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AN INTRODUCTION TO FUNCTIONS OF SEVERAL REAL VARIABLES 


By way of a brief review of some ideas introduced in Chapter 2 and 3 

of these notes, recall that once we agree that our variables may be 

either scalars (numbers) or vectors, the traditional notation, f (x) , 
now has four interpretations. They are: 

Case (1) was handled as Part 1 of this course. Namely, in (1) both 


our "inputw and "output" are real numbers, and this is precisely what 


is meant by a real-valued function of a single real variable.* 


Case (2) was handled in Block 2 of this course. To be sure, we 

particularly emphasized the . speciala- .?. . ,h- .formsr5 -( , 

g(t), G(t), and z(t) r '  - ' 

but the point is that we were studying vector functions of a single 


real variable. 


Case (4) will be discussed in a different context later in this block. 

It is worth pointing out that when we begin our study of Complex 


Variables (Part 3) we will be studying a special case of (4). That 


is, from a geometrical point of view, it is conventional to view a 


* F r e q u e n t l y ,  t h i s  " m o u t h f u l "  i s  a b b r e v i a t e d  a s  " f u n c t i o n  o f  a s i n g l e  
v a r i a b l e . "  U n l e s s  t h e  m e a n i n g  i s  c l e a r  f r o m  c o n t e x t ,  t h i s  i s  a 
v e r y  amb iguous  d e s c r i p t i o n .  T o r  e x a m p l e ,  i n  t h e  l a s t  b l o c k  when 
we w r o t e  s u c h  e x p r e s s i o n s  a s  R = %(&),  we mean t  t h a t  % was a l s o  a 
f u n c t i o n  o f  a s i n g l e  v a r i a b l e ,  b u t  R now was  a v e c t o r  f u n c t i o n  ( i . e . ,  
t h e  o u t p u t  was  a v e c t o r ) .  M o r e o v e r ,  i n  a n  e x a m p l e  w h e r e  we mfght  b e  
s t u d y i n g  t e m p e f a t u r e ,  T ,  a s  a f u n c t i o n  o f  p o s i t i o n  i n  s p a c e ,  R ,  
we h a v e  T = f ( R ) ,  w h i c h  a g a i n  i n d i c a t e s  a f u n c t i o n  of  a s i n g l e  
v a r i a b l e .  Y e t ,  i n  t h i s  c a s e ,  t h e  f u n c t i o n  i s  a s c a l a r  w h i l e  t h e  
" i n p u t "  i s  a v e c t o r .  T h a t  i s ,  we h a v e  i n  t h i s  c a s e  a r e a l - v a l u e d  
f u n c t k n  o f  a s i n g l e  v e c t o r  v a r i a b l e .  I n  p a r t i c u l a r ,  e a c h  of  t h e  
c a s e s  ( I ) ,  (2), ( 3 ) ,  a n d  ( 4 )  a b o v e  a r e  e x a m p l e s  o f  " f u n c t i o n s  of  a 
s i n g l e  v a r i a b l e . "  



B 


Scalar Functions of Vector Variables 


Certainly, there are a multitude of physical examples in which we mea- 


sure a scalar variable in terms of a vector variable. We might be 


considering work done on a particle in terms of the force exerted on 

+ 

it [W = w ( F ) ] ,  or we might be considering the temperature of a parti- 
-b 

cle in terms of its position in space [T = T(R)]. 

For the purpose of our present discussion, let us, for simplicity, 


restrict our study to the case where our vectors are 2-dimensional. 


Suppose we have a temperature distribution given by the (unlikely) 


formula 


-b + -b + 
T(R) = xy, where R = x i + y j. 

+ 
Substituting for R its description in terms of i and j components, 

(1) becomes 


-b + 
If we now introduce our abbreviation that (x,y) denotes x i + y j, 
then (2) becomes 


Since the notation T ((xIy)) is cumbersome, it is a generally agreed- 


upon convention to abbreviate it by the simpler notation, T(x,y). 




+ 

(x,Y) T-machine XY L 

r 

i n p u t  o u t p u t  

Figure  1 

W e  now come t o  t h e  most c r u c i a l  p o i n t  of  t h i s  block.  I f  w e  look a t  

( 4 )  w i thou t  knowing how it was de r ived ,  it would appear t h a t  T was a 

r e a l  f u n c t i o n  n o t  of  a v e c t o r  b u t  o f  two real v a r i a b l e s .  

I. For example (and t h i s  i s  why w e  chose such a f a r - fe t ched  temperature 

d i s t r i b u t i o n ) ,  suppose x were t o  denote  t h e  l e n g t h  of t h e  base of a 

r e c t a n g l e ,  y t h e  h e i g h t ,  and T t h e  a r e a  of  t h e  r ec tang le .  Then i n  t h e  

language of  t r a d i t i o n a l  mathematics, w e  would w r i t e  

The p o i n t  i s  t h a t  wi thou t  knowing t h e  con tex t ,  w e  cannot  d i s t i n g u i s h  

between ( 4 )  and ( 5 ) .  I n  o t h e r  words, i f  w e  were t o  draw a func t ion  

machine i l l u s t r a t i o n  f o r  t h e  case  o f  t h e  a r e a  of a r e c t a n g l e  being t h e  

product  of  i t s  base  and h e i g h t ,  t h e  diagram would look i d e n t i c a l  t o  

Figure  l! 

Y e t ,  t h e r e  i s  something about  t h e  c o n t e x t  of  t h e  v a r i a b l e  i n  t h e  

example t h a t  l e d  t o  (5 )  t h a t  makes u s  uneasy th ink ing  about  (x ,y)  a s  a 

v e c t o r ,  a t  l e a s t  i n  t h e  sense  of  o u r  tendency t o  i d e n t i f y  v e c t o r s  

I 

[This  s t a t ement  does n o t  depend on T. That  is ,  i f  f is  any s c a l a r  

I func t ion  o f  t h e  v e c t o r  ( x , y ) ,  it i s  convent ional  t o  w r i t e  f ( x , y )  

r a t h e r  than  f ( ( x I y ) ) . I  
I 

I I n  any even t ,  u s ing  t h i s  convention,  ( 3 )  t a k e s  t h e  form 

.. 

u . f i u  -

P i c t o r i a l l y ,  (4)  may b e  rep resen ted  by 

\ 

with  arrows. I n  s t i l l  o t h e r  words, w e  do n o t  tend t o  t h i n k  of t h e  

dimensions o f  a r e c t a n g l e  a s  being t h e  components of an "arrow." Y e t  

(x ,y)  i s  a s  bona f i d e  a 2-tuple (see t h e  i n t r o d u c t i o n  t o  Chapter 2 f o r  

a review of  t h e  n- tuple  n o t a t i o n )  f o r  denot ing  t h e  dimensions of a 
-+ + 

r e c t a n g l e  a s  it i s  f o r  denot ing  t h e  i and j components of a plar-ar 
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Then we c e r t a i n l y  have t h e  r i g h t  t o  i n t e r p r e t  (6) i n  terms of arrows 
+ -+ 

by saying t h a t  f  maps t he  vector  x l i  + x2j  i n t o  t h e  s c a l a r  x13 + 4x2. 

I n  t h i s  context ,  f o r  ins tance,  we would have 

On the  o the r  hand, w e  have equal r i g h t  t o  i n t e r p r e t  equation (6) i n  

t he  t r a d i t i o n a l  way t h a t  y  i s  a funct ion of t he  two r e a l  var iab les  xl 

and x2, and i n  p a r t i c u l a r  when xl = 5 and x2 = 6 ,  y = (513 + 4 (6) = 

Notice t h a t  while w e  do not advocate which of t h e  two in t e rp re t a t i ons  

of (6) i s  t h e  b e t t e r ,  we hope t h a t  it is c l e a r  t h a t  t he  second i n t e r -  

p r e t a t i on  includes  t h e  f i r s t  a s  a  s p e c i a l  case ,  bu t  t h a t  t h e . f i r s t  

i n t e r p r e t a t i o n  seems too "special ized" t o  include t h e  second. W e  do 

not in tend t o  pursue t h i s  notion f u r t h e r  here. Rather, w e  only want 

t o  e s t a b l i s h  t h e  important po in t  t h a t  it is  advantageous t o  s t a r t  

th inking of planar  vec tors  a s  2-tuples r a t h e r  than a s  arrows (and, i n  

t h i s  regard,  t o  s t a r t  thinking of s p a t i a l  vec tors  a s  3-tuples r a t h e r  

than a s  arrows).  This idea i s  f a r  too  impoftant t o  be brushed of f  

l i g h t l y ,  bu t  f u r t h e r  discussion of it a t  t h i s  t i m e  is a  d igress ion  



from our main theme. For this reason, additional discussion is left 


to the last section of this chapter. 


