Column Space and Row Space of ANullspaces of A and A^{T} Row Rank = Column Rank

Gilbert Strang, MIT

 $A m{x} = m{b}$ in engineering and physics A = square $m{n}$ by $m{n}$ matrix—usually invertible $AA^{-1} = I = A^{-1}A$

 $A\widehat{x} \approx b$ in statistics and data science $A = \text{rectangular} \ m \ \text{by} \ n \ \text{matrix} - \text{no} \ 2\text{-sided inverse}$ The **pseudoinverse** A^+ is the best we can do: $\widehat{x} = A^+ b$ Four Fundamental Subspaces $C(A), C(A^T), N(A), N(A^T)$

Figure: The two perpendicular subspaces in *n* dimensions and *m* dimensions

The Column Space C(A) of a Matrix AC(A) contains all combinations Avof the columns of A (all v_1, v_2, v_3).

$$\boldsymbol{A}\boldsymbol{v} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = v_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} + v_2 \begin{bmatrix} 2 \\ 5 \end{bmatrix} + v_3 \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

For this matrix A, the column space C(A) is the whole xy plane

We only need to use the first 2 columns (set $v_3 = 0$)

Solve
$$\begin{array}{cc} 1v_1+2v_2=x & \mbox{to find } v_1 \mbox{ and } v_2 \mbox{ for } 4v_1+5v_2=y & \mbox{ any point } (x,y) \end{array}$$

The Row Space $C(A^T)$ of a Matrix AColumns of $A^T =$ transpose of A are the rows of A. The center point is the zero vector :

$$egin{aligned} m{A}^{\mathrm{T}} = egin{bmatrix} 1 & 4 \ 2 & 5 \ 3 & 6 \end{bmatrix} & m{a}_1 = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} & m{a}_2 = egin{bmatrix} 4 \ 5 \ 6 \end{bmatrix} & m{zero} \ ext{vector} = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} \end{aligned}$$

Linear combination $= A^{\mathrm{T}}v = v_1a_1 + v_2a_2$ for any numbers v_1 and v_2

When v_1 and v_2 are negative, $A^T v$ will reverse direction : right to left. Also very important, v_1 and v_2 can involve fractions. Here is a picture with 20 combinations.

The combinations $ca_1 + da_2$ fill a whole plane the column space of A^T . It is a 2-dimensional infinite plane inside 3-dimensional space. By using more and more fractions and decimals v_1 and v_2 , we fill in the plane!

The Nullspace of A

The nullspace N(A) contains all solution vectors x to the m equations Ax = 0:

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1x_1 + 2x_2 + 3x_3 \\ 4x_1 + 5x_2 + 6x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Those equations say: x is perpendicular to each row of A**The nullspace** N(A) **is perpendicular to the row space (plane)**

$$Ax = 0$$
 for $x = c \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} =$ line of vectors in N(A)

The Nullspace of A^{T}

 $\mathsf{N}(A^{\mathrm{T}})$ contains all solution vectors w to $A^{\mathrm{T}}w=0$:

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{w} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 1w_1 + 4w_2 \\ 2w_1 + 5w_2 \\ 3w_1 + 6w_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

In this case the only solution has $w_1 = 0$ and $w_2 = 0$ The nullspace of this example A^T is the **zero vector** Column space C(A) = whole x-y plane Nullspace $N(A^T) = \begin{bmatrix} 0\\0 \end{bmatrix}$

Four Fundamental Subspaces $C(A), C(A^T), N(A), N(A^T)$

Figure: The two perpendicular subspaces in *n* dimensions and *m* dimensions

Column Rank = Row Rank = "Dimension" of C(A) and $C(A^T)$ Number of independent columns = r = Number of independent rows = Rank of A

One proof: Every $A = CR = (r \text{ independent columns of } A \text{ in } C) \times (\text{coefficients in } R \text{ to produce all columns of } A)$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} = CR$$

2 rows of R are independent. From A = CR, the rows of R span the row space of A. Dimension of the column space of A = 2 = Dimension of row space of A

From its row space to its column space, every A is invertible !

Reason: For v and w in the row space, suppose Av = Aw in the column space.

Then $A(\boldsymbol{v} - \boldsymbol{w}) = \boldsymbol{0}$. So $\boldsymbol{v} - \boldsymbol{w}$ is in both the row space and nullspace of A.

Those 2 spaces are perpendicular so $\boldsymbol{v} - \boldsymbol{w} = \mathbf{zero}$ vector.

If rows v_1 to v_r = basis for $C(A^T)$, then columns Av_1 to Av_r = basis for C(A).

The **pseudoinverse** A^+ brings each Av in C(A) back to v in the row space.

"Regression" in statistics = "Least squares" in linear algebra Minimizing $||Ax - b||^2$ leads to $A^T A \hat{x} = A^T b$ If A has rank m (independent rows), then $\hat{x} =$ best x If v is in the nullspace of A, then also $A^T A (\hat{x} + v) = A^T b$

 \widehat{x} is the minimum norm least squares solution to Ax = b

Ax = b leads to $\widehat{x} = A^+b$ A^+ is the "pseudoinverse" of A

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

Resource: A Vision of Linear Algebra Gilbert Strang

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.