A 2020 Vision of Linear Algebra

Gilbert Strang

MIT
2020

$$
\begin{aligned}
& A=\boldsymbol{C} \boldsymbol{R}=\left[\begin{array}{l}
\\
\\
A=\boldsymbol{L} \boldsymbol{U}=\left[\begin{array}{l}
0 \\
\searrow^{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{O}
\end{array}\right] \\
A=\boldsymbol{Q} \boldsymbol{R}=\left[\begin{array}{ll}
q_{1} & q_{n}
\end{array}\right]\left[\begin{array}{l}
\mathrm{O}
\end{array}\right] \\
S=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathrm{T}} \\
Q^{\mathrm{T}}=Q^{-1}
\end{array}\right.
\end{aligned}
$$

Triangular matrices L and U

Orthogonal columns in Q
Orthogonal eigenvectors $S q=\lambda q$

$$
\begin{array}{ll}
A=\boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{X}^{-\boldsymbol{1}} & \text { Eigenvalues in } \Lambda \quad \text { Eigenvectors in } X \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{\lambda} \boldsymbol{x} \\
A=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}} & \text { Diagonal } \Sigma=\text { Singular values } \sigma=\sqrt{\boldsymbol{\lambda}\left(\boldsymbol{A}^{\mathbf{T}} \boldsymbol{A}\right)} \\
& \text { Orthogonal vectors in } U^{\mathrm{T}} U=V^{\mathrm{T}} V=I \quad \boldsymbol{A} \boldsymbol{v}=\boldsymbol{\sigma} \boldsymbol{u}
\end{array}
$$

$$
\begin{gathered}
A_{0}=\left[\begin{array}{rrr}
1 & 3 & 2 \\
4 & 12 & 8 \\
2 & 6 & 4
\end{array}\right] \\
A_{1}=\left[\begin{array}{lrr}
1 & 4 & 2 \\
4 & 1 & 3 \\
5 & 5 & 5
\end{array}\right] \quad S_{2}=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] \\
S_{3}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] \quad S_{4}=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \\
Q_{5}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \quad A_{6}=\left[\begin{array}{rr}
3 & 0 \\
4 & 5
\end{array}\right]
\end{gathered}
$$

Column space of A / All combinations of columns

$$
A \boldsymbol{x}=\left[\begin{array}{lll}
1 & 4 & 5 \\
3 & 2 & 5 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] x_{1}+\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right] x_{2}+\left[\begin{array}{l}
5 \\
5 \\
3
\end{array}\right] x_{3}
$$

$=$ linear combination of columns of A

Column space of $A /$ All combinations of columns

$$
\begin{aligned}
A \boldsymbol{x} & =\left[\begin{array}{lll}
1 & 4 & 5 \\
3 & 2 & 5 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] x_{1}+\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right] x_{2}+\left[\begin{array}{l}
5 \\
5 \\
3
\end{array}\right] x_{3} \\
& =\text { linear combination of columns of } A
\end{aligned}
$$

Column space of $\boldsymbol{A}=\mathbf{C}(A)=$ all vectors $A \boldsymbol{x}$
$=$ all linear combinations of the columns
R^{3} ?
The column space of this example is
plane?
line?

Column space of A / All combinations of columns

$$
A \boldsymbol{x}=\left[\begin{array}{lll}
1 & 4 & 5 \\
3 & 2 & 5 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] x_{1}+\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right] x_{2}+\left[\begin{array}{l}
5 \\
5 \\
3
\end{array}\right] x_{3}
$$

$=$ linear combination of columns of A

Column space of $\boldsymbol{A}=\mathbf{C}(A)=$ all vectors $A \boldsymbol{x}$
$=$ all linear combinations of the columns
R^{3} ?
The column space of this example is plane?
line?