While we feel that the preceding discussion was motivation enough for 

+

making the notational. change fr0rn.x to r, the next major point is that 
we have not yet scratched the surface in explaining the real signifi- 

cance of this change in notation. In this respect, what we would next 

like to point out is the following. It should seem clear that our 

usual experience with geometry makes it rather self-evident that the 

quantity named by denotes either a 1-tuple (the vector is parallel 

to the x-axis, for example), a 2-tuple (the vector lies in the xy- 

plane), or a 3-tuple (the vector lies in xyz-space). We certainly 

would not be tempted to think beyond 3-tuples, if only because we 

view an arrow as a geometric entity, and, as such, it has no meaning 

beyond 3-dimensional space. 

On the other hand, as mentioned in the introduction to Chapter 2, the 


notion of an n-tuple is perfectly well defined (i.e. very meaningful) 


even if n exceeds 3. Returning to our study of temperature distribu- 


tions, for example, if we are interested in studying temperature 


distribution in the room, we usually find that the temperature de- 


pends on where we are in the room (which in Cartesian coordinates 


means that we must know the x, y, and z components of the point at 


which we are making the measurement in the room) and, at a fixed 


location in the room, usually also depends on time (i.e. in general, 


the thermometer registers different readings at different times even 


though it stays in the same position). 


The most general way of representing this idea in the language of 


functions is to write 


To make ( 7 )  seem more concrete, we might have the situation where the 

room is centrally heated in such a way that the temperature is in-. 

versely proportional to the distance from the heat source to a point 

in the room and perhaps as time goes on the temperature tends to 

"level off." For example, we might have (and again we are making no 

attempt to conform to reality as the physicist sees it) as an example 

of (71, 



In terms of a function machine, (8) may be viewed as . \ 

T-machine 

input (a number) - , 
output 


(a 4-tuple) 


In other words, with respect to the present example, while a notation 

like 2 might seem unnatural for denoting the 4-tuple (x,y,z,t), there 
is nothing unnatural about letting x denote (x,y,z,t). More generally, -
there is no need to think specifically in terms of x, y, z, and t. 


Rather, we may let xl, x2, x3, and x4 denote any four real variables, 


whereupon we may then let 


In this way, we may in a meaningful way abbreviate 


and with the latter notation, functions of several real variables 


begin to resemble the form of functions of a single real variable. 


In other words, looking at an expression such as f(x), we are tempted 


to mimic certain definitions that were used in our study of real 


functions of a single real variable. For example, we might be tempted 

to extend such concepts as lim f (x) to lim f(x). Intuitively, we 
x4a 5+: 

probably would feel, just as in the scalar case, that 

lim f (x) - = L 
-x+a 

means that f (x) can be made as arbitrarily nearly equal to L as we 
-
wish simply by picking 5 "sufficiently close" to 2. (Notice that we 

write L not L_ since f(5) is a scalar, not a vector.) 



Notice that a rather interesting 'confrontationw now takes place.. 


Certainly, we have in the previous block talked about what it meant 


for two vectors (arrows) to be "near" each other. For example, this 

+ + 

occurred when we discussed such things as I R ( ~ + At) - R(t) 1 < E.  The 

point is that, in these cases, we had a physical (geometrical) meaning 


for the difference of two vectors in terms of our concept of addition 


whereby we placed the arrows head-to-tail, etc. Clearly, such an 


interpretation presupposes that we were restricted to no more than 


spatial vectors, for, indeed, the concept of arrows with heads and 


tails does not extend beyond the study of 3-dimensions. 


Thus, in a sense, we open Pandora's Box when we now allow lf and 5 
to denote n-tuples, for in this case, how shall we replace the notion 

of adding vectors (n-tuples) by placing them head-to-tail? This shall 

be the topic of our next section, after which we shall return to a 

further study of functions of the form f(x) where 5 denotes an n-tuple. 

An Introduction to n-tuple Arithmetic 

There is a saying in mathematics that objects are known by the company 


they keep. What we mean by this is that mathematics is interested in 

. ' structures rather than in merely sets of objects. For example, in 


elementary arithmetic, one first learns to count. This does not be- 


come arithmetic until we define such things as equality, addition, 


etc. In a similar vein, when we introduced vectors, we talked about 


arrows. We did not talk about vector arithmetic until we first defined 


what it meant for two arrows to be equal, how we were to add two 


arrows, and how we were to multiply an arrow by a scalar. 


Once again, we are at this crossroads. That is, w e  have now defined 

what we mean by an n-tuple. Yet, from a structural point of view, we 

are powerless since we have no way, as yet, to perform an arithmetic 

of n-tuples. For example, what shall it mean for two n-tuples to be . 
equal? Or, how shall we add two n-tuples? 

The point is that we learned how to do this, even though we may not 

have realized it, when we were studying "arrows" - i.e., when we were 

studying n-tuples with n = 1, 2, or.3. 

Namely, when we converted our "arrow" definitions into Cartesian 


coordinates, and used the n-tuple notation, we saw that 


(al,a2,a3) = (bl,b2,b3) means that 



where we have elected to write (9), (10) and (11) in terms of spatial 
vectors, noting that similar results hold for 2-tuples and 1-tuples. 

Now, while it is true that (9), (10) and (11) were motivated by the 
"arrow" interpretation, the fact remains that once (9 )  , (10) and (11) 
are stated they make sense in their own right without any reference to 

arrows. 

We now elect to use (9), (10) and (11) to define an arithmetic on any 
set of n-tuples. Since the case n = 4 is probably alien enough to 

you, we shall use n = 4 rather than a general n so that you may get a 
concrete idea of what is happening here. 

To begin with, we have the set S, say, of all 4-tuples. That is, 

S.= {(xl,x2,x3,x4): xl,...,x are real numbers). Letting4 
a = (al,a2,a3,a4) and b = (blIb2,b3,b4)denote arbitrary members of S,-
we define an equivalence relation (=) on S by 

a = b means al = bl, a2 -- - - b2, a3 = b3, and a4 = b4 

(It is left as an exercise to verify that " = w  defined in this way is 

indeed an equivalence relation on S. The fact that it is follows 

from the fact that "kn is an equivalence relation for the real num-
bers, but we will say more about this in the solution to the 

exercise.) 

We then define -a + b- to be the 4-tuple (al + blI a2 + b2, a3 + b3t 

+ b4). In other words, with a = (al,a2,a3,a4) anda4 . -
b- = (b b b b ) ,  thena+b_= =where c = (al + bl, a2 + b2,1' 2' 3' 4 -
a3 + b3, a4 + b4). 

Finally, if c denotes any scalar, we define ca- by (cal,ca2,ca3,ca4). 

The key point now is that if the set S is endowed with the structure 

described above (i.e., with the given definition of H=" , "+," and 

meant that 

al = bl, a2 = b2, and a3 = b3 

ial,a2,a3) + (blIb2,b3) = (al + blI a2 + b2, a3 + b3) 

and 

c(a1,a2,a3) = (calIca2,ca3) 

' CI 



scalar multiplication) then and only then do we call the resulting 


structure a 4-dimensional vector space. In other words, it is the 


4-tuples together with the above structure that is called the vector 


space, not the set of 4-tuples alone. This is analogous to our 


earlier remark that even in the arrow case, we do not talk about 


vector arithmetic until we have rules for combining and equating 


vectors. The arrows by themselves are not of too much use to us from 


a structural point of view. 


