Study Guide
Block 5: Multiple Integration

Unit 7: Line Integrals

Overview

From a structural point of view, one cannot distinguish between
area and length in l-dimensional space. What we mean by this is
that in n-space one defines an n-dimensional rectangle to be a
set of points (n-tuples) S such that S is composed precisely of
those n-tuples (xl,...,xn) for which
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where the a's and b's are given constants and a; < bi for i = 1,2 .07

n.

One then defines the area of S to be the product {bl - al){b2 =

azl....(bn - an).

Notice that for n = 2 this definition of area coincides with the
usual geometric interpretation of the area of a rectangle, while
if n = 3 our n-dimensional rectangle is what we refer to geo-
metrically as a parallelepiped and its area is what we think of
as being volume. If n = 1, however, our abstract definition of
area defines what we ordinarily think of as being length. 1In
other words, in l-space we may think of b - a as being either a
length (geometrically) or an area (abstractly). In fact,

when we spoke about sets of content measure zero, the measure of
the line segment connecting (a,0) and(b,0) is zero if we view
the line as a subset of 2-space, but it has measure (b - a)

when viewed as a subset of l-space.

What does all this have to do with the lesson in this unit?

The answer is that when we are dealing with a region in 2-space
there are two very different but equally natural ways of
defining a definite integral. (These two different ways exist
even in l-space but because we cannot structurally distinguish

between area and length in l-space the two interpretations al-
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though conceptually very different yield the same result.)

For example, consider the simple closed curve C shown below,
and let the region enclosed by C be denoted by R. On the one
hand we might be interested in the mass of R*, in which case
we must consider the usual double integral discussed in
detail thus far in the present Block. On the other hand, we
might be interested in the work done by a particle moving along
the curve C under the influence of a given force.

C

1. The mass of R involves a double integral obtained from
an element oﬁxi ﬂyj.

2. The work done by (or on) a particle moving along C from
P back to P under the influence of a given force involves
a single integral obtained by integrating with respect to
arc length.

Clearly these two interpretations are quite different in 2-
space. The second interpretation is known as a line integral
to indicate that we are computing an integral with respect to
a curve (line). The two interpretations also exist in l-space
but yield the same answer. By the way of illustration

consider

4
f x2dx. (1)
1
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*Notice again that when we refer to mass it is not important
whether we talk about R together with C or with C excluded,
since in 2-space the area of C is zero.
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On the one hand we may think of it 2-dimensionally as represent-
ing the area of that portion of the parabola y = x2 bounded on
the right by the line x = 1,on the left by the line x = 4, and

below by the x-axis.

_ .2
y = X
i R
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On the other hand we may think of this as being the work done by
a particle moving along the x-axis from A(1,0) to B(4,0) under
the influence of the horizontal force f(x) = x2.

Notice that our second interpretation can be written very nicely
in the language of vectors. For example our force f(x) = x2 ig
really a vector since we have specified the direction in which

it acts (horizontally, i.e., parallel to the x-axis). Thus,
perhaps we should have written that the force was £ (x) where

f(x) = XZI. Also our segment of AB represents a displacement and
hence it too may be treated as a vector. That is, perhaps we
should have written dx=dx i rather than dx. With this notation

in mind, the definite integral

1
[f(x} dx = f xzdx
0

is really

(4,0)
£(x) - ax. (3)

(1,0)

Written as in (3) our integral does suggest a line integral,

5.743
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but computationally (1) and (3) are equivalent.

From a physical point of view, we partition our interval AB
into segments Xyrener X4 We let Cx denote a point in the kth

partition [xk—l‘ xk] and we compute

n n >

Z £(c )bx, = Z o " bxy (2)
k=1 k=1

and we compute the limit of (2) as max A%, > 0. That is, we
assume that on a sufficiently small segment [xk_l,xk], f(x) is
essentially constant (this is where f being continuous is
important) and hence that f(ck) ﬂxk is approximately the work
done as the particle moves from (xk—l’ 0) to {xk,o}; and we
then sum over all the small segments.
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a(1,0) ”///’/,,/,,a B(4,0)

We pick Cy in here and from f{ck) X, to approximate the work.
b

In summary then, in l-space the integrals g.f{x) dx and

{bf{x) - dx are conceptually different but numerically the

same. In 2-space, however, it certainly makes both a con-

ceptual difference and a computational difference depending
on whether our integral is viewed with respect to dAR or with
respect to dsc, where dsC refers to an element of arc length

along the curve C.