Answer $\mathbf{C}(\boldsymbol{A})=$ plane

Basis for the column space / Basis for the row space

Include column $1=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ in $C \quad$ Include column $2=\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$ in C

$$
\boldsymbol{A}=\boldsymbol{C R}=\left[\begin{array}{ll}
1 & 4 \\
3 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{lll}
\mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{1}
\end{array}\right] \begin{array}{r}
\text { Row rank }= \\
\text { column rank }= \\
\boldsymbol{r}=\mathbf{2}
\end{array}
$$

The rows of R are a basis for the row space
$A=C R$ shows that column rank of $A=$ row rank of A

1. The r columns of C are independent (by their construction)
2. Every column of A is a combination of those r columns (because $A=C R$)
3. The r rows of R are independent (they contain the r by r matrix I)
4. Every row of A is a combination of those r rows (because $A=C R$)
$A=C R$ shows that column rank of $A=$ row rank of A
5. The r columns of C are independent (by their construction)
6. Every column of A is a combination of those r columns (because $A=C R$)
7. The r rows of R are independent (they contain the r by r matrix I)
8. Every row of A is a combination of those r rows (because $A=C R$)

Key facts

The r columns of C are a basis for the column space of A : dimension r
The r rows of R are a basis for the row space of A : dimension \boldsymbol{r}

Basis for the column space / Basis for the row space

$$
\text { Include column } 1=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \quad \text { Include column } 2=\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { DO NOT INCLUDE COLUMN } 3=\left[\begin{array}{l}
5 \\
5 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]+\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right] . \text { IS NOT INDEPENDENT }
\end{aligned}
$$

Basis has 2 vectors $\quad A$ has rank $r=2 \quad n-r=3-2=1$
Counting Theorem $\quad A \boldsymbol{x}=\mathbf{0}$ has one solution $\boldsymbol{x}=(1,1,-1)$
There are $n-r$ independent solutions to $\boldsymbol{A x}=0$

Matrix A with rank 1

If all columns of A are multiples of column 1 , show that all rows of A are multiples of one row

Proof using $A=C R$
One column \boldsymbol{v} in $C \Rightarrow$ one row \boldsymbol{w} in R
$A=[v]^{[w]} \Rightarrow$ all rows are multiples of w

$A=C R$ is desirable $+A=C R$ is undesirable -

C has columns directly from A : meaningful
R turns out to be the row reduced echelon form of A
Row rank $=$ Column rank is clear : $C=$ column basis, $R=$ row basis
C and R could be very ill-conditioned
If A is invertible then $C=A$ and $R=I$: no progress $\boldsymbol{A}=\boldsymbol{A I}$

If $A \boldsymbol{x}=\mathbf{0}$ then $\left[\begin{array}{c}\text { row } 1 \\ : \\ \text { row } m\end{array}\right][\boldsymbol{x}]=\left[\begin{array}{c}0 \\ : \\ 0\end{array}\right]$
\boldsymbol{x} is orthogonal to every row of A

Every \boldsymbol{x} in the nullspace of A is orthogonal to the row space of A
Every \boldsymbol{y} in the nullspace of A^{T} is orthogonal to the column space of A

$$
\mathrm{N}(A) \perp \mathrm{C}\left(A^{\mathrm{T}}\right) \quad \mathrm{N}\left(A^{\mathrm{T}}\right) \perp \mathrm{C}(A)
$$

Dimensions

$$
n-r
$$

$$
m-r
$$

$$
\boldsymbol{r}
$$

Two pairs of orthogonal subspaces. The dimensions add to n and to m.

Big Picture of Linear Algebra

This is the Big Picture-two subspaces in \mathbf{R}^{n} and two subspaces in \mathbf{R}^{m}.
From row space to column space, A is invertible.

Multiplying Columns times Rows / Six Factorizations

$A=B C=$ sum of rank-1 matrices (column times row : outer product)

$$
B C=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
b_{1} & b_{2} & \cdots & b_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
- & c_{1}^{*} & - \\
- & c_{2}^{*} & - \\
& : & \\
- & c_{n}^{*} & -
\end{array}\right]=b_{1} c_{1}^{*}+b_{2} c_{2}^{*}+\cdots+b_{n} c_{n}^{*}
$$

New way to multiply matrices! High level! Row-column is low level!

$$
A=L U \quad A=Q R \quad S=Q \Lambda Q^{\mathrm{T}} \quad A=X \Lambda X^{-1} \quad A=U \Sigma V^{\mathrm{T}} \quad A=C R
$$

Elimination on $A \boldsymbol{x}=\boldsymbol{b}$ Triangular L and U

$$
\begin{array}{r}
2 x+3 y=7 \\
4 x+7 y=15
\end{array} \begin{array}{rr}
2 x+3 y=7 & x=2 \\
y=1 & y=1
\end{array}
$$

If rows are exchanged then $P A=L U$: permutation \boldsymbol{P}

Solve $A \boldsymbol{x}=\boldsymbol{b}$ by elimination: Factor $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$