Clearly, these results for n = 4 immediately generalize. In particu-

lar, our general definition of n-dimensional vector space is the 

following. 

By the n-dimensional vector space E" (to use the language of the 


text), we mean the set of all n-tuples together with the following 


structure: 


(i) If 5 = (al,...,an) and b- = (bl,...,bn) then 5 = b_ means that 

al = bl,...,a = bn. n 


(ii) With -a and b as above, 5 + b_ is defined to be c where 
-c = (al + bl,...,an + bn). 

(iii) If c is any scalar, scalar multiplication is defined by 

c(al,...,a n) = (cal,...,can). . .. . 

What should now be noted is that everything we proved about arrows 


(with respect to equality, addition, and scalar multiplication) holds 


true for n-tuples (vectors) in n-dimensional space. 


In particular, we see that g = (0,...,0) plays the role of the addi-

tive identity since 

= (al + 0 , .  ..,a + 0) [by how "+" is defined in (ii)1 
n 


= (all... an) [by the property of the real number, 01 

Similarly, if we still elect to keep the structural property that (-a) 
is defined by -a + - -(-a) = 0, then we see almost immediately that if 

-a = (all... ,an then -a- = (-al,...,-a n) ,  since 



- - 
- - 

I t  now makes sense t o  t a l k  about t h e  d i f fe rence  of two elements of E". 

That i s ,  j u s t  a s  i n  t h e  arrow cases ,  w e  may def ine 5 - b t o  mean 

-a + (-b). Our po in t  i s  t h a t  w e  have now introduced a l l  t h e  necessary 

ingred ien ts  f o r  general iz ing the  concept of "dis tance"  t o  n-dimensional 

spaces, and once t h i s  i s  done, we s h a l l  have no t rouble  i n t e rp re t i ng  

what we mean when w e  say,  f o r  example, t h a t  5 is  near 5, no matter  

what the  dimension of t he  space. 

How may we use our knowledge of vec tors  a s  arrows t o  determine t he  

d i s tance  between a and b i n  any n-dimensional vector  space? For 

reasons t h a t  we w i l l  t r y  t o  make c l e a r  a b i t  l a t e r ,  l e t  us denote t h e  

d i s tance  between x and 5 by d(5,a ') .  I n  terms of 1, 2, and 3-dimen- 

s iona l  "arrow" spaces, t he  no ta t ion  d ( x , a )  was not  used. Rather, 
-f -+

we used ( x  - a ( .  (Actually,  t o  mimic t h i s  no ta t ion  we could have 

wr i t t en  15 - 51 r a t h e r  than d ( z , y ) ,  but  because of reasons of our own, 

w e  p r e f e r  not  t o  use t h e  absolute-value no ta t ion  [ thus ,  r e s t r i c t i n g  

t he  use of absolute  values  f o r  numbers r a t h e r  than vectors] . )  

By way of a very quick review, no t i ce  t h a t  i n  terms of t he  arrow 

i n t e r p r e t a t i o n  and using d(x ,y)  r a t h e r  than ( 2  - $ 1 ,  we had t h a t  i f  

n = l  

where a =  (al,a2) and x = (x1,x2). I f  n = 3 

*Here we have taken  t h e  l i b e r t y  o f  w r i t i n g  a l  - a l ,  e t c .  w i thout  

a c t u a l l y  e x h i b i t i n g  t h e  i n t e r m e d i a t e  s t e p  o f  f i r s t  w r i t i n g  a l  + ( - a l ) ,  

e t c .  




d(5.a) = 6;; all2 + (x2 - a212 + (x, - a,) 
2 

where 5 = (al,a2,a3) and x = ( x ~ I x ~ ~ x ~ ) -

With this as background, we now play our *usualn game and define 


d(x,a) for any n-dimensional space by: 


where -a = (a l,...an) and 5 = (xl,...,xn). 
Notice that (12) captures the feeling of "closeness." For example, it 

seems rather intuitive that if we were told that 5 = (xl,...,x n ) was 
close to -a = (a l,...,an) and we were supplied with no further hints, 

we would assume that it meant that xl was near al (and here we know 

what "near" means since xl and al are real numbers, and we studied 

this notion as Part 1 of our course), x2 was near a2, and ..., xn was 
near an. 

The point is that (12) says this. Namely, the only way that a sum of 

squares can be small (since each square is non-negative) is for each 

of the numbers being squared to be small. Thus, from (12) we see that 

the only way 5 can be near a [i.e., d(2,a) is small] is if each of the 

quantities (xl - al),..., and (xn - an) is small in magnitude. 'his, 

in turn, is what we mean, when we say that xl is near al,..., and xn 

is near an. 

Since the notation d(x,g) may seem strange to you and since, on the 


other hand, we do not want to use absolute value symbols, let Us com- 


promise and from this point on agree to use the notation 


IIx - all* 

* A c t u a l l y ,  i f  we u s e  our n o t i o n  o f  f u n c t i o n  a s  d e f i n e d  i n  Part  1 o f  
t h i s  c o u r s e ,  t h e r e  i s  no need t o  t a l k  about / I l r  - all. Rather,  we 
c o u l d  t a l k  about IIXII, r e p r e s e n t s  t h e  " i n p u t . "  

In o t h e r  words ,  from I I I K I I  = , we need o n l y  r e p l a c e  1 n 

by 5 - 5 [ =  ( x l  - a l ,  ...,x - an) ] t o  o b t a i n  / I x  - all = n 

( - a )
2 + ... + (xn - an)

2 . However, t o  s t r e s s  t h e  f a c t  t h a t  

we a r e  i n t e r e s t e d  i n  t h e  d i s t a n c e  between x and a,we s h a l l  u s u a l l y  
u s e  t h e  form - all. 



rather than 


In summary, we are simply defining Ilx - all to mean 

Ax1 - a1)2 + (,+... -
an)2 . (Notice that this definition of 


"distance" is really a function which maps vectors (n-tuples) into 


non-negative real numbers.) 


~ l lthat remains for us to investigate in this section is whether our 

generalized "distancen concept has the usual algebraic properties that 

are associated with the geometric notion of distance. For the sake of 

simplicity, we shall limit our discussion to 1 1 1 ~ 1 1  rather than 115 - all,* 

since any results we obtain in one case are immediately applicable to 

the other. 

Recall that in the case of "arrows," magnitude was defined in terms of 


absolute values, and that the properties of absolute values which we 


used in our computations were: 


121 3 0 and 121 = 0 if and only if 2 = d 

1 a; 1 = 1 a 1 1 21 , where a is any real number 

What we would now like to show is that in E~ 


l l ~ l l  3 0 and IIx_II = 0 if and only if x = 2 

lla~l= la1 llxll, where a is any scalar** -

In our demonstration, we shall again pick the special case n = 4, but 

it is hoped that you will see that the approach works for all values of n. 

-

*The terminology parallels the lower dimensional cases. We call lllLll 
the magnitude of 5 while the magnitude of 5 - a (i.e., I t x  - &/I) is 
called the distance between and a. 

**Notice that since a is a scalar, we write lal, not Ilall. Furthermore, 
a cannot be a vector since we have not yet defined 5 5.  In fact, we 
haven't even attempted as yet to generalize the dot and cross products 
to n-space. 




(1) Is it true that l l ~ i l  >/ 0 and 1 1 ~ 1 1= 0 5 -4+ = O? 

Well, 


and this is positive by defknition of the (principle) square root of a 

non-negative number. . \ 

AS for llr r l l  = 0, this implies that -" 
, f.&::"-

, .  ,$- . $< z % 

2
but x1 , x22. xg2. and x12 are all hon-negative, hence, the sum is 0 

if and only if xl = x2 = x3 = x4 = 0. 
: .I 

, ,A, ABut, if -x = (xl ,x2 ,x3 ,x4) and if xl = x2 = x3 = x4 = 0, then 

-x = (0,0,0,0) which is 0. - . . 

(2) Is 11 a511 = 1 a 1 l l ~ ~ l lwhere a is a scalar? 

