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Solutions
Block 5: Multiple Integration

Unit 7: Line Integrals

5.7.1(L)

a. We have

fxy dx + (x2 + y2) dy
c

t
_ f lxy &+ (x* + y?) %%] dat (1)

t
o

and since

s . i
x = cos t and y = sin t where t varies continuously from 0 to 5 v

equation (1) becomes

T
jr 2 2 ..
[cos t sin t (-sin t) + (cos”t + sin“t) cos t] dt
0
T
[fu
= (-sin“t cos t + cos t) dt
0

T
2
= (- 3sin’t + sin 8) |4

- 1 _
"‘("'§+1) 0

I
W

b. Notice that another parametric form for C is given by

I

;o
A < t2 as t varies from 1 to 0 (2)

]
]

(ioe-,y= 1-x).
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5.7.1(L) continued

From (2) we have that

dx _ dy _ =&
= 1 and B e

dat
/1 - 22

so that now (1) becomes

fﬂ (£ /1 -2 ¢ (€2 + (/1 - 52128y 4
1

vl = &

Il

0
f[t/l-t2+#] at

& /1 - t2

l R — )]
- d/‘[ =% o £ =52 T dk
0

vl - t

N W

) — 2 .1
=-A- T a-H? |

=0-[-1+3]

-2
5 -

The key point that we want to make here is that it is intuitively
clear that the value of the line integral should not depend on
the equation chosen to represent C. Yet it is not abstractly
clear that the value of the line integral is independent of the
parametric form for C. After all, as we change the equation of

C both the integrand and the limits of integration change, and,
as a result, the possibility exists that our answer changes as
well. In the next unit we shall show in terms of someting
called Green's Theorem that the line integral does not depend

on the equation of C, but in this exercise we are using a less

rigorous device.
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Solutions
Block 5: Multiple Integration
Unit 7: Line Integrals

5.7.1(L) continued

Namely, we have shown in parts (a) and (b)
does not depend on which of the two equations for C is used.

that the line integral

of

course, this is a far cry from proving that the integral is

the same for all equations for C,but it at least adds plausi-

bility to our statement; and this is sufficient for our present

aims.

c. But just to "play it safe" we compute the same integral a third

way. We now solve x2 + y2 = 1 for x in terms of y.

t2
t varies from 0 to 1

= t
so that
dx _ -t dy _
®" — rgc = 1
1l -t

and equation (1) becomes

That is

f ey &+ %+ yH F1at (3)
=f{\/1—t t[ ]+[(/1-t}+t](1}}dt
1_
=fl(-t2+l} at
0
1
L .3
=--3-t + £t -0
1
={—-3-+].)'-0
2
= 3
5.5.7.3
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5.7.1(L) continued

and our answer agrees with that of parts (a) and (b).

S T2 (I

In the previous exercise we tried to demonstrate that é'de + Ndy
does not depend on the equation which expresses the curve c.

This is far different than saying that é‘de + Ndy does not depend
on the curve c. In other words, in terms of the physical inter-

pretation of work, the work done in going from PO to Pl along
the path (curve) c¢ "most likely" should depend on the choice of
the path but not on the equation by which a given path is des-
cribed.

In this exercise we observe that the end points of ¢ as well as
the integrand are the same as in the previous example in which

we evaluated é'xydx + (x2 + y2} dy.

Now, however, the curve c is described by

Xm L=k t varies from 0 to 1. (1)
y= t

\ ’ dx _ _ dy _
In this case, ke at = 1 and we have

fxydx S (x2 - y2) dy

=f [xy 3% + (x? + y%) 1 at»

*Notice that this looks exactly like equation (3) in part (b) of
Exercise 5.7.1. What has changed is the curve c and since the
line integral is defined on ¢ (i.e., x, y, dx/dt, and dy/dt are
computed for points on c) the value of the integral need not be
the same in this case as it was in equation (3) of the previous
exercise,

S.5.7.4
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Block 5: Multiple Integration
Unit 7: Line Integrals

5.7.2(L) continued

fl{(l—tj(—- £) + [(L-t)2 + 2]} at
0

1:1[—t + t2 + (1 - 2t + tz} + t2] dt

_ .£1(3t2 - 3t + 1) at

1

0

I
=
|
B
+
[

|
N =
-

and this is unequal to % (the answer in the previous exercise).

