t he  second and then sub t r ac t  seven times t he  f i r s t ,  

t he  x  and y terms vanish. [As a  check, 2(2x + 5y + 82) + (3x + 4y + 
72) -7 (x + 2y + 32) = 22.1 

Then, t o  complete t h e  "diagonal izat ion" of (68 ) ,  we may replace t he  

f i r s t  row by i t s  double t o  obtain  



We then replace the first row in (70) by the sum of the first and 

third, and we replace the second row by the second minus the 

third, to obtain 


Again, (71) tells us that (64) is equivalent to 


By way of further review, y = 5bl - b2 - b3 tells us that to solve 

for y in (64) we subtract the sum of the second and third equations 

from five times the first equation. As a check, 5(x + 2y + 32) -
(Zx + 5y + 82) - (3x + 4y + 72) = y, again a fact which might not 

seem so obvious when all we look at is the system (64). 

The final step is to reduce the "first halfn of matrix (71) to the 


identity matrix. This entails replacing the first row by one-half 


of itself, and the same thing applies to the third row. This 


y idlds 


1
Our matrix in (73) is a code for 

= $bl - b2 + +b3 

The key point now is to observe that (74) is the inverse of (64) 

in the truest sense. That is, in (64) bl, b2, and b3 are expressed 

as linear combinations of x, y, and z ;  while in (74) x, y, and z 
are expressed as linear combinations of bl, b2, and b3. Our claim 

now is that our approach is going from (64) to (74) tells us how to 



invert a matrix. * 
-. 

, 
Iq \ ; n. 

In particular, if we let A denote the matrix 

we then "augment" A by the matrix I3 to form the 3 x 6 matrix 

We then reduce this matrix as illustrated above, so that I3 

becomes the first half of the new matrix. That is 

Then the second half of the new matrix is the inverse of A. 
_ I . * ,  . _. 

In other words, 

% 
, rL.-

As a check, 

and 



To see  why t h i s  i s  so ,  the point  is  t h a t  i f  w e  l e t  

and 

1 

then (75) and (76) a r e  inverses  of each o the r  i n  the sense t h a t  i f ,  
f o r  example, we s u b s t i t u t e  (76) i n t o  (75) w e  obtain  

= l w l  + Ow2 + ow3W1. 


W2 = ow + 1w2 + ow3
1 IW3 = ow1 + Ow + l w 3  .2 (77) 

The matrix which represen ts  the s u b s t i t u t i o n  of (76) i n t o  (75) is  
I .  

while the matrix which represen ts  (77) is  
i \. 

Thus, by what motivated o w  d e f i n i t i o n  f o r  matrix mu l t i p l i ca t i on ,  



Additional drill is left for the exercises. In the-remainder of 


this section, we want to show how our matrix coding system works in 


the event that A-' doesn't exist. To this end, let the matrix A be 


given by 


- .i r ..... . I 

If we now set out to find by the method described earlier in 


this section, we f o m  the 3 x 6 matrix 

- ,  

1 2 1 0 0 

. i - ! -

* ?<, * 

1 - 1  9 1 :  j-.- (79+ 1 

and if we try to get I3 as the first half of our equivalent matrix, 


we find that 




where (81) is obtained from (80) by replacing the  t h i r d  row i n  (80) 

by t h e  t h i r d  minuaa twice the  second. 

If we r e c a l l  our coding system, (79) represen ts  the system of 
equations 

1 

while t h e  t h i r d  rd: of (81) tells us t h a t  . . 