. . I .  . -

Well, 


Therefore, 


(3) Finally, is it true that 11 -x + yll ,< l l ~ l l + 11 yII? 
This is a "toughie," computationally speaking. That is, let 

-x = (x11x21x3,X4) and y = (y1,y2,y3,y4). Then we are being asked to 

show that 





(i) 5-y= y-5 

(ii) ~ * ( y  = + 5-g+ 5)  5.y 

(iii) (cx)-y= c(x*y) = x-(cy) 

Now, it is almost trivial to verify that (i), (ii), and (iii) hold 

directly in E~ from the definition given in (16) . Verifying (iv) is 

not as trivial, but it should be noticed that the validity of (iv) is 

precisely the statement of Schwarz 's inequality, since lx=dis 
Ixlyl + X2Y2 + X3y3 + x4y41 while il&ll llrll is Z 

+X4 
Z 

. . 1 .-

In fact, (iv) allows us to extend the concept of angle beyond 3- 

' I 

dimensional space. Namely, from (iv), it is clear that 


(This is a trivial step in the sense that both sides of the inequality 


in (iv) are numbers, and for any positive numbers a and b, 

a 
a , ~b - i; 6 1.) 

Thus, if we define the cosine of the angle between ~fand y (even if we 
can't picture it) to be then by this definition, the cosine 

llxll llrll 

/Y.


has its usual property that -1 d cos ( 1. We can then talk about 
'x 

directional cosines of vectors in n-space and we can even talk about 

two n-tuples being orthogonal (perpendicular) in terms of their dot 

product being zero. These ideas are pursued at great length in many 

real applications of mathematics (for example, the study of orthogonal 

functions [such as are used in Fourier Series] which we shall mention 

in a little more detail in Block 7), but for now we only hope that you 

begin to get the feeling that n-dimensional space is as real for n > 3 

as it is for n 6 3, and that, at least from an analytical point of 

view, distance is as real in the higher dimensional spaces as it is in 

the lower ones - even though we may have trouble at first trying to 

feel at home with the idea. 



- -- -- 

As a final remark, our definition of Ilxll leads to an extension of -
distance as we know it in ordinary geometry. For this reason, the 


. . 
definition 


is known as the Euclidean Metric (where Euclidean indicates ordinary 


geometry and metric indicates a measure of distance*). 


A NOTE ON THE PROOF OF SCHWARZ'S INEQUALITY 


There are probably many ways of proving Schwarz's inequality. One of 


the most elegant, if not the most obvious, makes use of elementary 


calculus. 


Given the quadratic function defined by f (x) = ax2 + 2bx + c with 
a > 0, we compute f ' . When f ' (x) is 0, we have a minimum. In fact, 

f'(x) = 2ax + 2b while fN(x) = 2a which is positive. Thus, the mini- 

mum occurs at x = -b/a. When x = -b/a, we have that f(x) = 

a(-b/a) + 2b (-b/a) + c = c - b2/a. In other words, the minimum value 
2 2
for ax2 + bx + c is c - b /a. Therefore, as soon as ac - b is non- 

negative, then, ax2 + 2bx + c must be at least as great as zero since 
its minimum value is. 


In summary then, if -a is positive, then ax2 + 2bx + c is at least as 
great as zero for all x if and only if ac - b2 3 0 .  

With this result in mind, we now look at 


Since f as. defined in (1) is the sum of squares, it is non-negative. 

That is, f (x) 5 0 for all x. On the other hand, we can rewrite (1) as 


*In terms o f  our e a r l i e r  remarks, a f u n c t i o n  d:En+E i s  c a l l e d  a  m e t r i c  
( d i s t a n c e  f u n c t i o n )  on En i f  and o n l y  i f  

(i) d ( 5 )  L 0 f o r  a l l  5 E E" and d ( 5 )  = 0 * x = -0 

( i i )  d ( c 5 )  = I c l d ( 5 )  f o r  a l l  r e a l  numbers c 

( i i i )  d ( 5  + y) s d ( 5 )  + d ( 1 )  



- - 

Notice that, as written in (21, f has the fozm we just mentioned. 


Namely, 


f (x) = ax2 + 2bx + c 


where 


Moreover, as seen from (1) , f(x) & 0 for all x. Consequently, our 
2previous result guarantees that b q ac. That is, 


By taking square roots, Schwarz's inequality follows. 


Again, It is not our purpose here to make it seem that the proof of 


the inequality is either easy or natural. It is just for the sake of 


completeness that we felt obligated to present a proof. This might 


also serve as a good illhstration as to why one must, upon occasion, 


solve abstract problems to understand better a real situation. In 


other words, it is possible that a problem involving either Schwarz's 


inequality or its proof might hardly seem an inspiring exercise in its 


own right if, for example, we had presented it as an exercise on max- 


min theory earlier in the course without the motivation afforded in 


the present context. 


Limits 

' >* 

We are now in a position to talk more analytically about what we mean 

when we say that lim f ( 5 )  = L. 
-x+a 

Certainly, from an intuitive point of view, we would be tempted to say 

that f(5) is near L if 5 is sufficiently close to 2. The point is 

that up until the previous section, the notion of x being close to a 

was developed only for 1, 2, and 3-dimensional space in terms of the 

arrow interpretation of vectors. From our discussion in the previous 



section, however, we can now extend the notion of ncloseness" to n- 

dimensional space simply by defining "x is within 6 of -an to mean that 
11% - dl < 6 .  

If we now mimic the formal definition of a limit as given for a real 

function of a single real variable, and recall only that absolute 

value for vectors (n-tuples) has been replaced by the notion of the 

Euclidean metric, we obtain the definition: We say that lim f(x) = L 

if for every E: > 0 we can find 6 > 0 such that 0 < 1 1 %  - all -
x+a 

< 6 implies 

that If - L I  < E.  

Perhaps the best way to illustrate our above discussion is by means of 


a specific example. In order to be able to capture the geometric 


significance of any remarks we make, we shall take the very special 


case for which the domain of f is E~ (2-dimensional vector space). 


The point is that while all our remarks will then have geometric in- 


terpretation, they will also be self-contained from an arithmetical 


point of view. In this way, we can extend our results analytically 


from n = 2 to any general value of n and, at the same time, form a 

mental picture of what these results mean for lower di~iensional cases 

in terms of usual geometry. In this sense, the most difficult job in 

studying real functions of n real variables is to handle the case 

n = 2 analytically, for once this is done our results will extend 

almost immediately to any number of real variables. 

~ e tus then consider the example 

where we wish to compute 


lim f (x)
I 
z+5 

where 5 = (2,3). 

If we rewrite this in traditional form, we have 


*In d e f e r e n c e  t o  t r a d i t i o n a l  mathematics ,  i t  i s  customary t o  denote  
1 - t u p l e s  by x r a t h e r  than ( x l ) ,  2 - t u p l e s  by ( x , y )  ra ther  than 

( x 1 , x 2 ) ,  and 3 - t u p l e s  by  ( x , y , z )  r a t h e r  than ( x 1 , x 2 , x 3 ) .  



1 im (x
2 + y 31 ,  or lim (x 2 + y 3 ) .*  

fx,y)+(2,3) x+2 
y+3 


Now, if we allow our intuition to"reign, we sense that (17) "sort of" 

asks us to compute x 2 + y3 when x = 2 and y = 3, from which we would 

guess that 

lim (X 
2 + y 3) = 31, 

x+2 
~'3 

or in the language of the original exercise, 


lim f (x) - = 31. 
-x+g 

The point is that (18) is at best a conjecture. We used our intuition 

in arriving at it, and we took certain liberties (such as letting 

x = 2 and y = 3) that led us to grief even in the simpler 1-dimensional 

case (i.e., Part 1 of our course). To test the validity of (18), we 

must use our "official" (rigorous) definition of limit to show that 

given any E > 0 we can find 6 > 0 such that 

implies that 


or, by the definition of the ~uclidean metric, 


implies that 


*We do not want to get involved with too many new concepts at one 

time, so we shall wait until the next section before going into more 


detail. However, the notation (x,y)+(2,3) 
 [::: 
or 
 presents many 


problems which do not at first meet the eye. 