In terms of the work interpretation we are saying that if a
particle moves under the influence of the force xji + (x2 + yzl f
from (1,0) to (0,1) then the work done is % if the path is the
portion of the circle x2 + y2 = 1 which joins these two points,
while the work is 3 if the path is the straight line which

joins the two points. In other words, once the path is chosen,
the work depends on the end points of the path alone (i.e., the
limits of integration), but different paths through the same

end points produce different work.

As a final point on this exercise, let us check that our answer
did not depend on the equation of ¢ once the path was chosen.
For example, another parametric form for c is

t3

1. = t3

I

t varies from 1 to 0

so that

S+5.7:5
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5.7.2(L) continued

Consequently

_/;ydx + (x2 + yz} dy
c

0
f 131 - tH3e?2 + 1% + (1 - -3¢ at
1

Il

f1{3t2[t6 + (1-tH2 - 3@ - £3H3¢? 1ae
0

I

1
f 13e2(2e® - 263 + 1) - 3t + 3¢8) at
0

1
_/0.(91:8 - 92 4+ 3t%) at

Il
—
1
NI
-
=
Il
N

which checks with our previous result.

5.7:3

a. C is given by

]

t + 1

Il

t
v 3 } t varies from 0 to 1.

Hence, dx/dt = 1 and dy/dt = 3t2. Therefore,

5.5.7.6
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5.7.3 continued

-/}x + y) dx + xydy
c

1
- f[(t 841 e s D3e?y ae
0

1
‘L‘tt+t3+l+3t6+ 3¢0) dt

Il

£1(3t6 + 483 + £t + 1) at

1
t=0

= % t! + t4 &+ % t2 + t

_ 3
=w+1+

Now c is given by

.3
x = tg t varies from 0 to 1.

y=t7 +1

Hence,
dx _ 2 dy _
— = 3t~ and qE = 9t ",

Therefore,

gf(x + y) dx + xydy

1
- f[(t3 + 2 ¢ 132 + 32 + 1) otPat
0

85797
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5.7.3 continued

[(31:5 # 3t 4 362 4 0e20 4 gelly 44

1
‘/}9t20 + 12tll + 3t5 + 3t2) dt
0

1
3 27 12 1 .6
_ 13
=2 13-

[This should check with part (a) since in both parts of this
exercise ¢ is a parametric form of the portion of the curve

y = x>+ 1 from (0,1) to (1,2)]

With ¢ given by

t
€t % 1

oS
Il

we have dx/dt = dy/dt = 1 and, therefore,

f(x + y) dx + xydy
c

_ fl[(2t+ 1)+ (£2 + t)lat
0

1,
f(t + 3t + 1) 4t
0

1
1,3, 3.2

} where t varies from 0 to 1, i.e., y = x + 1

5.5.7.8
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5.7.3 continued

With c given by y = x2 + 1 where x varies from 0 to 1 we have

dy/dx = 2x, hence

f{x + y) dx + xydy
e

2
4{I(x + y) + xy %% ] dx

1 2 2
_[[(x+x + 1) + x(x° + 1)2x] dx

1
=‘[(2x4+3x2+x+1} dx

1
_2 4 3.1 2 -
—gx + X +7x + X
2 1
=T + 1 + 5 * 3:
_ 9
= 2 10*
5.7.4(L)

This problem is the same as the previous one except that our path
is now a union of smooth curves (i.e., the equation of the path

is piecewise differentiable).

Letting cq denote the straight line from (0,1) to (0,6); Cyr the
straight line from (0,6) to (1,8); and c5 the straight line from
(1,8) to (1,2) we have that

S St el
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5.7.4(L) continued

f(x + y) dx + xydy

<

= f{x+y) dx + xydy
¥a

+ f{x+y) dx + xydy
€2

+

f (x + y) dx + xydy. (1)
%3

[This is in keeping with the definition that if c = €U ... U e

then
fde+Ndy= fde+Ndy+ ces ® fde+Ndy.
C Cl CI'I.