Lower triangular L times upper triangular U
Step 1 Subtract $\ell_{i 1}$ times row 1 from row i to produce zeros in column 1
Result $A=\left[\begin{array}{c}1 \\ \ell_{21} \\ \cdot \\ \ell_{n 1}\end{array}\right]\left[\begin{array}{llll}\text { row } 1 \text { of } A\end{array}\right]+\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & & \\ 0 & A_{2} & \\ 0 & & \end{array}\right]$
Step 2 Repeat Step 1 for A_{2} then A_{3} then $A_{4} \ldots$

Step $n L$ is lower triangular and U is upper triangular

Orthogonal Vectors - Matrices - Subspaces

$$
\begin{array}{llll}
\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}=0 & \boldsymbol{y}^{\mathrm{T}} \boldsymbol{x}=0 & (\boldsymbol{x}+\boldsymbol{y})^{\mathrm{T}}(\boldsymbol{x}+\boldsymbol{y})=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}+\boldsymbol{y}^{\mathrm{T}} \boldsymbol{y} & \begin{array}{l}
\text { RIGHT } \\
\\
\\
\text { TRIANGLE }
\end{array}
\end{array}
$$

Orthonormal columns $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}$ of Q : Orthogonal unit vectors

$$
\begin{aligned}
& Q^{\mathrm{T}} Q=\left[\begin{array}{ccc}
- & \boldsymbol{q}_{1}^{\mathrm{T}} & - \\
& : & \\
- & \boldsymbol{q}_{n}^{\mathrm{T}} & -
\end{array}\right]\left[\begin{array}{lll}
\boldsymbol{q}_{1} & \cdots & \boldsymbol{q}_{n} \\
& &
\end{array}\right]=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & \\
0 & & \\
& & \\
& & \\
Q Q^{\mathrm{T}}=\left[\begin{array}{ccc}
\boldsymbol{q}_{1} & \cdots & \boldsymbol{q}_{n}
\end{array}\right]=I_{n} \\
& & \boldsymbol{q}_{n}^{\mathrm{T}}-
\end{array}\right]=\boldsymbol{q}_{1} \boldsymbol{q}_{1}^{\mathrm{T}}+\cdots+\boldsymbol{q}_{n} \boldsymbol{q}_{n}^{\mathrm{T}}=\boldsymbol{I}
\end{aligned}
$$

Orthogonal Vectors - Matrices - Subspaces

$$
\begin{array}{llll}
x^{\mathrm{T}} \boldsymbol{y}=0 \quad \boldsymbol{y}^{\mathrm{T}} \boldsymbol{x}=0 \quad(\boldsymbol{x}+\boldsymbol{y})^{\mathrm{T}}(\boldsymbol{x}+\boldsymbol{y})=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}+\boldsymbol{y}^{\mathrm{T}} \boldsymbol{y} & \begin{array}{l}
\text { RIGHT } \\
\\
\\
\end{array} \begin{array}{l}
\text { TRIANGLE }
\end{array}
\end{array}
$$

Orthonormal columns $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}$ of Q : Orthogonal unit vectors

$$
Q^{\mathrm{T}} Q=\left[\begin{array}{ccc}
- & \boldsymbol{q}_{1}^{\mathrm{T}} & - \\
\vdots \\
- & \boldsymbol{q}_{n}^{\mathrm{T}} & -
\end{array}\right]\left[\begin{array}{lll}
& & \\
\boldsymbol{q}_{1} & \cdots & \boldsymbol{q}_{n} \\
& &
\end{array}\right]=\left[\begin{array}{llll}
1 & & & 0 \\
& 1 & & \\
& & \cdot & \\
0 & & & 1
\end{array}\right]=I_{n}
$$

$$
Q=\frac{1}{3}\left[\begin{array}{rr}
-1 & 2 \\
2 & -1 \\
2 & 2
\end{array}\right] \quad Q^{\mathrm{T}} Q=I \quad \begin{aligned}
& Q Q^{\mathrm{T}} \neq I
\end{aligned} \begin{gathered}
Q Q^{\mathrm{T}} Q Q^{\mathrm{T}}=Q Q^{\mathrm{T}} \\
\text { projection }
\end{gathered}
$$

"Orthogonal matrix"