To t a k e  advantage of t h e  f a c t  t h a t  w e  want x t o  be nea r  2 and y  t o  be 

nea r  3, w e  rewrite x2 + y3 - 3 1  i n  t h e  more sugges t ive  form 


(x2 - 4)  + (y3 - 2 7 ) .  


Then. 


From ( 1 9 ) ,  w e  see t h a t  t o  have 1x2 + y3 - 31 1 < c, it is  s u f f i c i e n t  

t o  be s u r e  t h a t  lx2 - 41 + l y 3  - 2 7 )  < E. . * 

But, lx2 - 4 I + ly3 - 27 1 < E i s  guaranteed t o  happen i f  w e  can be  
s u r e  t h a t  

and 

The beauty  of ( 2 0 )  i s  t h a t  each of  t h e  i n e q u a l i t i e s  invo lves  b u t  a  

s i n g l e  r e a l  v a r i a b l e ,  and t h i s  i s  what w e  l ea rned  t o  handle i n  P a r t  1 

of  our  course.  For example, w e  a r e  s u r e  t h a t  w e  can f i n d  such t h a t  

s i n c e  t h i s  was t h e  d e f i n i t i o n  of  l i m  x2 = 4 .  
x+2 

S i m i l a r l y ,  from t h e  f a c t  t h a t  w e  know l i m  yJ = 2 7 ,  w e  can f i n d  62 such 

t h a t  Y+3 

*The t y p e  o f  c o m p u t a t i o n  f o r  d e t e r m i n i n g  t h e  61 and  6 2  o f  ( 2 1 )  and  

( 2 2 )  f o r  a g i v e n  7E 
was done  i n  d e t a i l  i n  P a r t  1 and w i l l  n o t  b e  r e -

p e a t e d  h e r e  s o  t h a t  we may c o n t i n u e  u n i n t e r r u p t e d .  S i n c e  you  may b e  a 
b i t  " r u s t y "  w i t h  t h e  c o m p u t a t i o n ,  i t  i s  i n c l u d e d  i n  t h e  s t u d y  g u i d e  
a s  E x e r c i s e  3 . 1 . 3 ( L ) .  The  i n t e r e s t e d  r e a d e r  may d i g r e s s ,  i f  h e  s o  
d e s i r e s ,  a n d  l o o k  a t  t h i s  e x e r c i s e  now. 



Thus, f o r  a  given E > 0, w e  can f i n d  and 62 such t h a t  (21) and (22) 

both  hold. 

I f  w e  now l e t  6 = rn i11{6~,6~1(i .e. ,  6 6 61 and 6 d d 2 ) ,  it fol lows 

from (21) and (22) t h a t  

0 < lx - 21 < 6 -and 0 < ly - 31 < 6 -+ ix2 - 4 1  and l y 3  - 271 

a r e  both  less than f. That i s ,  

Hence, by ( 1 9 ) ,  

The only  t r o u b l e  wi th  (23) i s  t h a t ,  wh i l e  it seems t o  do t h e  job f o r  

u s ,  it does n o t  have t h e  r i g h t  form. Namely, t h e  6 w e  were seeking 

was t o  have t h e  p roper ty  t h a t  

However, it i s  easy  t o  see t h a t  

I X  - 21 a A x  - 212 + (Y  - 312 and ly - 3 )  6 A x  - 212 + ( Y  - 3) 2* 

Hence, i f  x - 212 + (y - 312 < 6 s o  a l s o  a r e  Ix - 21 and ly - 31. 

Thus, wi th  6 a s  i n  (23), w e  have t h a t  

*That i s ,  s i n c e  x12  + . .. x i s  a sum o f  n o n - n e g a t i v e  numbers,  t h e  
n 

sum must  b e  a t  l e a s t  a s  g r e a t  a s  e a c h  o f  t h e  i n d i v i d u a l . s u m m a n d s .  

That  i s ,  f o r  k = 1 ,  ...,n ,  xk
2 

4 x 2 + ... + x 
2 . Hence ,1 n 

2lxkl 6 k12+ . . . + xn . I n  our  p r e s e n t  c o n t e x t ,  n e i t h e r  (x - 212 n o r  

( y  - 312 can  e x c e e d  ( x  - 2 1 2  + ( y  - 3) 2 . 



- - 

- - 

and we have, therefore, established the validity of 


Before continuing further, let us make the following aside. While our 


definition of limit required that we convert (23) into (24), it seems 


that in a major sense the job was done when we got to (23). 


Now, in terms of our game of mathematics, let us recall that our 

theorems are no stronger than our assumptions. Thus, when we invented 

the Euclidean metric, it was only because we wanted to mimic our 

definition of distance in the lower dimensions. While this was a 

natural way to feel, there was no law that said we had to feel this 

way. For instance, suppose we wanted a metric only for finding limits. 

Then what (23) told us was that for x to be sufficiently close to a, 

it was only necessary that x be sufficiently close to 2 and y suffi- 

ciently close to 3. More gene?ally, if x = (xl,...,x n) and 

a = (al,...,an) then to make sure that x is within 6 of 5 it is only 
necessary to make sure-that the maximum of the numbers 

Ixl - all,-., and Ixn - an] 

is "sufficiently small." 


For this reason, one often uses a different metric than the Euclidean 


one when one deals with limits. (Recall that "metric" means a 


"distance function.") In particular, in this case, one defines a 


metric called the Minkowski metric by 


The important point is that the Minkowski metric also satisfies 

properties (13' ) ,. (14' , and (15' ) (otherwise it wouldn't be called a 

metric) and behaves as distance should behave. The proof is left for 

the exercises. 


*Technically speaking, we should not use the same symbol for two 

different metrics. Rather than invent still new symbolism at this 

time, we shall use the same symbol for both the Euclidean and the 

Minkowski metric, but indicate each time which metric we are using. 

In a little while, we shall see that as far as limit problems are 

concerned, there is no harm in using the two metrics interchangeably. 




Let us return now to the main stream of the present problem and recall 

that we chose -x in E~ so that we could exploit the geometric aspects 
of the problem. 

3
When we look at f (x .y) = k2 + y graphically. we are talking about the 

surface z = x2 + y3. (There is really no need to have to know what 

this surface looks like in order to understand the following dis- 

cussion. If, however, you feel ill at ease with the graphs of sur- 

faces, the material contained, for example, in Thomas Sections 12.10 


and 12.11 might be of interest to you.) At the point (2,3), the 


height of the surface above that point is 31. Pictorially, 


t 
 .. 

' S0(2,3,31) is on the surface 

i 

Figure 1 


What our limit problem then asks is: How close must the point (xl,yl) 

in the xy-plane be to the point Po(2,3) if f(x,y) is to be within E of 
31, i.e., if the height of the surface z = x 2 + y2 above (xl,yl) is to 
be within E of the height of the surface above (2,3)? Again, 

pictorially, 



-
f Z 

Ro+E @ z = x1 
2 + y13 is to lie between the parallel 

R-	 planes z = R--E and z = Re+€? 

P ~ \ L ~ ~ )  relative to Po if & 

Figure 2 


In terms of and ti2 as defined in (21) and (22), we have 


. . 
@ The interior of rectangle 

ABCD consists of those points 
(x, y) in the xy-plane for 
which Ix - 21 < til and 

within ti1 of 2 and y is 

within ti2 of 3). 

! (2;o) ; : X 

@ 	For every point (x,y) inside ABCD, 31-E < x 2 + y3 < 31+c 
(where we omitted the absolute value signs since near (2,3) 

x 2 +'y3 is obviously positive). 


Figure 3 


What the Minkowski metric does when we let 6 = min{61,62) is that it 

replaces ABCD of Figure 3 by a square whose side has length 26 and 

whose center is Po. 



Again, pictorially, 


. - For each (x,y) in the 
. square A ' B ' C ' D '  the- , 

2 3
point (x,y,x + Y 
lies between the planes 

z = 31-E and z = 31+c. 