In terms of work, this formula says that to find the total work
done as we move along a piecewise-smooth curve we need only sum

the amounts of work done over the individual smooth pieces.

In any event, c, may be written as

0 ' where t varies from 1 to 6.
¥y = E

Hence, dx/dt = 0 and dy/dt = 1. Therefore

f (x + y) dx + dxdy
“x

6
=f[(x+y)g%+xy%¥:]dt

S.5.7.10
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5.7.4(L) continued

f[t(ﬂ) + 0(t)1] dt
=f6 0dt = 0.

1

(2)

C, may be written in the form y = 2x + 6 where x varies from 0

o 1.

Hence, dy/dx = 2 and

j (x + y)dx + xydy
S

=fl[(x+y)+xyg¥c-]dx
0

fl [{x + 2% + 6) + %(2x + 6)2] dx
o

1 2
=f(4x + 1l4x + x + 6) dx
0

1

=g~x3+7x2+%—x2+6x x=0

_ 4 1
= ot 7.+ >+ 6

5
= 14 5
Finally c, may be written as

1 } where t varies from
t | 8 to 2.

(3)

§.5.7.11
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5.7.4(L) continued

Hence, dx/dt = 0, dy/dt = 1; and we have
f(x+ y) dx + xydy

C3

2
dx d
[(X"‘Y)d—E'F}[Ya&tl]dt

=

2
=fut+nm)+uwundt
8

2
- [
8

8
= - tdt
2
8
z—%—tz
2

= -32-(-2) = -30. (4)
(3), and (4) into (1) we obtain

Jf(x +y) dx + xydy = 0 + 14 2 - 30
C

Putting the results of (2),

1
- (15 g)

Physically we may think of this problem as finding the work
done as a particle moves from (0,1) to (1,2) along the curve

> 7 T
c under the influence of the force F = (x + y) 1 + XyJ.

5.5.7.12
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= W o

5.7.4 (L) continued

Along the line x = 0, F = yI so that the force is the direction
of the x—-axis and hence at right angles to the motion. Con-
sequently, since the component of the force in the direction of
motion is zero, no work is done in moving from (0,1) to (0,6)
along the y-axis.

Along the line y = 2x + 6, 0 < x < 1, notice that the I

and 3
components of F are positive (since x and y are both positive
there). Hence, the component of F in the direction of motion
has the same sense as the motion so the force "assists" the
motion, which accounts for the work being + 14 % 5

Finally, in going from (1,8) to (1,2) along x = 1, we have that
F=(y+1) 1+ yf, so since 2 <y < 8 F "points" up and to

the right. Consequently, the component of F in the direction
of the motion has the opposite sense of the motion (since the
motion is downward), and as a result the force is "against" the

motion, which accounts for the work being -30.

Pictorially,
¥
N
c(1,8)
B 1(0,6)
N
D Finish

Start A¢(0,1)

No work in going from A to B.

Particle has 14 %—units of work done on it in going from B to C.
Particle does 30 units of work in going from C to D.

Therefore, the net effect is that the particle does 15 % units

of work in going from A to D along the given path.
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5.7.5({L)

Suppose there exists a function F(x,y) such that dF = Mdx + Ndy,

i€ ; F, =M and FY = N. Now let c by any (piecewise) smooth

curve which joins P_(x_,y ) to P;(x;,y;). Let C be given by
x = g(t)
y = h(t) ‘ where t varies from t0 to tl
[i.e. (xoiyo) = (g{to); h{tO) and {X,Y) — {g{tl}' h(tl))]
Then
./h(xly) dx + N(x,y) dy A
c
tl
= f {M[g(t}f h(t)]g'(t) + N[g(t) ,h(t)1h' (£)} dat ! (1)

t
o

t

1
f {Fx[g(t), h(t)lg'(t) + F_[g(t), h(t)]Ih'(t)} dt.
t y

I

o -

Notice that our final integrand in (1) is, by the chain rule,

precisely

dr (g (t) , h{t))_
dt

To see this, notice that if we let

£(t) = Flg(t), h(t))

then

f(t) = F(x,y), where x = g(t) and y = h(t) (20)
S:5.7.14
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5.7.5(L) continued

