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5.4.1(L) 


Let us first observe that if S were homogeneous (i.e., of constant 


density), we would not think in terms of triple integrals. 


Namely, we would find the volume of S simply by computing 


and we would then find the mass by multiplying this result by the 


density. 


Now, while it would be quite artificial, we could certainly 


observe that x + y + 1 is equivalent to 

The result of substituting (2) into (1) is that we obtain the vol- 


ume of S as the triple integral 


dz dy dx. 


This discussion is simply meant to reinforce the notion that one 


does not need triple integrals to compute volumes. Rather, the 


use of triple integrals enters the picture when we must limit our 


changes in x, y, and z to be small. In particular, in the present 


exercise, we want the mass of S, and since the density of the 


solid depends on x, y, and z, the approximation that the density 


may be viewed as being constant requires that S be viewed as being 


partitioned into small parallelepipeds. 


The volume of one such parallelepiped, ASijk, is Ax.Ay.Azk = AVijk,
1 1  


and the approximate density is p(ai,b.,ck) = a.b.c where 
I 1 1 k 


(ai,b.,c ) is any point in ASijk. Then the approximate mass of S
I k 


would be obtained by summing the p(ai,bj,ck)AVijk's. 
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5.4.1 (L) continued 


m fact, if we assume that gijk is the minimum density in ASijk 

and that Fijkis the maximum density in AS i jk' then the mass M of 
the solid S is bounded by 

If we let the size of the partitions approach 0 and if p(x,y,z) is 


continuous, we see that 


m n
{kxx4jk~~ijk
, etc. 
k=l j=l i=l 

Notice that our discussion here is equivalent to our discussion in 


Unit 1, except that we are now involved with triple sums rather 


than double sums. 


If the limit in (4) exists, we write it as 


and this, in turn, may be viewed as an iterated integral. In 


terms of the present exercise, (5) becomes 


[Notice that we obtain the limits of integration just as we did in 

double integration. Namely, for a fixed (x,y), z varies from the 

xy-plane (z = 0) to the plane z = x + y + 1, etc.1 

The key point is that while the triple integral in ( 3 )  is arti- 

ficial, the triple integral in (6) is essential since the inte- 

grand is affected by a change in z. 
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5.4.1 (L) continued 


At any rate, the actual mechanics work exactly as they did with 


double integrals and we obtain 
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The key point here is that we use the axiom that the whole equals 


the sum of its parts. Specifically, we first compute 


which denotes the volume of the portion of the cylinder between 

the xy-plane and z = x2 + y2 + 3 .  

Then we compute 


which denotes the volume of the portion of the cylinder between 

the xy-plane and z = x + y + 1. 

Consequently, 


must represent the required volume since the required volume is of 

the solid consisting of the portion of the cylinder between the 

xy-plane and z = x2 + y2 + 3 ,  with the  portion between the xy-

plane and z = x + y + 1 deleted. 

At any rate, since R is given by 
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5.4.2 (L) continued 


we have, 


(x2 + y2 - x - y + 2)dx d y *  i4ldY 

Thus, the required volume is 


* R e c a l l ,  o n c e  a g a i n ,  t h a t  o u r  l i m i t s  o f  i n t e g r a t i o n  a r e  d e t e r m i n e d  
b y  R  n o t  b y  t h e  i n t e g r a n d .  W e  e l e c t e d  t o  w r i t e  t h e  i n t e g r a l  i n  
t h e  o r d e r  d x  dy r a t h e r  t h a n  d y  d x  t o  s i m p l i f y  t h e  l i m i t s  o f  i n t e -
g r a t i o n .  T h a t  i s ,  ( 4 )  g i v e s  u s  0 a s  t h e  l o w e r  l i m i t  o n  e a c h  i n t e -  
g r a l .  Had we u s e d  t h e  o r d e r  d y  d x ,  ( 4 )  w o u l d  h a v e  b e e n  r e p l a c e d  by  

O b v i o u s l y ,  t h e  c o r r e c t  a n s w e r  s h o u l d  b e  o b t a i n e d  f r o m  e i t h e r  
i n t e g r a l .  
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Notice again  t h a t  t h e r e  was no need t o  use  t r i p l e  i n t e g r a l s  even 

though (4)  could have been w r i t t e n  a s  

[kx2+y2-x-y+2 dz dx dy. I 

AS a f i n a l  n o t e ,  w e  need only  check t h a t  z = x 

2 + y2 + 3 always 

l i e s  above z = x + y + 1. Algebra ica l ly ,  t h i s  means t h a t  f o r  each 

(x .y ) ,  ( X  
2 + y2 + 3) > (x + y + 1). 
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5.4.2 (L) continued 


Now 


But 


Hence, the surface z = x 2 + y2 + 3 always lies above the surface 
z = x + y + l .  