Now, (83) revea ls  some very i n t e r e s t i n g  th ings  t o  us. In  t he  f i r s t  

p lace i f  bl, b2, and b3 happen t o  be chosen i n  such a way t h a t  
b l , - 2b2 + b3 P 0, then t h e  system of equations (82) has no so lu t ion .  
This means t h a t  we can & "inver t"  (82) t o  so lve  f o r  x ,  y ,  and z a s  

l i n e a r  combinations of blr b2, and b3 ( f o r  i f  w e  could,  t h i s ,  by def i -

n i t i on ,  would mean that (82) has a so lu t ion)  . 
For example, i f  we l e t  bl = 1, b2 = 3, and b3 = 7 (so  t h a t  bl - 2b2 + 
b3 # 0) , equation (82) becomes 

whereupon i f  we s u b t r a c t  twice t he  second equation from the sum of 

t he  f i r s t  and t h i r d ,  w e  obtain  

0 = 2 [=bl - 2b2 + b3], which Ls an obvious contradict ion,  t h a t  i s  

i f  (82') had a so lu t i on ,  it would imply t h e  absurd r e s u l t  t h a t  0 = 2. 

For t h i s  reason a system of equations l i k e  (82')  is  ca l l ed  an incompatible 

syst e m .  



On the  o ther  hand i f  bl, bi, and b3 a r e  chosen so  t h a t  bl - 2b2 + b3 = 

0 ,  t h e  system of equations (82) has so lu t ions .  In  f a c t ,  it then has 

too many so lu t i ons ,  f o r  i n  t h i s  case,  t h e  r e l a t i onsh ip  between bl, b2, 

and b3 t e l l s  us t h a t  our equations a r e  no t  independent ( i n  f a c t ,  (83) 

tel ls  us t h a t  t h e  f i r s t  equation minus twice t he  second plus  t he  t h i r d  

must be i d e n t i c a l l y  ze ro ) ,  a-nd, a s  a r e s u l t ,  we e f f e c t i v e l y  have t h r ee  

unknowns bu t  -two (independent) equations. This means, f o r  

example, t h a t  we can pick one of our var iab les  (unknowns) a t  random and 

then so lve  f o r  t he  o the r  two. That is ,  i n  t h i s  case ,  there  is  no unique 

way of expressing x , - y ,  and z a s  l i n e a r  combinations of bl, b2,  and b3. 

Again, by way of i l l u s t r a t i o n ,  suppose bl = 1, b2 = 3, b3 = 5 (so t h a t  

bl - 2b2 + b3 = 0 ) .  Then the  equations 

x + 2 y + 3 2 = 1  

4x + 5y + 62 = 3 I7x + 8y + 92 = 5 

a r e  compatible, bu t  t he  t h i r d  equation i s  redundant s ince  it is equal 

t o  twice t h e  second minus t h e  f i r s t .  In  o ther  words the  system (82") ' 

i s  i n  e f f e c t  two equations i n  t h r ee  unknowns. Namely 
-

and t h i s  system has i n f i n i t e l y  many holut ions ,  one f a r  each sbeePfic 

choice of z. In  o t h e r  words, with bl, b2, and b3 a s  i n  t h i s  i l l u s t r a -  

t i o n ,  t he re  a r e  i n f i n i t e l y  many ways t o  express x,  y, and z as  l i n e a r  

combinations of bl, b2 and b3. We s h a l l  pursue t h i s  idea i n  more 

computational d e t a i l  i n  t he  exerc i ses ,  bu t  f o r  now, we hope it i s  
sufficiently clear as t o  why A-ldoes no t  e x i s t  i n  t h i s  case. 

In  summary, given t h e  n x n matrix A = (ai j), A - ~e x i s t s  i f  and only 

i f  t h e  system of l i n e a r  equations 

allows us t o  express xl, ...,x i n  a unique way a s  l i n e a r  combinations n 
of bl, ...,bn, f o r  a l l  poss ib le  values of bl ,  ...,bn. 



- - - -- - - -- - 

Our matrix coding system tells us how t o  compute A-' i f  it e x i s t s ,  

and i f  it doesn ' t  e x i s t ,  our code tel ls  us how the equations a r e  

dependent on one another ,  SQ t h a t  t he  system of equations f o r  

s p e c i f i c  values of bl, ...,b, e5 ther  has no so lu t ion  o r  else it has 

too many. 