Figure 4 

This discussion serves as an excellent springboard for our comparing 


the Euclidean and the Minkowski metrics. In particular, we can now 


see what it means when we say that the two metrics are equivalent with 


respect to limit problems. 


Perhaps the easiest way to motivate our meaning of "equivalent" is to 


recall the definition of 


lim f (x) - = L. 
-x+a 

We said that this meant for any E > 0 we could find 6 > 0 such that 

0 < I I x  - all < 6 

implied that 


The problem is that we do not know whether 115 - all refers to the 
Minkowski metric or the Euclidean metric. Our claim is that it makes 

no difference! That is, whether or not it is true that lim f(5) = L 
x+c 

is independent of which metric we use in our definition of a limit. 




Tki%ois not tau d S f f i W t  t o  see Sraart an m X y t i c  gmis%qf v%wk.crr 
any dldtrtensYma1 spa-, hat in the c a m  whexe we rrim ?draw the picture 

-
(as i n  the present 

For efkunpla, euppase fsx a certain E ,0 w e  have 6t%bi-Bikd a d > 0 

S.U& that for 0 < n~ - 611 le 6, If(x) - L I  <- E. Wet @ba..waa%.03lta,that 
we are using the Bw3it r To remind us of thiig, L e t  us ' 

replace 8 by tiE. 

The question .a r Boers there exic9t mo.Eat~tf.fa~rp@rh~ggSEtB 

s.n? 6 (say $1 such thra 0 Ilx_ - all < 6, + 11b) --it.; CrllDge aow 
1 1 ~- gfliekbe #hkakmk-i BB~C~E~C? 

find 6M > 0 such that 

Our claim is that we need only choose 


For if mar{ 1 xl - al 1,. ..,Ixn - an 1 ) is less than 5, then each of the 
hi 

quantities, Ixl - all ,..., I xn - an 1 is less than 5. Therefore, 
6 
E 2 

al) ,..., and (xn are each less than 7, whereupon(xl - 2 - an) OE 

Ax1 - all2 + ... + (xn - an12 < n ... n n &E' -

n times 


Butt since /(xl - all2 + ... + (xn - anI2 < we know from above 

that If (x) - L I  < E. 



.-

In the case n = 2, this says that 6M = - What does this mean 
42' 

pictorially? Well, saying that 


means 


@ I£ x is in @ The "half-side" 
the ci?cle, of the inscribed 

E
square is - . 
@ Hence, if 5 is JZ 
in the square which @ Thus, in terms of 
is inscribed in the the Minkowski metric, 
circle, for every 5 in the 
If(x) - L I  < E: 6~
(since the square square 11 x - 511 < -

is contained in the .6
. -

circle). since maxClxl - all r 

. 
In "plain English," this says that once we find a "circular' neighbor- 

hood of a with the desired property, we can always find a "squaren* 
neighborhood of a with the same desired property. 

Conversely, if we have found 6M such that 0 < max{]xl - all,..., 


1 Xn - a 1 < 6M + I f(?I) - 1 1  < E, our claim is that this is enough to 


insure that if 


then 


(i .e., we may choose dE = . 

* W h i l e  t h e  p i c t u r e  i s  e a s y  t o  see  when n = 2 ,  t h e  m a t h e m a t i c i a n  e x t e n d s  
t h e  c o n c e p t  o f  c i r c l e s  a n d  s q u a r e s  t o  a l l  d i m e n s i o n s .  T h a t  i s ,  we 

d e f i n e  a n  n - s p h e r e  o f  r a d i u s  6 i n  E 
n b y  x12 + ... + x n 2  & 6 * ,  w h i l e  

we d e f i n e  a n  n - c u b e  o f  s i d e  2 4  I x l )  \( a ,  . . . , I  x n l  < a .  What we h a v e  

p r o v e n  i n  g e n e r a l  ( a n d  i l l u s t r a t e d  g e o m e t r i c a l l y  f o r  n = 2 ) ,  i s  t h a t  

we c a n  a l w a y s  " i n s c r i b e "  a n  n - c u b e  i n  a n  n - s p h e r e .  




Namely, 


Then since (xk - ak)2 (k = l,.. .,n) S (xl - all2 + ... + (xn - an) 2 


[because the left side is but one of the terms which makes up the sum 


of non-negative terms on the right side], it follows that 


(xk - ak)
2 

< 6M
2 , for k = 1,...,n. 


Therefore, 


Ixk - akl < 6,*, k = l,...,n. 


Since (xk - 6, <akl for each k = l,...,n, it follows that 

and this insures that I f (x)- L I < E. 

In terms of a picture for n = 2 

--. 
\-, m a x l l ~ ~ - a ~ l , I x ~ - a ~ 1 } < 6 ~  

requires only that we be inside the square. 
\\ 

Thus, being inside the inscribed 

-a='.31,a2' circle (whose radius is 6,) guarantees 

1 that we are within the square. 
I I 

* R e c a l l  t h a t  a 2  < b 2  -+ 1 a1 < Ib 1 , a c b .  For example, ( - 3 )  
2 

< ( - 5 ) 2  
even though - 3  > - 5 .  



-- 

Notice that while in this case dE = this was not what was impor- 

tant. What is important is that given &M such that 

we can find dE such that 


. ' 
and conversely. In intuitive terms, we can inscribe n-spheres in 

n-cubes and n-cubes in n-spheres. As to when cSE = 6M and when 

B~-= perhaps the easiest way to keep the distinction in mind is &,I 

$6 

pictorially in the case n = 2. That is, given a circular neighborhood, 


the circumscribed square contains points outside the sphere and hence 


the result need not be true for such points. Given the "square" . 


neighborhood, every point within the inscribed circle also lies in the 


square. 


Lest we have lost track of our original aim, what we have shown is 

that we can exhibit a Minkowski neighborhood of 5 such that for all 5 
in this neighborhood If&) - L I  < E if and only if we can exhibit a 

Euclidean neighborhood of -a such that for all 5 in this neighborhood 

If(5)- L I  E-

It is not important that the two neighborhoods have the same size 

(whatever this is to mean). All that we need for determining a limit 

is to find for any given E > 0 one &-neighborhood with the desired 

property. 


An Introduction to Continuity 


2 3
In the last section, when we wrote, for example, lim (X + y ) I  

(x,y)+(2,3) 
there was a bit of subtlety that we preferred to ignore until now in 

the hope that we have had additional time to get used to metrics in 


n-space. 


The point is just as in the calculus of a single real variable, when 


we say that lim f(x) = L we mean that the limit exists, and in each 
x+a 

case is equal to L, regardless of the "path" by which x approaches a. 

The problem was not too severe in the 1-dimensional case, since there 
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were only two ways i n  which x  could approach a  -- e i t h e r  through 

values l e s s  than a  o r  through values g r e a t e r  than a. ( P i c t o r i a l l y ,  

the  domain of x  was t he  x-axis, s o  t h a t  x  was e i t h e r  t o  the  r i g h t  of a 

o r  t o  t he  l e f t  of a.)  I n  any case,  we took t h i s  i n t o  account by 

saying t h a t  l i m  f  (x) = L implied t h a t  both l i m  f (x) and l i m  f  (x) 
x+a x+a+ x+a-

ex is ted  and t h a t  each was equal t o  L. 

From an a n a l y t i c a l  po in t  of view, t h e  key was i n  t h e  f a c t  t h a t  when we 

wrote 0 < ) x  - a1 < 6 ,  a l l  t h a t  w e  implied was t h a t  a' - 6 < x < a + 6 ,  

(X # a ) ,  and a s  a r e s u l t ,  we were tak ing  i n t o  account t h a t  x  could 

e i t h e r  exceed a o r  be less than a. 

The same problem e x i s t s t i n  n-dimensional vector  spaces i n  general .  -
For example, our d e f i n i t i o n  t h a t  1i m  (x4 + y3 1 = 31 took i n t o  

lx ,y)+(2,3)
account t h e  f a c t  t h a t  no t  only d i d  t h e  l i m i t  e x i s t ,  bu t  i t s  value i n  

no way depended upon how w e  l e t  (x,y) approach (2,3).  