For a fixed (x,y), z ranges from 0 to x 2 + y2 + 3. Hence, the 

mass of S is given by 

444GLx2+y2+3 XYZ dz dx dy = 

-2 xyz dx dy = 
z=O 
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5.4.3 continued 


Therefore, 


G~X'+Y~+~xyz dz dx dy = 

The main twist to this exercise is that we are not explicitly 

given the cylinder which is sliced by the two surfaces. In 

problems like this, the technique is to eliminate z from the two 

equations of the surfaces. Quite in general, if z = ft(x,y) de- 

notes the top surface and z = f (x,y) denotes the bottom surface, b 

then we may equate the two expressions for z to obtain 
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5.4.4(L) continued 


At first glance, it might appear that equation (1) gives the curve 


of intersection between the two surfaces. A second glance at 


equation (I), however, should soon convince us that this, in 


general, is not the case. In particular, notice that equation (1) 


can be put into the form 


where g = ft - fb, and the equation g(x,y) = 0 is the equation of 

a curve in the xy-plane (or at least in a plane parallel to the 

xy-plane), while in general the curve of intersection of two sur- 

faces will not lie in this plane. 

In fact, if we recall that the equation of a cylinder looks like 

the equation of a curve in the xy-plane,* we soon suspect that 

equation (2) yields the cylinder which contains the intersection 

of the surfaces z = ft(x,y) and z = fb(x,y). 

More specifically, 


denotes the set of points (x,y) which have the same z-value so 

that this set may be viewed as the projection of the curve of 

intersection onto the xy-plane. [Figure 16.13 and the subsequent 

discussion in Thomas, Section 16.5, illustrates this point very 

nicely.1 

At any rate, with respect to the given surfaces in these exercises, 


we obtain 


*For  e x a m p l e ,  x 
2 + y 2  - 1 = 0 i s  t h e  c i r c l e  c e n t e r e d  a t  (0,O) w i t h  

r a d i u s  1 when we v i e w  t h e  e q u a t i o n  i n  t h e  fo rm I ( x , y ) :  x 2 + y 2  - 1 
= 0 1 ,  b u t  i t  i s  t h e  r i g h t  c i r c u l a r  c y l i n d e r  when v i ewed  i n  t h e  

fo rm ( ( x , y , z ) :  x 2 + y 2 - 1 = 0 ) .  
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5 . 4 . 4  ( L )  continued 

Hence, the curve of intersection projects onto the circle 

x 2 + y2 = 1 in the xy-plane. 

In still other words, the given solid is the portion of the cy- 

linder x 2 + y2 = 1 between z = x 2 + y2 and z = )(x2 + y2 + 1). 

To find which is the top surface and which is the bottom, we pick 

a point in the projected region of the xy-plane and see which 

curve is the upper curve above that point. For example, (0,O) is 

in the region x 2 + y2 = 1. Then the corresponding point on 
2 1 
z = x + y2 is (0,0,0), while on )(x2 + y2 + 1) it is (O,OIT). 

Thus, at least above the point (0.0) z = $(x2 + y2 + 1) is the 
upper surface. 

We then observe that wherever the curves interchange positions, 

this will be reflected by the fact that the projection of the 

curve of intersection will contain a curve corresponding to where 

the surfaces crossed. In this example, the fact that the projec- 

tion of the curve'of intersection in the xy-plane is the circle 

x 2 + y2 = 1 insures that whichever surface was the top surface at 

one point inside the circle is the top surface at all points in- 

side the circle. The circle, itself, represents the x and y co- 

ordinates of those points at which the two surfaces intersect 

(i.e., at those points neither surface is higher than the other). 

Finally, at those points outside the circle, the surface 

z = x 2 + y2 lies above the surface z = f (x2 + y2 + 1). Again. as 

a check. pick, for example, the point (1,l) which lies outside 

the circle. The corresponding point on z = x 2 + y2 is (1.1.2) 
3while the corresponding point of z = $(x2 + y2 + 1) is (1,lf7). 

The fact that the surfaces do ndt again interchange positions is 

reflected by the fact that the projection of the curve of inter- 
2

section includes nothing besides the circle x2 + y = 1. 

Returning to the given problem, we seek the volume of that portion 


of the cylinder x 2 + y2 = 1 bounded below by z = x 2 + y2 and above 
1 2

by z = T(x + y2 + 1). 