For those of us who have s tudied deterrninant.8 (and t h i s  i s  mentioned 

only a s  an aside here  since determinants w i l l  be e tudied i n  a self-
contained manner as p a r t  of Block 7),we may r e c a l l  t h a t  t he  axiatence 

of A - ~i s  equivalent  t o  the  ~ t a t e m e n t  t h a t  tho determinant of A 

(wr i t t en  I A I  o r  d e t  A) f e  not zero. 

Before applying our study of l i n e a r  a lgebra  t o  the ca lcu lus  of 
funct ions  of s eve ra l  r e a l  var iab les  w e  would l i k e  t o  " r e v i s i t n  l i n e a r  

a lgebra  from a more geometric po in t  of view, and t h i s  s h a l l  be t he  

discussion of t he  nex t  sect ion.  

Linear i ty  i n  Terms of Mappings 

We have mentioned i n  our in t roduct ion t o  t h i s  chapter t h a t  any system 

of m equations i n  n unknowns may be viewed as a mapping from E" i n t o  

E ~ .  In  p a r t i c u l a r ,  Wen, the  l i n e a r  system 

1 

, J  
may be viewed a s  M a t  mapping of E" i n t o  E'" which maps 5 - (xl,. .., X n) 

i n t o  y = (yl, . . . ,ym),  where yl,... , and ym a r e  a s  defined i n  ( 8 4 ) .  

Since t h e  mast i n t e r e s t i n g  cases  occur when n = m, w e  s h a l l  r e s t r i c t  

t h e  remainder of t h i s  sec t ion  t o  t he  case  i n  which we have n l i n e a r  

equations i n  n unknowns. The most f ami l i a r  s i t u a t i o n ,  one which 

we have s tud ied  q u i t e  exhaustively before ,  i s  when n = 1. In t h i s  

case ,  t he  mapping may be viewed p i c t o r i a l l y  a s  a l i n e  through the  
o r i g i n  i n  t he  xy-plane. That is ,  when n = 1, equations (84 )  reduce 

t o  t he  s i n g l e  equation,  yl - allxl, which, s ince  t he re  i s  bu t  one 
independent and one dependent va r i ab l e ,  we w r i t e  ab y = ax; and t h i s  

graphs a s  a s t r a i g h t  l i n e  of s lope equal t o  5, passing through t h e  

o r ig in .  

6.48 



The c a s e  n = 2 lends  i t s e l f  t o  a g raph ica l  i n t e r p r e t a t i o n ,  b u t  it is 

n o t  n e a r l y  a s  convenient  a s  t h e  case  n = 1. Never theless ,  s i n c e  a 

p i c t o r i a l  i n t e r p r e t a t i o n  e x i s t s  f o r  n = 2,  w e  s h a l l  d i s c u s s  l i n e a r i t y  

i n  d e t a i l  f o r  t h i s  case ,  and simply g e n e r a l i z e  our  r e s u l t s  t o  h igher  

dimensions where p i c t u r e s  f a i l  us. 

With n = 2, t h e  system of  equat ions  (84) becomes 
I 

. . 
Y 1  = allXl a12X2+ 

y 2 = a 2 1 x 1 + a  22 x 2 

Again, s i n c e  t h e r e  a r e  on ly  two independent v a r i a b l e s  and s i n c e  w e  

u s u a l l y  t h i n k  o f  2-space i n  t e r m s  o f  t h e  xy-plane, it i s  conventional  

t o  rewrite (85) wi thout  s u b s c r i p t s ,  a s  

where a , b , c ,  and d a r e  f i x e d  numbers. 