$\boldsymbol{Q}=\frac{1}{3}\left[\begin{array}{rrr}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$ is square. Then $Q Q^{\mathrm{T}}=I$ and $Q^{\mathrm{T}}=Q^{-1}$
If Q_{1}, Q_{2} are orthogonal matrices, so are $Q_{1} Q_{2}$ and $Q_{2} Q_{1}$

"Orthogonal matrix"

$Q=\frac{1}{3}\left[\begin{array}{rrr}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$ is square. Then $Q Q^{\mathrm{T}}=I$ and $Q^{\mathrm{T}}=Q^{-1}$
If Q_{1}, Q_{2} are orthogonal matrices, so are $Q_{1} Q_{2}$ and $Q_{2} Q_{1}$
$\|Q \boldsymbol{x}\|^{2}=\boldsymbol{x}^{\mathrm{T}} Q^{\mathrm{T}} Q \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}=\|\boldsymbol{x}\|^{2} \quad$ Length is preserved
Eigenvalues of Q

$$
Q \boldsymbol{x}=\lambda \boldsymbol{x}
$$

$$
\|Q \boldsymbol{x}\|^{2}=|\lambda|^{2}\|\boldsymbol{x}\|^{2}
$$

$$
|\lambda|^{2}=1
$$

Rotation $Q=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \quad \begin{aligned} & \lambda_{1}=\cos \theta+i \sin \theta \\ & \lambda_{2}=\cos \theta-i \sin \theta\end{aligned} \quad\left|\lambda_{1}\right|^{2}=\left|\lambda_{2}\right|^{2}=1$

Gram-Schmidt Orthogonalize the columns of A

$$
\begin{gathered}
A=Q R \\
Q^{\mathrm{T}} A=R \\
\boldsymbol{q}_{i}^{\mathrm{T}} \boldsymbol{a}_{k}=r_{i k}
\end{gathered}\left[\begin{array}{lll}
& & \\
\boldsymbol{a}_{1} & \cdots & \boldsymbol{a}_{n}
\end{array}\right]=\left[\begin{array}{lll}
& & \\
\boldsymbol{q}_{1} & \cdots & \boldsymbol{q}_{n}
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdot & r_{1 n} \\
& & & r_{22} \\
& \cdot & r_{2 n} \\
& & \cdot & r_{n n}
\end{array}\right]
$$

Columns \boldsymbol{a}_{1} to \boldsymbol{a}_{n} are independent Columns \boldsymbol{q}_{1} to \boldsymbol{q}_{n} are orthonormal!

Gram-Schmidt Orthogonalize the columns of A

$$
\begin{gathered}
A=Q R \\
Q^{\mathrm{T}} A=R \\
\boldsymbol{q}_{i}^{\mathrm{T}} \boldsymbol{a}_{k}=r_{i k}
\end{gathered}\left[\begin{array}{lll}
& \boldsymbol{a}_{1} & \cdots \\
& & \boldsymbol{a}_{n}
\end{array}\right]=\left[\begin{array}{lll}
& & \\
\boldsymbol{q}_{1} & \cdots & \boldsymbol{q}_{n} \\
& &
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & \cdot & r_{1 n} \\
& r_{22} & \cdot & r_{2 n} \\
& & \cdot & \cdot \\
& & & r_{n n}
\end{array}\right]
$$

Columns a_{1} to a_{n} are independent Columns \boldsymbol{q}_{1} to \boldsymbol{q}_{n} are orthonormal!
Column 1 of $Q \quad \boldsymbol{a}_{1}=\boldsymbol{q}_{1} r_{11} \quad r_{11}=\left\|\boldsymbol{a}_{1}\right\| \quad \boldsymbol{q}_{1}=\frac{\boldsymbol{a}_{1}}{\left\|\boldsymbol{a}_{1}\right\|}$
Row 1 of $R=Q^{\mathrm{T}} A$ has $r_{1 k}=\boldsymbol{q}_{1}^{\mathrm{T}} \boldsymbol{a}_{k} \quad$ Subtract (column) (row)

$$
A-\boldsymbol{q}_{1}\left[\begin{array}{llll}
r_{11} & r_{12} & \cdot & r_{1 n}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{q}_{2} & \cdot & \boldsymbol{q}_{n}
\end{array}\right]\left[\begin{array}{lll}
r_{22} & \cdot & r_{2 n} \\
& \cdot & \cdot \\
& r_{n n}
\end{array}\right]
$$