Applying the chain rule to (2) yields

- _ dx d
£ (t)wad—E+Fya{-
= F, g'(t) + F, h'(£)* (3)

In any event this means that (1) may be written as

fM(x.y) dx + N(x,y) dy
c

t:
L f 1 aE(glt) hlk)}y ¢

t

o
Y
= F(g(t), h(t)) o
o
= F[g(tl); h(tl)] = F[g(to)r h(to}]
= F(xl,yl) - F{xo,yo}. (4)

The crucial fact concerning (4) is that F in no way depends on C.
That is, F is determined by F, = M and FY = N without regard for
the curve c which joins P to P;. 1In fact, the only effect that
the choice of ¢ has is in determining g(t), h(t), t_, and t, but
F(g(ty), h(t)) = F(xy,y,) and F(g(t)), hit) = F(xo,yo}
regardless of how g,h,to, and t, are defined.

*Notice that we are using the smoothness of c when we assume
that g'(t) and h'(t) exist.

S.5.7.15
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5.7.5(L) continued

In other words, if Mdx + Ndy is an exact differential then the line
integral Mdx + Ndy along any curve which joins P to P, is inde-
pendent of the choice of path, but rather depends only on the end
points Po and Pl. ’
Least we not fully appreciate what this says, what we are

saying is that if Mdx + Ndy is not exact and we pick a curve c
that joins PO and Pl, then certainly the line integral for that
particular path is a function of B and Pl alone; but different
paths may lead to different functions of P and P;. On the other
hand, for an exact differential, once we know the value of the

line integral along one path which joins P0 and Py, we know that
it has the same value along any path that joins P, and P,.
(For an important subtlety,see optional Exercise 5.7.9)

5L 748
a. Given f (1 + 3x°y + 5x’y?) ax + (x> + 5y* + 2x°y)ay (1)
we first observe that
2 4 2 3 4 5
9(1 + 3xy + 5xy") _ 5.2 10x4y _ af(x” + gy + 2x y),
ay X
so our integrand is exact.
In fact,
d(x + x3y 03 y5 + x5y2 + c) e
(1 + 3x%y + 5xiy?) ax + (x> + 5y + 2x”y) dy. (2)
. . 3
[By way of review we may derive (2) by setting F, = x + X'y
5 2
-+ x5y2, whereupon F = x + x3y + x"y" + gly).
i 3 -+ 5
Hence, F_ = x3 + 2x5y + g'(y) but since F_ = x~ + 5y  + 2x7y,
5
it follows that g'(y) = 5y4, so g(y) =y + c, and as a result
F =X+ x3y + xsyz + YS + c.]
5.5. 7.16
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5.7.6 continued

Thus, equation (1) becomes

(1,1)
Jr d(x + x3y + y5 + xsyz + <)

(0,0)
(1,1)
= [z + x3y + ys + x5y2 + g ]
(0,0)
=[1L+1+1+1+4c] - [0+ ¢]
= 4.

b. 1. In the event ¢ is y = X, where x varies from 0 to 1, then
dy/dx = 1, and

f(l + 3x%y + 5x%2) ax + (x> + 5y + 2x°y) ay
o]

_ flrcl a3 4 sx®)1 + ( + skt v 2x®)1) ay

0

1
=f{1+ 8> & sx? + 9x%) ax

=0

2, C is given by y = x> as x varies from 0 to 1.

Hence, dy/dx = 3x2, and

8,5.7.17
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5.7.6 continued

./}1 + 3x2y + Sx4y2} dx + (x3 + Sy4 + 2x5y) dy
C

vl
./.[ﬂﬂ-3x5 - 5xlo) 1 + (x3 - lez + 2x8} 3x2] dx
0

I

1
f (155 + 11529 + &> + 1) ax
0

1
= xls + xll - xﬁ + X 5 = 4
(1,1,1)
c. = xzdx + yzdy + zzdz
(0,0,0)
(1,1,1)
1 .3 1 3 1 3
=./. d{§-x t3y +t32 + c)
(0,0,0)
(1,1,1)