The geometric  i n t e r p r e t a t i o n  of  (86) i s  t h a t  it d e f i n e s  a  mapping 

from t h e  xy-plane i n t o  t h e  uv-plane, de f ined  by 

(x ,y)  + (u,v)  = (ax + by, cx  + dy) . 
I n  o r d e r  t o  keep our  d i s c u s s i o n  a s  concre te  a s  p o s s i b l e ,  l e t  us ,  a t  - '  

l e a s t  f o r  t i m e  being,  r e p l a c e  t h e  a b s t r a c t ,  g e n e r a l  form of (86) by 

a p a r t i c u l a r  example. Consider t h e  mapping de f ined  by 

That  is ,  t h e  system (87) d e f i n e s  t h e  mapping of  t h e  xy-plane i n t o  

t h e  uv-plane, de f ined  by t h e  f a c t  t h a t  (x ,y)  i n  t h e  xy-plane is  

mapped i n t o  (3x + 4y, 2x + 3y) = (u,v) i n  t h e  uv-plane. 

That  is ,  w e  may i n t e r p r e t  (87) ,  wi thout  r e f e r e n c e  t o  any p i c t u r e  

(hence i t s  a d a p t a b i l i t y  t o  h igher  d imensions) ,  a s  t h e  mapping of  

-f :  E~ + E~ where f o r  (x ,y)  dom f, f(x ,y)  = (3x + 4y, 2x + 3y). 



P i c t o r i a l l y ,  we have 

Y v 
A 

(3(3)+4(-1)8 

A 
3 (3x * 4y, 2x + 3y) 

2 (3)+3(-1)]= 

( S f 3 1  
(x,Y) / (583) 

u 

(Figure 1) 

What p roper t ies  does g have by v i r t u e  of its being l i n e a r  t h a t  a r e  not  

t yp i ca l  of non-linear functions? 

From an a n a l y t i c  po in t  of view, w e  have t h a t  

and 

(2) I f  c i s  any s c a l a r ,  g(c2) r cg (a ) .  

These proper t ies  (which w i l l  be discussed i n  more d e t a i l  ana ly t i ca l l y  

l a t e r  i n  t h e  course) have a p a r t i c u l a r l y  simple geometric in te rpre ta -

t i o n  t h a t  emphasizes t h e  meaning of l i nea r .  

Namely, l e t  us consider any s t r a i g h t  l i n e  i n  t he  xy-plane which 
passes through the  o r ig in ,  

Except f o r  t h e  y-axis, a l l  such l i n e s  have t he  form 

Y t m x  
# 

and i n  this case,  i f  we replace y by mx i n  (87) we obtain  

u 3x + 4mx = x ( 3  + 4m) 

so  t h a t  



(un less  x = 0*) s o  t h a t  

2 + 3m 
v = (-) u 

which i n  t h e  uv-plane i s  t h e  s t r a i g h t  l i n e  through t h e  o r i g i n ,  of 

s l o p e  

2 
;n o t h e r  words under a l i n e a r  mapping f: E -,E~ s t r a i g h t  l i n e s  

through t h e  o r i g i n  a r e  mapped onto  s t r a i g h t  l i n e s  through t h e  

o r i g i n .  

# 

By way of  i l l u s t r a t i o n ,  w e  showed i n  Figure 1 t h a t  f (3 , -1)  = ( 5 , 3 ) .  

Now t h e  l i n e  which connects  (0,O) t o  (3,-1) has  a s  i t s  equation 

1This l i n e  is  t h e  s p e c i a l  case  of (88) wi th  m = -3 From (88' ) we 

Notice t h a t  (5,3)  belongs t o  this l i n e .  

*x = 0 - c o r r e s p o n d s  t o  t h e  y - a x i s .  I n  t h i s  c a s e ,  ( 8 7 )  y i e l d s  u = b y ,  
v = 3 y ,  s o  that v / u  = 3 / 4  ( u n l e s s  y = 0 ,  b u t  i f  b o t h  x a n d  y e q u a l  0 ,  
( 8 7 )  s i m p l y  s a y s  t h a t  f ( 0 , O )  = (0,O) ) .  T h a t  i s ,  t h e  mapping  d e f i n e d  
by  ( 8 7 )  maps t h e  y - a x i s  o n t o  t h e  l i n e  v = 3 / 4 u .  O t h e r w i s e  t h e  
mapp ing  c a r i r e s  y = mx onto 