Least Squares: Major Applications of $A=Q R$

$\boldsymbol{m}>\boldsymbol{n} m$ equations $A \boldsymbol{x}=\boldsymbol{b}, n$ unknowns, minimize $\|\boldsymbol{b}-A \boldsymbol{x}\|^{2}=\|\boldsymbol{e}\|^{2}$

Least Squares: Major Applications of $A=Q R$

$\boldsymbol{m}>\boldsymbol{n} m$ equations $A \boldsymbol{x}=\boldsymbol{b}, \quad n$ unknowns, minimize $\|\boldsymbol{b}-A \boldsymbol{x}\|^{2}=\|\boldsymbol{e}\|^{2}$

Normal equations for the best $\widehat{\boldsymbol{x}}: A^{\mathrm{T}} \boldsymbol{e}=\mathbf{0}$ or $A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{b}$
If $A=Q R$ then $R^{\mathrm{T}} Q^{\mathrm{T}} Q R \widehat{\boldsymbol{x}}=R^{\mathrm{T}} Q^{\mathrm{T}} \boldsymbol{b}$ leads to $R \widehat{\boldsymbol{x}}=Q^{\mathrm{T}} \boldsymbol{b}$

Least Squares: Major Applications of $A=Q R$

$\boldsymbol{m}>\boldsymbol{n} m$ equations $A \boldsymbol{x}=\boldsymbol{b}, n$ unknowns, minimize $\|\boldsymbol{b}-A \boldsymbol{x}\|^{2}=\|\boldsymbol{e}\|^{2}$

Normal equations for the best $\widehat{\boldsymbol{x}}: A^{\mathrm{T}} \boldsymbol{e}=\mathbf{0}$ or $A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{b}$
If $A=Q R$ then $R^{\mathrm{T}} Q^{\mathrm{T}} Q R \widehat{x}=R^{\mathrm{T}} Q^{\mathrm{T}} b$ leads to $R \widehat{x}=Q^{\mathrm{T}} b$

19/30

$\boldsymbol{S}=\boldsymbol{S}^{\mathrm{T}}$ Real Eigenvalues and Orthogonal Eigenvectors

$S=S^{\mathrm{T}}$ has orthogonal eigenvectors $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0}$. Important proof.
Start from these facts: $\begin{array}{lllll}S \boldsymbol{x}=\lambda \boldsymbol{x} & S \boldsymbol{y}=\alpha \boldsymbol{y} & \lambda \neq \alpha & S^{\mathrm{T}}=S\end{array}$
How to show orthogonality $\boldsymbol{x}^{\mathbf{T}} \boldsymbol{y}=\mathbf{0}$? Use every fact!

1. Transpose to $\boldsymbol{x}^{\mathrm{T}} S^{\mathrm{T}}=\lambda \boldsymbol{x}^{\mathrm{T}}$ and use $S^{\mathrm{T}}=S \quad \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{y}=\lambda \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}$
2. We can also multiply $S \boldsymbol{y}=\alpha \boldsymbol{y}$ by $\boldsymbol{x}^{\mathrm{T}}$

$$
\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{y}=\alpha \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}
$$

3. Now $\lambda \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}=\alpha \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}$. Since $\lambda \neq \alpha, \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y}$ must be zero

Eigenvectors of S go into Orthogonal Matrix Q
$S\left[\begin{array}{lll}\boldsymbol{q}_{1} & \cdots & \boldsymbol{q}_{n}\end{array}\right]=\left[\begin{array}{lll}\lambda_{1} \boldsymbol{q}_{1} & \cdots & \lambda_{n} \boldsymbol{q}_{n} \\ & & \\ & & \end{array}\right]=\left[\begin{array}{lll}\boldsymbol{q}_{1} & \cdots & \boldsymbol{q}_{n} \\ & & \end{array}\right]\left[\begin{array}{lll}\lambda_{1} & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]$
That says $\quad S Q=Q \Lambda \quad S=Q \Lambda Q^{-1}=Q \Lambda Q^{\mathrm{T}}$
$\boldsymbol{S}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\mathbf{T}}$ is a sum $\lambda_{1} \boldsymbol{q}_{1} \boldsymbol{q}_{1}^{\mathrm{T}}+\cdots+\lambda_{r} \boldsymbol{q}_{n} \boldsymbol{q}_{n}^{\mathrm{T}}$ of rank one matrices
With $S=A^{\mathrm{T}} A$ this will lead to the singular values of A
$\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}$ is a sum $\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\cdots+\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{\mathrm{T}}$ of rank one matrices
Singular values σ_{1} to σ_{r} in Σ. Singular vectors in U and V