]
w| =
+
W
+
|

d. 1. Now c is the space curve x =y = 2 = t; t varies from 0 to 1

so that

ax _dy _ dz _
dt  dt = dt Lk

8.5.7.18
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5,7.6 continued
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Hence,

fxzdx + yzdy + z%dz

1]
O\
whH
o+
8]
jsi
+

= 1.,

2. C is given by

| x =t

| Yy = t3 } t varies from 0 to 1.
4

[ z =t

|

| Hence

dx _ dy _ 2 dz _ 3
aE = 2t, 5C = 3L r-r 4t~ , so that

fzdx+ydy+zdz
C

1 odx  2dy , 2 dz
’f‘xza'E*Ydt*“zd_t’dt

S«b. 119
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5.7.6 continuzd

1
f(2t5 + 3% + aehae
0

1
_ 1.6 1 =9 1 312
—it +§'t +§t =0
= 1,
5:7=7
Observe that
=
|X|+1yi = x + y in lst quadrant
-x + y in 2nd gquadrant
. T - y in 3rd qguadrant
1 X - y in 4th quadrant
-

C==01U02UC3UC4

Cit Y = 1 - x where x varies from 1 to 0; dy/dx =

Cy: ¥y = L+ x " & " " 0 to-1; dy/dx =

03: y =-]1 - x " " " " -1 to 0; dy/dx -
—_ = n " LU " 0 t 1: d dx =

Cyt ¥ X i o y/

8.5.7.20
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5.7.7 continued

Hence,

fdx—xd= L
Y Y Yy dx

cq 1

I

1
-/}x g% - y) dx
0

1
= ./'[— x -(1 - x)] dx
0

f ydx - xdy

I
Y
o
1
x
£12
o
]

0
=1,
= ‘/. dx
0
= -1.
fydx—xdy= fo[y-xg-y-]dx
%
C, -1
=X
= (x g% - y) dx
0

(1)

(2)

S.5.7.21




Solutions
Block 5: Multiple Integration
Unit 7: Line Integrals

5.7.7 continued

I

=1
f [-x-(-1-x)] dx
0

~1
=./'(- x+ 1+ x) dx=~-1 (3)
0
1 d
fydx—xdy=f{y—xa¥]dx
Cy p

1
f[(X-l)—x] dx
0

L
=f—1dx=-l. (4)
0

Combining (1), (2), (3), and (4) yields

4 -
fydx - xdy
c

=

=3 ydx - xdy
i=l c;

= =1+ (-1) + (-1) + (-1)
= -4,

(The integral is not zero even though we have integrated along

a closed path because ydx - xdy is not exact.)

§.5.7.22
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5.7.8(L)

f’F’ . da (1)

may be written as

f[xy-{ 2y - taxd ey
Cc

= fxydx + (x2 i y2} dy
c

and this was the integral we evaluated in Exercise 5.7.1 and

found to be % "

What we wish to do in this exercise is use polar coordinates
and show that .g F - ds does not require that we use Cartisian

coordinates.

-+ -+
Now in polar coordinates the basic unit vectors are u, and Ug

where
ﬁr = cos 81 + sin 9§ (2)
- . > -
ug = - sin 81 + cos 63
and ds = dr Er + rde Eg (3)
[Pictorially we may remember (3) as

]
From (2) it follows that

5.5.7.23
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5.7.8(L) continued

i=cos o in 8 u
2L os u - n u
E Bl 1]

-+ . + -+
J sin 6 u, + cos @ g -
Hence, in polar coordinates
> > 2 -> 2 2 5 - -
F = xy(cos 8 u_ - sin 8 u,) + (x° + y ) (sin 8 u_ + cos 0 u,)
r e o 8
= (r cos 8) (r sin 8) (cos @ Gr - sin @ 59) + rz(sin e ﬁr
+ cos 6 393

= rz(sin 8 c0529 + sin G)Gr - rz{sinzo cos 8 ~ cos 0)39 (4)

and we see in (4) that F could have been expressed without

reference to Cartesian coordinates.