**I f  m i s  c h o s e n  s o  t h a t  3 + 4m = 0 ( i . e . ,  m = - 3 / 4 ) ,  e q u a t i o n  ( 8 8 ' )  
i s  n o t  w e l l - d e f i n e d  b e c a u s e  o f  d i v i s i o n  by 0 .  When m = -314 ,  ( 8 8 )  
becomes  u = 0 ,  v = - 1 1 4 ~ .  S i n c e  x may t a k e  on  any  v a l u e s ,  ( 8 8 )  d o e s  
n o t  d e f i n e  v b u t  d o e s  s p e c i f y  t h a t  u = 0 .  I n  o t h e r  words  when 
m = - 3 / 4 ,  we h a v e  t h e  f a c t  t h a t  f maps t h e  l i n e  y = - 3 1 4 ~o n t o  t h e  
v - a x i s  (i.e. , u = 0). 



Thus Figure 1 is but  a "piece" of t he  more general  s i t u a t i o n .  

Y 1 v 


A -f maps I (x,y) :y = ~x I 

onto { (u,v) :v = JU

3 I .  

In  p a r t i c u l a r ,  


(0,O) + ( O t O )  t '  (3,-1)+ (5,3)1 

L O . t 


(Figure 2) 

(Notice t h a t  -f does no t  "preserve d i r ec t i on" ,  t h a t  is ,  t he  image 

: of y = mx does not have t o  have s lope m) 

An i n t e r e s t i n g  aspect  of (88') is  whether two d i f f e r e n t  m values can 

produce t he  same value of 2 + 3m/3 + 4m, for  i f  t h i s  i s  possible ,  

then two d i f f e r e n t  l i n e s  i n  t he  xy-plane can map i n t o  the  same l i n e  

i n  t he  uv-plane. 

Looking a t  

w e  have 

In  d i f f e r e n t  perspect ive ,  then,  i f  ml # m2, y = mlx and y = m2X 

a r e  mapped i n t o  d i f f e r e n t  l i n e s  i n  t h e  uv-plane. 

Let us,  next,  look a t  a d i f f e r e n t  s i t u a t i o n .  Suppose we have 

System (89) def ines  t h e  mapping 3:E 
2 
+ E~ where q(x ,y)  = (x' + 3y, 

2x + 6y) = (u ,v) .  



, 1 . c - ! - .';
For example, g [ ( l , l )  = (1+ 3, 2 + 6) = ( 4 , 8 ) .  P i c t o r i a l l y ,  * > r .  

(Figure  3);- _. 
. -. 

W e  can aga in  show t h a t  3 maps l i n e s  pass ing  through t h e  o r i g i n  i n t o  


l i n e s  pass ing  through t h e  o r i g i n .  I n  f a c t ,  i f  w e  l e t  y = mx, w e  


see from equa t ions  (89) t h a t  I. . , 


From (90) w e  see t h a t  i f  x # 0 and m # -T1 

I =2 . . I 

u i . ,C ., 

Equation (91) r e v e a l s  t h e  remarkable f a c t  t h a t  wi th  t h e  p o s s i b l e  

excep t ions  o f  t h e  y-axis  (x = 0) and t h e  l i n e  y  =-1/3x ( m = - 1 / 3 ) ,-
g maps every  l i n e  through t h e  o r i g i n  i n t o  t h e  l i n e  v  = 2u i n  t h e-
uv-plane . 
I n  t h e  excep t iona l  c a s e s ,  x = 0 and n = w e  s e e  from equat ions  -5, + 

(89) t h a t  

(1) For x = 0; u = 3y and v  = 6y, s o  v/u = 2 again .  Therefore,  

-9maps t h e  y-axis  i n t o  t h e  l i n e  v = 2u. 