Eigenvalues and Eigenvectors of A : Not symmetric

$$
A\left[\begin{array}{lll}
\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} \boldsymbol{x}_{1} & \cdots & \lambda_{n} \boldsymbol{x}_{n}
\end{array}\right] \quad \boldsymbol{A} \boldsymbol{X}=\boldsymbol{X} \boldsymbol{\Lambda}
$$

With n independent eigenvectors $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{X}^{-\mathbf{1}}$

Eigenvalues and Eigenvectors of A : Not symmetric

$$
A\left[\begin{array}{lll}
\boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} \boldsymbol{x}_{1} & \cdots & \lambda_{n} \boldsymbol{x}_{n}
\end{array}\right] \quad \boldsymbol{A} \boldsymbol{X}=\boldsymbol{X} \boldsymbol{\Lambda}
$$

With n independent eigenvectors $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{\Lambda} \boldsymbol{X}^{-1}$
A^{2}, A^{3}, \ldots have the same eigenvectors as A

$$
\begin{array}{cc}
A^{2} \boldsymbol{x}=A(\lambda \boldsymbol{x})=\lambda(A \boldsymbol{x})=\lambda^{2} \boldsymbol{x} & A^{n} \boldsymbol{x}=\lambda^{n} \boldsymbol{x} \\
A^{2}=\left(X \Lambda X^{-1}\right)\left(X A X^{-1}\right)=X \Lambda^{2} X^{-1} & \boldsymbol{A}^{\boldsymbol{n}}=\boldsymbol{X} \boldsymbol{\Lambda}^{n} \boldsymbol{X}^{-1} \\
A^{n} \rightarrow 0 \quad \text { when } \quad \Lambda^{n} \rightarrow 0: & \text { All } \\
\left|\boldsymbol{\lambda}_{\boldsymbol{i}}\right|<\mathbf{1}
\end{array}
$$

PROVE : $A^{\mathrm{T}} A$ is square, symmetric, nonnegative definite

1. $A^{\mathrm{T}} A=(n \times m)(m \times n)=n \times n$

Square

PROVE : $A^{\mathrm{T}} A$ is square, symmetric, nonnegative definite

1. $A^{\mathrm{T}} A=(n \times m)(m \times n)=n \times n$
2. $(B A)^{\mathrm{T}}=A^{\mathrm{T}} B^{\mathrm{T}}$
$\left(A^{\mathrm{T}} A\right)^{\mathrm{T}}=A^{\mathrm{T}} A^{\mathrm{TT}}=A^{\mathrm{T}} A$

Square
Symmetric

PROVE : $A^{\mathrm{T}} A$ is square, symmetric, nonnegative definite

1. $A^{\mathrm{T}} A=(n \times m)(m \times n)=n \times n$

Square

2. $(B A)^{\mathrm{T}}=A^{\mathrm{T}} B^{\mathrm{T}} \quad\left(A^{\mathrm{T}} A\right)^{\mathrm{T}}=A^{\mathrm{T}} A^{\mathrm{TT}}=A^{\mathrm{T}} A \quad$ Symmetric
3. $S=S^{\mathrm{T}}$ is nonnegative definite IF

EIGENVALUE TEST 1: All eigenvalues $\geq 0 \quad \boldsymbol{S} \boldsymbol{x}=\lambda \boldsymbol{x}$
ENERGY TEST 2: $\quad \boldsymbol{x}^{\mathrm{T}} \boldsymbol{S} \boldsymbol{x} \geq 0$ for every vector \boldsymbol{x}