If we now use (3) and (4) to compute F . ds we have (since

- > -+ -+ > -
u. - uy = 0 and u. ot u = uy ug = 1)
F - ds = r2{sin e coszg + sin 8)dr - r3(sin29 cos © - cos 68)de

(5)

and since C is defined by r = 1, © varies from 0 to % :

we see from (5) that

m
fi"’ - as =f7 [(sin © cos®e + sin 8) (0) - (sin°6 cos 6 - cos 8)]de
c 0
T
2
= -Lsinde+sine |o_,

Il

1
W=

+

|

|
N

which agrees with our answer to Exercise 5.7.1.

The main reason that one elects to use Cartesian coordinates
and write J.de + Ndy is that the basic unit vectors in this

S.5.7.24
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5.7.8(L) continued

case are i1 and j which are constant vectors while the basic
unit vectors in other coordinate systems need not be. For

+ - .
example while u_ and GB always have unit magnitude they change

direction and hence are not constant vectors.

5.7.9 (optional)

a. In the statement of Exercise 5.7.5, we mentioned that Mdx + Ndy
was not only exact on C but also in a region that contained C.
The main reason for this additional requirement is that when we
talk about the various curves which join two given points, we
are admitting that the integrand must be defined at all points
on each of the curves under consideration. In other words, we
are assuming that Mdx + Ndy is exact in a region containing C
and that all curves which join the two points under considera-

tion lie in this region.

Now, at first glance it appears that

is exact. Indeed

Bile—g—g— .} 2, .2
X +y - (X" + y7) - y(2y)
ay o2 + y9)?
2 2
_ X =¥
= 1
(x2+y2}f (1)
while

o —(x2 +A22) + x(2x)

. s S
Ix x2 + yz (x2 + y2)2
2 2
- o (2)
(x™ + ¢7)

l

S.5.7.25
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5.7.9 (optional) continued

so that it indeed appears that

L) Sl )
%= 3 = X ey
£ X

and, accordingly, that

ydx _ xdy

X + vy X +y

is exact. [In fact with a little "luck" we might even have
observed that

I

d(arc tan X) [ ———l———f 1 a®)
Y 1 + (%] Y

_ ydx _ xdy ]
22 ¥ yz . Yz

However, notice that (1) and (2) are undefined at (0,0).

In other words, expression (3) is exact in any region R which

excludes the origin.

b. In our particular problem, we are computing
f ydx _ xdy
c x2 +* y2 x2 ¥ yz
along two curves c which between them enclose the origin.
Hence, it should not be too shocking in this case if the
integral is dependent on the path even though the integrand
is exact and defined for each point along the two given paths.
8.5,7.26




Solutions
Block 5: Multiple Integration
Unit 7: Line Integrals

5.7.9 (optional) continued

In any event we have that cy is given by

¥ = 0en t} as t varies from 0 to
y = sin t
g% _ __q dy _ 2 2
so that on <, I = sin t, Jeg = cos t, and x~ + vy~ = 1. Hence
ydx _ xdy
f Bre el
€
f” d a
= e o o ] dt
A xZ & y2 dt x2 ¥ y2 a%
Tsin t cos t
= f[——r-i—(- sin t) - T (cos t)] dt
0
i
= f(— sinzt - coszt) dt
0
m
= -_[dt
0
= - T.
On the other hand c, may be viewed as being defined by
= Gap 't as t varies from 27 to w.
= sin t
Thus,
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5.7.9 (optional) continued

f ydx _ xdy
x2 + y2 x2 + y2

©2

I

m
f(-sinzt - coszt) dt
27

m
- ert
2m

Since T # - m we see that

f xd y f _ _ xdy
x + vy 2 2 + # xz + yz

¥

even though the integrand is exact on both ¢ and Cos and

the curves have the same endpoints.

What we can positively conclude, however, is that if R is any
region which does not include the origin and if PO

points in R then

fzx—xdx fxx—xdy
2
cl + y X +y

along every pair of curves cq and ¢y which lie in R and extend

from P_ and P,.
o 1

5.7.10 (optional)

This exercise is meant as an "excuse" to give a definition of
line integral which is independent of the notion of work or dot

product.