(2)  For m = - 1/3, equat ion  (90) te l l s  us t h a t  u = v = 0. Therefore,  

t h e  l i n e  y = - 1/3x i s  mapped i n t o  (0,O) by q (and c l e a r l y  (0,O) 

i s  on v = 2 u ) .  Therefore image 2 = { ( u , v ) :  v = 2u) 



P i c t o r i a l l y ,  

Every po in t  on y  = - ) x is mapped i n t o  (0.0) . 
(Figure 4 )  

What makes t he  l i n e  y  = -31 x i n  t he  xy-plane and t h e  po in t  (0,O) 

i n  t h e  uv-plane so  important? Here again w e  see  another i n t e r e s t i n g  

property of l i n e a r i t y .  Let us look a t  any po in t  on t he  l i n e  v  = 2u, 

say (uo, 2uo) , where (0,O) is merely t he  s p e c i a l  case,  uo = 0. Our 

f i r s t  claim is t h a t  t h e r e  is  one and only one po in t  on t he  y-axis 

t h a t  i s  mapped i n t o  (uo, 2uo) by p. Namely, i f  we r e tu rn  t o  

equations (89)  and l e t  u = uo, v = 2uo, and x = 0 ( t o  i nd i ca t e  t h a t  

odr point  i s  on t h e  y-axis) ,  we see  t h a t  

and equivalent ly  

2u0 = 6y, 

from which we conclude t h a t  y  = 1 
uo. 

I n  summary, t h e  only po in t  on t h e  y-axis t h a t  is mapped i n t o  

(u0, 2u0) by q is  (0, 31 uo). I f  w e  now s h i f t  t h e  l i n e  y  = -31 x t o  

pass through t h i s  po in t  ( i n  o the r  words, we look a t  t h e  l i n e  y  = 

-3l x + 31 uo),  we f i n d  t h a t  every po in t  i n  t h i s  l i n e  maps i n t o  

(uo, 2u0) a s  w e l l !  This may be v e r i f i e d  d i r e c t l y  from (89 )  by 

l e t t i n g  y  = -31 x + 31 uo. Namely, w e  ob ta in  



I a s  required.  
v = 2u 

=muO0 

A s  a concrete example, l e t  us f i nd  t he  po in t s  i n  t he  xy-plane which 

a r e  mapped onto t he  po in t  (3,6) i n  t he  uv-plane. In the  case,  

u = 3, s o  t h e  l i n e  which maps i n t o  (3,6) i s  y = -51 x + 1 (s ince  

1 
0 

= -51 uo i n  t h i s  case) .  

P i c t o r i a l l y  

(Figure 53 

From Figure 5 we can cons t ruc t  t h e  po in t  on any l i n e  y  = mx t h a t  

. maps onto (3 ,6)  under q. Namely, we need only loca te  t he  point  a t  

which y  = --1 
3 x + 1 i n t e r s e c t s  y  = mx. For pxample, i n  Figure 6  

we show how t o  l o c a t e  t he  po in t  (x,y) on y  = 4x such t h a t  

~ ( X , Y ) = (3 ,6) .  

(Figure 6) 



8 , m ' 3 12 3 36 39[check: x = ~ y = n  ~ + 3 y = ~ + ~ = ~ = j = ~, 

In summary, t he  l i n e a r  function a s  defined by equation (87) maps 

E2 onto E2 i n - a  1-1 manner, while t he  mapping 2 defined by (89) is  

ne i the r  1-1 nor onto. 

What i s  it t h a t  d i s t inguishes  -f and 9? Perhaps t he  b e s t  way t o  

answer t h i s  problem i s  t o  look a t  the  general  case [equation ( 8 6 ) J .  

2Under t h i s  general  s i t u a t i o n  we have t h a t  t he  mapping h r ~ ~r E 

defined by '+. 