PROVE : $A^{\mathrm{T}} A$ is square, symmetric, nonnegative definite

1. $A^{\mathrm{T}} A=(n \times m)(m \times n)=n \times n$

Square
2. $(B A)^{\mathrm{T}}=A^{\mathrm{T}} B^{\mathrm{T}} \quad\left(A^{\mathrm{T}} A\right)^{\mathrm{T}}=A^{\mathrm{T}} A^{\mathrm{TT}}=A^{\mathrm{T}} A \quad$ Symmetric
3. $S=S^{\mathrm{T}}$ is nonnegative definite IF EIGENVALUE TEST 1: All eigenvalues $\geq 0 \quad S x=\lambda x$
ENERGY TEST 2: $\quad \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} \geq 0$ for every vector \boldsymbol{x}
TEST 1 IF $A^{\mathrm{T}} A \boldsymbol{x}=\lambda \boldsymbol{x}$ THEN $\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{x}=\lambda \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$ AND $\lambda=\frac{\|A \boldsymbol{x}\|^{2}}{\|\boldsymbol{x}\|^{2}} \geq 0$
TEST 2 applies to every \boldsymbol{x}, not only eigenvectors
Energy $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{x}=(A \boldsymbol{x})^{\mathrm{T}}(A \boldsymbol{x})=\|\boldsymbol{x}\|^{2} \geq 0$
Positive definite would have $\lambda>0$ and $\boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x}>0$ for every $\boldsymbol{x} \neq 0$
$A A^{\mathrm{T}}$ is also symmetric positive semidefinite (or definite)

In applications $\frac{A A^{\mathrm{T}}}{n-1}$ can be the sample covariance matrix
$\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}$ has the same nonzero eigenvalues as $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$

Fundamental! If $A^{\mathrm{T}} A \boldsymbol{x}=\lambda \boldsymbol{x}$ then $A A^{\mathrm{T}} A \boldsymbol{x}=\lambda A \boldsymbol{x}$
The eigenvector of $\boldsymbol{A} \boldsymbol{A}^{\mathbf{T}}$ is $A \boldsymbol{x} \quad(\lambda \neq 0$ leads to $A \boldsymbol{x} \neq \mathbf{0})$

SINGULAR VALUE DECOMPOSITION

$\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathbf{T}}$ with $U^{\mathrm{T}} U=I$ and $V^{\mathrm{T}} V=I$

$A V=U \Sigma$ means
$A\left[\begin{array}{lll}\boldsymbol{v}_{1} & \cdots & \boldsymbol{v}_{r} \\ & & \end{array}\right]=\left[\begin{array}{lll}\boldsymbol{u}_{1} & \cdots & \boldsymbol{u}_{r} \\ & & \end{array}\right]\left[\begin{array}{lll}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{r}\end{array}\right]$ and $A \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i}$
SINGULAR VALUES $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0 \quad r=$ rank of A

U and V are rotations and possible reflections. Σ stretches circle to ellipse.

How to choose orthonormal \boldsymbol{v}_{i} in the row space of A ?
The \boldsymbol{v}_{i} are eigenvectors of $A^{\mathrm{T}} A$
$A^{\mathrm{T}} A \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}=\sigma_{i}^{2} \boldsymbol{v}_{i} \quad$ The \boldsymbol{v}_{i} are orthonormal. $\quad \boldsymbol{V}^{\mathbf{T}} \boldsymbol{V}=\boldsymbol{I}$

How to choose orthonormal \boldsymbol{v}_{i} in the row space of A ?
The \boldsymbol{v}_{i} are eigenvectors of $A^{\mathrm{T}} A$
$A^{\mathrm{T}} A \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}=\sigma_{i}^{2} \boldsymbol{v}_{i} \quad$ The \boldsymbol{v}_{i} are orthonormal. $\quad \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}=\boldsymbol{I}$
How to choose \boldsymbol{u}_{i} in the column space? $\boldsymbol{u}_{i}=\frac{A \boldsymbol{v}_{i}}{\sigma_{i}}$
The \boldsymbol{u}_{i} are orthonormal This is the important step $U^{\mathrm{T}} U=I$
$\left(\frac{A \boldsymbol{v}_{j}}{\sigma_{j}}\right)^{\mathrm{T}}\left(\frac{A \boldsymbol{v}_{i}}{\sigma_{i}}\right)=\frac{\boldsymbol{v}_{j}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{v}_{i}}{\sigma_{j} \sigma_{i}}=\frac{\boldsymbol{v}_{j}^{\mathrm{T}} \sigma_{i}^{2} \boldsymbol{v}_{i}}{\sigma_{j} \sigma_{i}}=\begin{array}{cc}1 & i=j \\ 0 & i \neq j\end{array}$