P i c t o r i a l l y ,  t h e  problem is t h a t  t h e  domain of our function f a n  t h i s  

case  i s  the  xy-plane, and a s  a r e s u l t ,  t he re  are i n f i n i t e l y  many paths 

(even i f  we r e s t r i c t  our  a t t e n t i o n  t o  s t r a i g h t  l i n e  approaches) by 

which (x,y) can approach (2 ,3) .  The way t h a t  w e  showed i n  our def in i -  

t i o n  t h a t  t he  L i m i t  d i d  no t  depend on the  path  was when w e  exhibi ted 

6 > 0 such t h a t  0 < I ) ( x , y )  - (2,3111 < 6 + lx2 + y3 - 311 < r .  

For, whether w e  used t h e  Minkowski m e t r i c  o r  t h e  Euclidean m e t r i c ,  t he  

impl icat ion was t h a t  ) x2 + y3 - 311 < E f o r  every value of x  and y  

within  a s u f f i c i e n t l y  small  neighborhood of (2,3).  Again, p i c t o r i a l l y ,  

1 0n.e I[1--51 x 6 ,  then 
X
-1 1xZ + y' - 311 < r ,  

r egard less  of t he  d i rec-  , I  [ t i o n  of r e l a t i v e  t o  5. 
x/ (2,3)=a-3 

I J 
In  a  s imi l a r  way, even when w e  dea l  with n-dimensional space i n  

general ,  t he  f a c t  t h a t  w e  say Ilx - - 511 < 6 implies t h a t  w e  a r e  t a lk ing  

about every x  within  6 of a. 



We will leave computational illustrations to the exercises, but for 

now we want to make it clear that the definition of lim f(x) = L.: 
z+c 

must not depend on how we let x approach a. (We shall refine these 

ideas in later chapters.) 

Because this point is so important, we would like to restate it in 

still different language. In the case of 2 (or 3) dimensional space, 

what we mean when we say that lim f(x)= L is that once given E > 0, 
x+a 

we can find a number 6 > 0 such that once x is in the circle (sphere) 
centered at 5with radius equal to 6, or in the square (cube) of side 

26 centered at a, then f(x)- is within E of L. Since this is true for 

every point in the neighborhood of 5, the fact that f(x) approaches L 

as -x approaches does not depend on the particular path we choose for 

allowing ~f to approach 5. 

With this idea in mind, we now mimic our definition in the case of 

functions of a single real variable, and we define continuity as 

follows. 
, ,. 

Let ~:E"-+Eand let -~EE". Then we say that f is continuous at 5 if and 

only if lim f(x)- = £(a). What this says is that for f to be continu-
X+P 

ous at 5, it must be that (1) f is defined at a, i.e., f(5) exists, 

and (2) no matter how approaches 2, we can make f(x) come as close 
in value as we wish to f(a)- just by choosing x close enough to 5. 

For example, without saying it in as many words, we showed that if f 

was defined by f(x, y) = x2 + y3 then f was continuous at (2,3). That 

is, we showed that (1) f(2,3) existed and was equal to 31 and (2) 

1im f(x,y) = f(2,3) = 31 regardless of how (x,y) approached 
(xJy)+(2,31 

(2,3) 
I .  

2Pictorially, this meant that the surface z = x + y3'was unbroken in a 
neighborhood of the point (2,3,31). 

We do not want to introduce too many new ideas at one time in our in-

troductory discussion of functions of several variables, but we felt 

that you should be cautioned that many concepts that looked harmless 

in the 1-dimensional case become rather nasty when we consider more 

general dimensional spaces. In particular, the problem of letting 5 
approach a'in n-dimensional space offers a few pitfalls that were not 

so apparent when we dealt with the 1-dimensional case. Further 

remarks are left to the exercises. 



A Note on n-dimensional Vector Spaces 


In terms of arrows versus n-tuples, we probably have the feeling that 

if n = 1, 2, or 3, then we are dealing with arrows while if n exceeds 

3 we are dealing with n-tuples. It is very important to notice at 

this time that even in the lower dimensional cases there are situa- 

tions in which we feel more comfortable talking, say, about 2-tuples 

than about arrows in the plane. 

For example, recall that while the rules may have been motivated by 


the arrow interpretation, the fact remains that a 2-dimensional vector 


space is defined by the set of all 2-tuples together with the follow- 


ing structure: 


(i) (al,a2) = (bl,b2) means that al = b1 and a2 = bq 

(ii) (alIa2)+ (blIb2)= (al + blI a2 + b2) 

(iii) r (al, a2) = (ral,ra2), for any scalar r. 

Trivially, the set of planar vectors satisfy (i) , (ii), and (iii). 
However, there are other, quite different, sets which also satisfy 

1 ,  i , and i . To this end, we shall look at one such set. 

Consider the set of all polynomials of degree less than or equal to 1. 

That is, let S = {ao + a x:a ,alaR} where R denotes the real numbers. 1 0 

We already know the following facts: 


(1) a. + alx = bo + blx ++ a. = bo and al = bl 

(2) (ao + alx) + (bo + blx) = (ao + bo) + (al + bl)x 

(3) r (ao + alx) = (rao) + (ral)x for any rcR. 

Since the sum and product of real numbers are also real numbers, 


notice that the operations defined by (2) and (3) yield elements of S. 


That is, the sum of any two members of S and any constant multiple of 




a member of S are again members of S.* 


Suppose we now decide to abbreviate a, + alx by the 2-tuple (ao,al).** 

With this notation in mind, we see that properties (i) , !ii) , and 
(iii) are obeyed. That is, if we define equality, addition, and 


scalar multiplication for linear polynomials as we have, then S serves 


as a real model which also satisfies (i), (ii), and (iii). In still 


other words, if we look at vectors in the plane in terms of what we 


mean by vector equality, vector addition, and scalar multiplication, 


and we also look at all polynomials of degree no greater than 1 with 


respect to what we mean by polynomial equality, polynomial addition, 


and polynomial "scalarn multiplication (i.e., multiplication by a con- 


stant), then we cannot tell the difference between these two different 


structures. If this sounds like a contradiction, again what we're 


trying to say is that any differences between polynomials of degree no 


greater than 1 and vectors in the plane must be caused by properties 


which are independent of properties (i), (ii), and (iii). That is, in 


terms of our game of mathematics concept, since both models obey (i), 


(ii), and (iii), they will both obey any "factsn which follow inescap- 

ably from (i), (ii), and (iii). For example, if we take the deriva- 

tive (in the usual sense) of a polynomial of degree less than or equal 

to 1, we wind up with the set of all real numbers as possible solu- 

tions. On the other hand, since our vectors in the plane are con- 

stants, their derivative will always be 0 .  The point is that the 

* T h i s  i s  why we m u s t  l e t  S i n c l u d e  c o n s t a n t s  a s  w e l l  a s  f i r s t  d e g r e e  
p o l y n o m i a l s .  F o r  e x a m p l e ,  i f  S i s  r e s t r i c t e d  t o  c o n s i s t  o f  l i n e a r  
p o l y n o m i a l s ,  i . e . ,  a l l  p o l y n o m i a l s  o f  t h e  fo rm a. + a

1
x -w h e r e  a

1 
# 0 ,  

t h e n  n e i t h e r  t h e  sum n o r  a s c a l a r  m u l t i p l e  o f  members o f  S n e e d  b e  a 
member o f  S .  A s  a n  e x a m p l e ,  n o t i c e  t h a t  b o t h  2x  + 3  and  -2x + 4 a r e  
l i n e a r  p o l y n o m i a l s  b u t  t h e  sum o f  t h e  two i s  s i m p l y  7 ,  wh ich  i s  a con-
s t a n t , &  a l i n e a r  p o l y n o m i a l .  I n  a s i m i l a r  v e i n ,  0 i s  a r e a l  number 
a n d  O(2x + 3)  = 0 ,  w h i c h  a g a i n  i s  a c o n s t a n t  b u t  n o t  a f i r s t  d e g r e e  
( l i n e a r )  p o l y n o m i a l .  The  key  p o i n t  i s  t h a t  b y  l e t t i n g  S c o n s i s t  o f  
c o n s t a n t s  and  f i r s t  d e g r e e  p o l y n o m i a l s  we wind  up w i t h  t h e  r e q u i r e d  
t t ~ l o s ~ r e ." 