The aim of the lecture in this unit is to emphasize these
remarks in somewhat more detail, while the aim of the reading
material and the exercises is to help you get a better quanti-
tative idea as to how double integrals and single integrals

(line integrals) are very different.
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2. Lecture 5.040
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3. Read: Thomas; Section 17.3
4, Exercises
5.7:.3(%)
Compute é-xy dx + (x2 + y2) dy where c is the portion in the
first quadrant of the circle of radius 1 centered at the origin,
traversed in the counter clockwise direction for each of the
following equations for c.
a- = o8 E t varies from 0 to % .
= sin t
b. y=/1 - x2 , X varies from 1 to 0.
c. x=+V¥1 -y~ , y varies from 0 to 1.
5.7.2(L)
f 2 2 . : i
Compute 2 XY dx + (x” + y”) dy where c is the straight line seg-
ment which goes from (1,0) to (0,1).
5.7 «3
Compute J'(x + y) dx + xy dy where
c
a. C is given by
fx = ¢
lv = £+ 1
where t varies from 0 to 1.
b. C is given by
X = t3
y = t9 + 1
(continued on next page)
7.6

Lﬂnﬂﬂﬂﬂﬁﬂuﬂﬂuﬂnunuﬂﬂ




Study Guide
Block 5: Multiple Integration
Unit 7: Line Integrals

ra

A I fh N A A R PR Ph &om e

5.7.3 continued

where t varies from 0 to 1.

C is given by y = x + 1 where x varies from 0 to 1.

x2 + 1 where x varies from 0 to 1.

C is given by y

5.7.4(L)

Compute fc (x + y) dx + xy dy where c is the path composed of
the straight line from (0,1) to (0,6), followed by straight line
from (0,6) to (1,8), followed by the straight line from (1,8) to
(1;2) :

5,7.5(L)

Suppose Mdx + Ndy is an exact differential in a region R and C
is a piecewise smooth curve in R _joining the point (xo, yo) and
(xl, yl}. Use the chain rule to show that

(x,y)
fde + Ndy = f dF = F(x,y) - F(xo,yo)

c (xo.yo>

where dF = Mdx + Ndy.

SuilsB

Find a function F such that F = 1 + 3x2y + Sx4y2 and FY = x3 +

5y4 + 2x5y and use this to compute

4 2

(1 + 3x%y + 5xy?) dx + (x° + 5y?

+ 2x°y) dy
[ o

where c is any (pieceview) smooth curve which connects (0,0) to
(3,1).

Verify the result of (a) by direct computation in the case that:

1. ¢ is8 .y x where 0 < x < 1

2 € 15y x3 where 0 < x < 1.

(1,1,1)
f 2 2 2 . ;
Evaluate x“dx + y“dy + z°dz along any (piecewise
(0,0,0)

smooth) path which joins (0,0,0) and (1,1,1), by using the

(continued on next page)
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5.7.6 continued
2 2 2 . A
fact that x"dx + y"dy + z°dz is an exact differential.
a. Evaluate the integral in (c) directly for the cases

l.Cisgiven by x =y =2z =1¢t, 0 < t < 1.
2. C is given by

=t2 ]
B
= + 0t tgl,
z =t
5.7.7
Evaluate J.ydx - xdy where c is the closed curve |x| + |y| =1

traversed in the counter-clockwise direction starting at (1,0).

5.7.8(L)

Let F = xyz + (x2 + yz) J and ds = dxi + dyf. Use polar
coordinates to compute !Jf . ds where c¢ is the first gquadrant

of the unit circle from (1,0) to (0,1).

5.7.9 (optional)

The main aim of this exercise is to show that it is crucial that
Mdx + Ndy be exact in a region R which contains C and that it is
not enough that Mdx + Ndy be exact just on the curve C itself.

a. Check to see whether ydx/(x2 + yz) - xdy/(x2 + y2] is exact.

b. Compute
ydx _ xdy dx xd
f27 2 2andfTL2'T1—i
X +y X +y > S . X +y

c c

1 2
where c, is the semicircle x2 + YZ = 1 in the counterclockwise

a2 2 2

sense from (1,0) to (-1,0) and c, is the semicircle x~ + y= =1

in the clockwise sense from (1,0) to (-1,0).

5.7.8
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5.7.10 (optional)

Our aim here is to give an alternative, more general definition

of a line integral.

a. Let c be given by

f(t)
g(t)

Il

X

Y

ad ks b

and suppose H(x,y) is (piecewise) continuous on c. Lety be any
continuous differentiable function defined on [a,b].

b
a. Show that the definition .’; Hdy = .g H(f(t), g(t)) y'(t) dt is
consistent with_‘;b f(t)dg(t) =_‘;bf{t)g' (t)dt.

b. Compute .!;Hc'ﬂ" where

e
I
-
+
=

y(t) = t3 for te [0,1].
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