How to choose orthonormal \boldsymbol{v}_{i} in the row space of A ?
The \boldsymbol{v}_{i} are eigenvectors of $A^{\mathrm{T}} A$
$A^{\mathrm{T}} A \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}=\sigma_{i}^{2} \boldsymbol{v}_{i} \quad$ The \boldsymbol{v}_{i} are orthonormal. $\quad \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}=\boldsymbol{I}$
How to choose \boldsymbol{u}_{i} in the column space? $\boldsymbol{u}_{i}=\frac{A \boldsymbol{v}_{i}}{\sigma_{i}}$
The \boldsymbol{u}_{i} are orthonormal This is the important step $U^{\mathrm{T}} U=I$
$\left(\frac{A \boldsymbol{v}_{j}}{\sigma_{j}}\right)^{\mathrm{T}}\left(\frac{A \boldsymbol{v}_{i}}{\sigma_{i}}\right)=\frac{\boldsymbol{v}_{j}^{\mathrm{T}} A^{\mathrm{T}} A \boldsymbol{v}_{i}}{\sigma_{j} \sigma_{i}}=\frac{\boldsymbol{v}_{j}^{\mathrm{T}} \sigma_{i}^{2} \boldsymbol{v}_{i}}{\sigma_{j} \sigma_{i}}=\begin{array}{cc}1 & i=j \\ 0 & i \neq j\end{array}$
Full size SVD $\quad A=U \Sigma V^{\mathrm{T}}$

$$
m \times n \quad m \times m \quad n \times n
$$

\boldsymbol{u}_{r+1} to $\boldsymbol{u}_{m}:$	Nullspace of A^{T}	
\boldsymbol{v}_{r+1} to $\boldsymbol{v}_{n}:$	Nullspace of A	

\& : \& \&

\& \& \sigma_{r} \&

0 \& \& \& 0\end{array}\right]\)

$$
\begin{array}{cc}
\text { SVD of } A=\left[\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right] & A^{\mathrm{T}} A=\left[\begin{array}{ll}
25 & 20 \\
20 & 25
\end{array}\right]
\end{array} \quad A A^{\mathrm{T}}=\left[\begin{array}{rr}
9 & 12 \\
12 & 41
\end{array}\right]
$$

$$
\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{\mathrm{T}}=\frac{3}{2}\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]+\frac{1}{2}\left[\begin{array}{rr}
3 & -3 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right]
$$

Low rank approximation to a big matrix

Start from the SVD

$$
A=U \Sigma V^{\mathrm{T}}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\cdots+\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{\mathrm{T}}
$$

Keep the k largest σ_{1} to σ_{k}

$$
A_{k}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{\mathrm{T}}+\cdots+\sigma_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{\mathrm{T}}
$$

A_{k} is the closest rank k matrix to A

$$
\left\|A-A_{k}\right\| \leq\left\|A-B_{k}\right\|
$$

Norms

$$
\|A\|=\sigma_{\max } \quad\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}} \quad\|A\|_{N}=\sigma_{1}+\cdots+\sigma_{r}
$$

Randomized Numerical Linear Algebra

For very large matrices, randomization has brought a revolution
Example: Multiply $A B$ with Column-row sampling $(A S)\left(S^{\mathrm{T}} B\right)$
$A S=\left[\begin{array}{lll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3}\end{array}\right]\left[\begin{array}{cc}s_{11} & 0 \\ 0 & 0 \\ 0 & s_{32}\end{array}\right]=\left[\begin{array}{ll}s_{11} \boldsymbol{a}_{1} & s_{32} \boldsymbol{a}_{3}\end{array}\right]$ and $S^{\mathrm{T}} B=\left[\begin{array}{ll}s_{11} & b_{1}^{\mathrm{T}} \\ s_{32} & b_{3}^{\mathrm{T}}\end{array}\right]$

NOTICE $S S^{\mathrm{T}}$ is not close to I. But we can have

$$
\boldsymbol{E}\left[S S^{\mathrm{T}}\right]=I \quad \boldsymbol{E}\left[(A S)\left(S^{\mathrm{T}} B\right)\right]=A B
$$

Norm-squared sampling Choose column-row with probabilities $\approx\left\|a_{i}\right\|\left\|b_{i}^{\mathrm{T}}\right\|$

This choice minimizes the sampling variance

OCW.MIT.EDU and YouTube

Math 18.06 Introduction to Linear Algebra
Math 18.065 Linear Algebra and Learning from Data
Math 18.06 Linear Algebra for Everyone (New textbook expected in 2021 !!)
math.mit.edu/linearalgebra math.mit.edu/learningfromdata

MIT OpenCourseWare https://ocw.mit.edu

Resource: A 2020 Vision of Linear Algebra Gilbert Strang

The following may not correspond to a particular course on MIT
OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