&(x,Y) = (ax + by, cx + dy) 

maps t h e  l i n e  y = mx i n t o  the l i n e  

u = ax + bmx 

v = c x + d m x  

Let us see  t h e  condi t ions  under which y = mlx and y = m2x can map 

i n t o  t he  same l i n e  i n  the  uv-plane. According t o  (92) we would 

have 

(ad - bc) ml = (ad - bc) m2 . (93) 



From (93) w e  see a t  once t h a t  ml must equa l  m2 provided t h a t  ad - b c  #O 

( f o r  i f  ad - b c  = 0,  (93) i s  au tomat ica l ly  s a t i s f i e d  f o r  a l l  va lues  

, of ml and m 2 ) .  

Refer r ing  t o  (86), ad - bc i s  p r e c i s e l y  t h e  de terminant  of  c o e f f i c i e n t s .  

U t i l i z i n g  t h e  language of  ma t r i ces ,  n o t i c e  t h a t  (86)  has  t h e  f o r m ,  -

and t h a t t h i s  ma t r ix  equat ion  has  a unique s o l u t i o n  f o r  x and y 

i n  t e r m s  o f  u and v i s  and only  i f  

is non-singular.  Th i s  i s  t h e  same a s  saying t h a t  ad - b c  #O.  

I n  summary (and w e  g e n e r a l i z e  t o  n-dimensional space wi thout  

f u r t h e r  d i s c u s s i o n )  then:  

The l i n e a r  mapping from En t o  En def ined  by t h e  system of l i n e a r  equa- 

t i o n s  

i s  1-1 and on to  i f  and on ly  i f  t h e  ma t r ix  of c o e f f i c i e n t s  A = [ a i j ]  

is  non-singular ,  i.e., i f  and only  i f  A-' e x i s t s  (which means t h e  

determinant  of  A i s  unequal t o  0 ) .  

Another way of say ing  t h i s  r e s u l t  i n  t h e  case  of  our  l i n e a r  mappings 

of E2 i n t o  E* i s  t h a t  under a l i n e a r  mapping (0,O) i s  mapped i n t o  

(0,O). That i s ,  i f  u = a x  + by and v = cx + dy, then c l e a r l y  u and v 

a r e  zero  when x and y a r e  zero.  However, t h e r e  may be  o t h e r  p o i n t s  

i n  t h e  (x ,y)  p lane  t h a t  map i n t o  (0,O). For l i n e a r  mappings, it i s  

enough t o  know t h a t  only  (0,O) i s  mapped i n t o  (0,O) i n  o rde r  t o  

conclude t h a t  t h e  mapping i s  1-1 and onto.  I n  o t h e r  words a s  soon 

a s  t h e r e  i s  a p o i n t  i n  t h e  (x ,y )  plane ,  o t h e r  than (0,O) , t h a t  maps 
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i n t o  (0,O) , then the ,line determined by these  two poin ts  w i l l  map 

i n t o  (0,O). 

Thus, given the  mapping u = ax + by, v = cx + dy w e  look a t  ad - bc, 

and i f  t h i s  i s  not  zero,  we know t h a t  t he  mapping i s  1-1 and onto. 

I f  it is  zero, then t h e  e n t i r e  xy-plane i s  mapped i n t o  a s i n g l e  l i n e  

(or  i n  t h e  most extreme case,  t he  s i n g l e  point  (0 ,0 ) ,  t h a t  is ,  

i f  u = Ox + Oy and v = Ox + Oy). Namely, when ad - bc = 0, c + d m  

is  a constant  mul t iple  of a + bm ( d e t a i l s  a r e  l e f t  a s  an exerc i se )  and 

we then have from (92)  t h a t  v = ku. In  t h i s  case  t h e  l i n e  

y = -6a x maps i n t o  (0,O)and each l i n e  y = -6a x + u maps i n t o  a 
0 

s ing l e  po in t  on t he  l i n e  v = ku. 

A t  any r a t e ,  with a l l  t h i s  a s  background, w e  end t h i s  chapter ,  and 

use t he  following chapter t o  apply our r e s u l t s  t o  the  calculus  of -
functions of severa l  r e a l  var iables .  
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