Solu t ions  
Block 5: Mul t ip le  I n t e g r a t i o n  
Uni t  4 :  Volumes and Masses of More General  S o l i d s  

5.4.4(L) cont inued 

Thus, t h e  r e q u i r e d  volume i s  

where R i s :  

Therefore  t h e  volume i s  

To e v a l u a t e  (1)we observe t h a t  it i s  i n  our  b e s t  i n t e r e s t s  t o  


use  p o l a r  c o o r d i n a t e s ,  no t ing  t h a t  R i s  simply ( ( r , B ) :  


O <  rc 1, 0 < 8 <  2 3) . Moreover, ou r  in teg rand  becomes 

1-- ;(x2+ y -2 

) 
--- 1 - r2 and our  element of a r e a  i s  -*;
= 

Thus 
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5.4.5 

Eliminat ing  z  from x 
2+ y 

2+ z2 = 4 and z = x 2+ y2 w e  o b t a i n  

Hence, 

r e p r e s e n t s  t h e  p r o j e c t i o n  of t h e  curve of i n t e r s e c t i o n  i n t o  t h e  

xy-plane. 

Equation (1)may be s i m p l i f i e d  by a swi tch  t o  p o l a r  coord ina tes  

s i n c e  w e  then o b t a i n  
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2Since r + 4 # 0 ,  equat ion  (2)  t e l l s  us  t h a t  t h e  c y l i n d e r  which 
2

con ta ins  t h e  curve of i n t e r s e c t i o n  i s  r - 2 = 0 o r  r = 0 . 
I n  o t h e r  words, t h e  curve of i n t e r s e c t i o n  p r o j e c t s  on to  t h e  c i r c l e  

i n  t h e  xy-plane cen te red  a t  (0,O) wi th  r a d i u s  2. 

So t h e  r equ i red  volume i s  given by 

2
where R i s  t h e  r eg ion  x + y2 -< 2; o r  



Solu t ions  
Block 5: Mult ip le  I n t e g r a t i o n  
Uni t  4: Volumes and Masses of More General S o l i d s  

5 . 4 . 4  (L) continued 

5 . 4 . 6  

The c y l i n d e r  which c o n t a i n s  t h e  curve of  i n t e r s e c t i o n  is obta ined 

from t h e  equation 

which is the ellipse whose semi-axes are 3 and 1. That is 
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5 . 4 . 6  continued 

Looking a t  (0.0)  w e  s e e  t h a t  it corresponds t o  t h e  p o i n t  (0.0.0) 

on t h e  s u r f a c e  z = x 2+ gy2 and t o  t h e  p o i n t  (0 ,0 ,18)  on t h e  

s u r f a c e  z = 18 - x 2- 9y2. Hence, z = 18 - x 2- gy2 is t h e  t o p  

s u r f a c e  throughout  R. Consequently, t h e  r equ i red  volume is given 

The i n t e g r a l  i n  (1) sugges t s  t r igonomet r i c  s u b s t i t u t i o n .  Namely, 

3 s i n  8 = x 

3 cos  8 d0 = dx 

J9  - x2 = 3 cos  8 
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5.4.6 continued 

Theref o r e ,  

2 2 6 3[18 cos  8 - 3(9 s i n  8 ) 3  cos  8 - n ( 3  cos 8 )  13 cos 8  d8 
a 

n 

= 61; (18 cos 8 - 18 s i n  28 cos 8 - 6 cos38 )  cos  8  d8 
-

a 
2 2 4 = 7 2 1  '[3 cos 8 (1- s i n  8 )  - cos  8 ld8  

-
1 + cos  28I 2 
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Tr 

= 36 / d T ( l+ 2 cos  28 + cos228)dQ 

= 36 1 + 2 cos 28 + 1 + 2COS 4 9 dQ 

7r 


= 1 8  L T ( 3  + 4 cos  28 + cos  48) d8 

= 18 [38 + 2 
14s i n  28  + --sin 48 

Note : 


Given 


where R was t h e  r eg ion  { (x ,y)  : + y 2 -< 11, it might have been 

a b i t  s impler  computat ionally t o  make t h e  change of v a r i a b l e s  

I n  t h i s  case  

and o u r  t ransformed i n t e g r a l  would be 
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5.4.6 continued 


sin 8 = 

cos e = 

cos ede 
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5.4.6 continued 


Hence, 


which agrees  wi th  equat ion  (2  . 

While t h i s  may n o t  have been a b i g  improvement over our o r i g i n a l  

approach it does i n d i c a t e  how a change of v a r i a b l e s  can s impl i fy  

t h e  a r i t h m e t i c  involved i n  computing a  double i n t e g r a l .  

W e  may view t h e  s o l i d  a s  being t h e  p o r t i o n  of t h e  cy l inder  

x 2+ y 2 
= a 2  bounded above by z = +- ( i . e . ,  t h e  upper 

p o r t i o n  of x 2+ z2 = a 2 ) and below by z = - m. 
Hence, l e t t i n g  R = { (x,y )  :x2+ y 2 1-c a 2  we have t h a t  t h e  given 

volume i s  
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