§.5.7.28
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5.7.10 (optional) continued

First of all let us observe that

fi‘ - ag (1)

L

can be written in a somewhat more scalar* form

f(?’ . Q) ds (2)

c

where U is a unit tangent vector to the curve c at the point in

question.

Notice also that (2) can be obtained from (1) mechanically by
defining the vector increment ds to be the scalar increment ds

multiplied by u; that is,
ds = (ds) .

If we recall that F -+ U is the projection of F in the direction
of U (i.e., in the direction of dg} we see that the integrand in
(2) does represent the component of the force in the direction

of the motion.
Our first point is that formula (2) is well defined independently

of the work concept. For example, if we think of s as a para-

meter we may write that

[ Mdx + Ndy

f(r-t--:rw-l;i) ds. (3)

-3
*We say scalar since [ (F - u) ,ds indicates an ordinary integral
(since s is a scalar) and F - u is also a scalar.
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5.7.10 (optional) continued

If we now observe that

dx dy _ + o opdX dy =
M ds + N s = (M1 + Nj] {a‘s— L ¥ a—g— 3)

dx + dy = _ > . .
and that 3s Lt ggl =9, a unit tangent vector to c, then if
we let K = K(x,y) = M(x,y) 1+ N(x,y) }, formula (3) becomes
f(ﬁ - 1) ds (4)
c

and clearly (4) and (2) have an identical structure.

Notice also that since K and u are both vector functions of
x and y (in Cartesian coordinates) we may let H = H(x,y) =
K(x,y) * ulx,y) and in this event formula (4) becomes

fHds. (5)

Cc

Written as in (5) our line integral is free of any vector

interpretation, including that of the dot product.

our final aim is to free the definition even more by not making
it dependent upon arc length. This is very similar to our
treatment of calculus of a single-variable in which we start with

the "standard" form

= f(x) ax (6)

S~

known as a Riemann or definite integral, and then proceed to

talk about a more general integral

Lbf(x)dg{x) (7)

called the Riemann-Stieltjes integral.

Among other places we encounter the Riemann-Stieltjes integral
(often called more concisely, the Stieltjes integral) in the

formula for integration by parts when we write

S.5:7.30
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5.7.10 (optional) continued
jldv = uv - wvdu.

Observe that the Stieltjes integral is a generalization of the
definite integral in the sense thatj;bf{x)dx is the special
case of.ng[x)dg{x) in which g(x) = x.

Omitting the rigorous details, recall that the Stieltjes integral
is evaluated by the familiar "change-of-variables" technique.

Namely,

b b '
f £ (x) dg (x) =.£ £ (x)g" (x)dx (8)

a

where definition (8) is perfectly meaningful provided that f

is (piecewise) continuous on [a,b] and that g(x) is (piecewise-)
continuously differentiable on [a,b] (since in that case

JP £eg uax exists).

It is from the point of view of the Stieltjes integral that
one can define a line integral as an extension of the ordinary

definite integral and this is the aim of this exercise.

Namely:

Let c be a (piecewise) smooth curve in £? with parametric form

f£(t)
g (t) a<tcx<b

»
Il

and assume that H = H(x,y) is any function which is (piecewise-)
continuous on c. Then, if y(t) is any (piecewise-) differenti-
able function defined on [a,b] we define the line integral

_g Hdy to be the "ordinary" Riemann integral

fbH(f(t), g(t)) y'(€) dt.
a

S.5:7:3%
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5.7.10(optional) continued

Observe that in the special case that y(t) denotes arc length
the line integral coincides with our more intuitive physical
definition.

b. Since ¢ is given by

t2[= £(t)]

»
Il

<t < L
¢t 41 = oglell

o
I

H(x,y) = x2 + y2, and by v (t) = t3 for 0 < t < 1, we have

1 3
fHdY =f Bit?, tF 4 1) SLE D e
(ol 0

1
=f (e®2 & @t + 1?2 32 a
0

1
= f (2 + €8 + 2¢2 & 17 3tfae
0

Il

1
f 0t + 3¢1% + 3¢2yae
0

1

I
o
”
&

3
11 =0

I
o
+
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