* * N o t i c e  t h a t  t h e  c o n c e p t  o f  a t w o - t u p l e  d o e s  n o t  depend  on how t h e  
members o f  t h e  p a i r  a r e  l a b e l e d .  T h u s ,  ( a , b ) ,  ( x , y ) ,  ( a l , a 2 ) ,  

( a o , a l ) ,  ... a r e  a l l  a c c e p t a b l e  n o t a t i o n s .  S i n c e  i t  i s  more n a t u r a l  t o  

w r i t e  a p o l y n o m i a l  a s  a 
0 

+ a
1

x  t h a n  a s  a
1

+ a
2

x ,  we u s e d  ( a o , a l )  a s  

o u r  2 - t u p l e  r a t h e r  t h a n  ( a l , a 2 ) .  The i m p o r t a n t  t h i n g  i s  t h a t  t h e  

f i r s t  member o f  t h e  2 - t u p l e  i s  b e i n g  u s e d  t o  d e n o t e  t h e  c o n s t a n t  t e r m  
w h i l e  t h e  s e c o n d  member i s  b e i n g  u s e d  t o  d e n o t e  t h e  c o e f f i c i e n t  o f  x .  
I f  y o u  f e e l  more  c o m f o r t a b l e  u s i n g  t h e  n o t a t i o n  ( a l , a 2 )  S O  t h a t  i t  

a g r e e s  w i t h  o u r  p r e v i o u s  d i s c u s s i o n ,  s i m p l y  t h i n k  o f  t h e  p o l y n o m i a l  a s  
b e i n g  a

1 
+ a

2
x .  



concept of de r iva t i ve  is independent of ( i),(ii),and (iii)and hence 

we cannot "no t icen  t h i s  d i f fe rence  i f  we a r e  r e s t r i c t e d  t o  studying 

(i), (ii), (iii), and t h e i r  consequences. -
In  summary, what we a r e  saying is  t h a t  i f  we specify  t h a t  we want S t o  

be t he  s e t  of a l l  r e a l  valued 2-tuples sub j ec t  t o  the th ree  "rules" :  

(1) (a ,b)  = (c,d) * a = c and b = d 

( 3 )  r ( a , b )  = ( r a , rb )  f o r  any r E R ,  

then the  s e t  of planar  vectors  and t h e  set of polynomials of degree 

l e s s  than o r  equal t o  1 both serve a s  models f o r  S with respec t  t o  t he  

obvious operat ions  i n  each case. [Moreover, any d i f fe rences  between 

the  two models must s t e m  from p rope r t i e s  t h a t  a r e  no t  inescapable con-

sequences of ( I ) ,  (2 ) ,  and ( 3 ) . ]  Yet, somehow o r  o ther  w e  probably do 

not  f e e l  comfortable descr ibing l i n e a r  polynomials by arrows. 

I n  terms of our s t r u c t u r e  of mathematics, t h i s  i s  what l ed  us t o  a 

more general  d e f i n i t i o n  of a 2-dimensional vector  space. W e  s t a r t  

with a -s e t  S of 2-tuples. That is ,  S = i ( a , b ) : a  and b a r e  r e a l  num-

hers). So f a r ,  S i s  only a s e t ,  s i nce  we have imposed no s t r u c t u r e  on 

it. We now impose a s t r u c t u r e  on S a s  follows. 

(1)'We def ine  an equivalence r e l a t i o n  on S s o  t h a t  i f  a" = (al,a2) 

and b - = (bl,b2) a r e  both members of S, w e  w i l l  agree t h a t  a = b** 
means t h a t  al = b and a2 = b2.1-

(2) We w i l l  de f ine  a binary operat ion on S such t h a t  with -a and b- a s  

above, 5 + b*** s h a l l  mean t h a t  member of S named by (al + bl, 

+ 
*We s w i t c h  f rom a t o  t o  make i t  c l e a r  t h a t  e v e n  a 2 - t u p l e  n e e d  n o t  
b e  v i ewed  a s  a n  "a r row"  i n  t h e  p l a n e .  F o r  example ,  c o u l d  d e n o t e  

**It i s  p e d a g o g i c a l l y  dang-erous t o  l e t  t h e  same symbol  h a v e  two d i f f -
e r e n t  m e a n i n g s .  H e r e  we a r e  u s i n g  "=" t o  d e n o t e  two e q u i v a l e n c e  r e -
l a t i o n s ,  o n e  b e t w e e n  numbers  and  o n e  b e t w e e n  2 - t u p l e s .  P e r h a p s  we 
s h o u l d  h a v e  u s e d  a  d i f f e r e n t  s mbo l ,  s a y  @ t o  d e n o t e  t h e  e q u i v a l e n c e  
o f  2 - t u p l e s .  or example ,  2 6 b means a = a 2  and  bl = b 2  (where  
11,11 i s  i n  t h e  u s u a l  c o n t e x t  s i n c e  a il, and  b 2  a r e  numbers ) .  W e

l*a2 '  
hope  t h a t  i t  w i l l  b e  c l e a r  from t e x t  w h e t h e r  = r e f e r s  t o  numbers  o r  2-
t u p l e s .  

***This i s  t h e  same p r o b l e m  a s  above .  P e r h a p s  we s h o u l d  h a v e  w r i t t e n  
-a @ b = ( a l  + b l ,  a 2  + b 2 ) .  



(3) If r is any real number and a - = (al,a2), the scalar product ra is -
defined by (ral ,ra2) . 
If the set S obeys rules (I), (2), and (3) [which, by the way, were 


motivated by properties (i), (ii)", and (iii) of our previous two 


models] then we refer to this structure as beinq a 2-dimensional vec-
-
tor space and denote it by E2 . Notice that E~ is the set S together 

with a structure which is defined by (1) , (2), and (3) . 
We can now mimic (i), (ii), and (aii) [or (l), (2), and (3)l as we 


have already done in Section C for n-tuples in general, and in this 


way, we can invent the n-dimensional vector space. 


By way of review, we let Sn denote the set of all n-tuples trl, ...,r- n 

where rlr...,r n are real numbers. Using the abbreviation 


-a = (al,...,an) to denote elements of Sn, we imposed the following 
structure on Sn: 

For a and b in Sn, we say that 5 = b if and only if al = bl,..., 

and an = 

(a) -
bn' 


(b) For a and -b in Sn, we define -a + b by (al + bl,...,an + bn). 

(c) For 5 in Snr if r is any real number, we define ra to mean 
-
(ral,. ..,ran 1. 

Any set Sn together with the structure implied by (a) , (b), and (c) is 
called an n-dimensional vector space, and is denoted usually by E". 

What is most important to understand here is that while, geometrically 


speaking, it is harder to think of n-dimensional space when n exceeds 


three than it is to think of a 1, 2, or 3-dimensional vector space, 


analytically speaking, the meaningfulness of an n-dimensional space 


does not depend on the value of n. 


As a specific example, consider the set S4 of all polynomials of 

degree less than or equal to three. That is, an element of Sq has the 

form 


where aor al, a2, and a3 are all real numbers. 




I' 

If we define equality, addition, and "scalar multiplicationn of poly- 


nomials in the usual way, and if we agree to abbreviate (7) by 5, it 

is quickly verified that: 


(a) If -a and b - belong to S4, then -a = b if and only if a. = bo, 

al = bl, a = b2, and a3 = b3.2 


(b) If 5 and b belong to Sn, then -a + -b = (ao + bo, ...,a3 + b3). 

(c) If 5 belongs to S4 and r is any real number, then 
ra = (rao, ral ,ra2,ra3). 

Thus, with respect to the required structure, the system of poly-


nomials of degree less than or equal to three is a &model of a 4- 


dimensional vector space, as real a model as the structure of linear 


polynomials is of a 2-dimensional vector space. 
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